Skip to main content

Metal–Organic Frameworks (MOFs) for Heterogeneous Catalysis

  • Conference paper
  • First Online:
Tailored Functional Materials

Part of the book series: Springer Proceedings in Materials ((SPM,volume 15))

  • 563 Accesses

Abstract

More than 90% of daily need chemicals are manufactured by catalytic methods. Research directing into the development of benign effective catalytic materials is always exciting and vibrating in the scientific community. In this context, the metal–organic frameworks (MOFs) are the newly emerging field of crystalline porous solid catalytic materials, constructed from the well-designed organic ligand/linker and suitable metal ion. The judicial choice of the linker and metal ion becomes possible to have MOFs with structural flexibility, post-synthetic ability, tunable pore size, high surface area, stability and most importantly the inclusion of an active catalytic site. All of these structural features render the MOF to behave as an efficient heterogeneous catalyst. In this book chapter, MOF by virtue of their intrinsic catalytic activities, we have demonstrated the recent advancement of heterogeneous catalysis through C–C bond formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams C (2009) Applied catalysis: a predictive socioeconomic history. Top Catal 52:924–934

    Article  CAS  Google Scholar 

  2. Pascanu V, Miera GG, Inge AK, Martín-Matute B (2019) Metal-organic frameworks as catalysts for organic synthesis: a critical perspective. J Am Chem Soc 141:7223–7234

    Article  CAS  Google Scholar 

  3. Wang A, Li J, Zhang T (2018) Heterogeneous single-atom catalysis. Nat Rev Chem 2:65–81

    Article  CAS  Google Scholar 

  4. De D, Pal TK, Neogi S, Senthilkumar S, Das D, Gupta SS, Bharadwaj PK (2016) A versatile CuII metal–organic framework exhibiting high gas storage capacity with selectivity for CO2: conversion of CO2 to cyclic carbonate and other catalytic abilities 22:3387–3396

    Google Scholar 

  5. De D, Pal TK, Bharadwaj PK (2020) Coord Chem Rev 408:213173

    Article  Google Scholar 

  6. Leus K, Dendooven J, Tahir N, Ramachandran RK, Meledina M, Turner S, van Tendeloo G, Goeman JL, van der Eycken J, Detavernier C, Van Der Voort P (2016) Atomic layer deposition of Pt nanoparticles within the cages of MIL-101: amild and recyclable hydrogenation catalyst. Nanomaterials 6:45

    Article  Google Scholar 

  7. Juan-Alcaniz J, Ferrando-Soria J, Luz I, Serra-Crespo P, Skupien E, Santos VP, Pardo E, Xamena FXLI, Kapteijn F, Gascon J (2013) The oxamate route, a versatile post-functionalization for metal incorporation in MIL-101(Cr): catalytic applications of Cu, Pd, and Au. J Catal 307:295–304

    Article  CAS  Google Scholar 

  8. Fujita M, Kwon YJ, Washizu S, Ogura K (1994) Preparation, clathrationability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′-bipyridine. J Am Chem Soc 116:1151–1152

    Article  CAS  Google Scholar 

  9. Wu C-D, Li L, Shi L-X (2009) Heterogeneous catalyzed aryl–nitrogen bond formations using a valine derivative bridged metal–organic coordination polymer. Dalton Trans 6790–6794

    Google Scholar 

  10. Horike S, Dincã M, Tamaki K, Long JR (2008) Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites. J Am Chem Soc 130:5854–5855

    Article  CAS  Google Scholar 

  11. Pal TK, De D, Senthilkumar S, Neogi S, Bharadwaj PK (2016) A partially fluorinated, water stable Cu(II)–MOF derived via transmetalation: significant gas adsorption with high CO2 selectivity and catalysis of Biginelli reactions. Inorg Chem 55:7835–7842

    Article  CAS  Google Scholar 

  12. Zeng L, Cao Y, Li Z, Dai Y, Wang Y, An B, Zhang J, Li H, Zhou Y, Lin W, Wang C (2021) Multiple cuprous centers supported on a titanium-based metal−organic framework catalyze CO2 hydrogenation to ethylene. ACS Catal 11:11696–11705

    Article  CAS  Google Scholar 

  13. Li Y-Z, Wang H-H, Yang H-Y, Hou L, Wang Y-Y, Zhu Z (2018) An uncommon carboxyl-decorated metal-organic framework with selective gas adsorption and catalytic conversion of CO2. Chem Eur J 24:865–871

    Article  CAS  Google Scholar 

  14. Banerjee M, Das S, Yoon M, Choi HJ, Hyun MH, Park SM, Geo G, Kim K (2009) Postsynthetic modification switches an achiral framework to catalytically active homochiral metal−organic porous materials. J Am Chem Soc 131:7524–7525

    Article  CAS  Google Scholar 

  15. Yang L, Cai P, Zhang L, Xu X, Yakovenko AA, Wang Q, Pang J, Yuan S, Zou X, Huang N, Huang Z, Zhou H-C (2021) Ligand-directed conformational control over porphyrinic zirconium metal−organic frameworks for size-selective catalysis. J Am Chem Soc 143:12129–12137

    Article  CAS  Google Scholar 

  16. De D, Pal TK, Bharadwaj PK (2016) A porous Cu (II)-MOF with proline embellished cavity: cooperative catalysis for the Baylis-Hillman reaction. Inorg Chem 55:6842–6844

    Article  CAS  Google Scholar 

  17. Gong Y-N, Liu J-W, Mei J-H, Lin X-L, Deng J-H, Li X, Zhong D-C, Lu T-B (2021) Incorporation of chromophores into metal−organic frameworks for boosting CO2 conversion. Inorg Chem 60:14924–14931

    Article  CAS  Google Scholar 

  18. Zhang X, Llabrési-Xamena FX, Corma A (2009) Gold(III)–metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. J Catal 265:155–160

    Article  CAS  Google Scholar 

  19. Manna K, Zhang T, Greene FX, Lin W (2015) Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation. J Am Chem Soc 137:2665–2673

    Article  CAS  Google Scholar 

  20. Chambers MB, Wang X, Elgrishi N, Hendon CH, Waksh A, Bonnefoy J, Canivet J, Quadrelli EA, Farrusseng D, Mellot-Draznieks C, Fontecave M (2015) Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal–organic frameworks. Chemsuschem 8:603–608

    Article  CAS  Google Scholar 

  21. Zhao J, Jiao Z-H, Hou S-L, Ma Y, Zhao B (2021) Anchoring Ag(I) into nitro-functionalized metal−organic frameworks: effectively catalyzing cycloaddition of CO2 with propargylic alcohols under mild conditions. ACS Appl Mater Interfaces 13:45558–45565

    Article  CAS  Google Scholar 

  22. Shultz AM, Farha OK, Hupp JT, Nguyen ST (2009) A catalytically active, permanently microporous MOF with metalloporphyrin struts. J Am Chem Soc 131:4204–4205

    Article  CAS  Google Scholar 

  23. Farha OK, Shultz AM, Sarjeant AA, Nguyen ST, Hupp JT (2011) Active-site-accessible porphyrinic metal−organic framework materials. J Am Chem Soc 133:5652–5655

    Article  CAS  Google Scholar 

  24. Cho S-H, Ma B, Nguyen ST, Hupp JT, Albrecht-Schmitt TE (2006) A metal–organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem Commun 2563–2565

    Google Scholar 

  25. Shultz AM, Farha OK, Adhikari D, Sarjeant AA, Hupp JT, Nguyen ST (2011) Selective surface and near-surface modification of a noncatenated, catalytically active metal-organic framework material based on Mn(salen) struts. Inorg Chem 50:3174–3176

    Article  CAS  Google Scholar 

  26. Zhu J, Usov PM, Xu W, Celis-Salazar PJ, Lin S, Kessinger MC, Alvarado CL, Cai M, May AM, Slebodnick C, Zhu D, Senanayake SD, Morris AJ (2018) A new class of metal-cyclam-based zirconium metal−organic frameworks for CO2 adsorption and chemical fixation. J Am Chem Soc 140:993–1003

    Article  CAS  Google Scholar 

  27. Li G, Zhao S, Zhang Y, Tang Z (2018) Metal–organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives. Adv Mater 30:1800702

    Article  Google Scholar 

  28. Dhakshinamoorthy A, Garcia H (2012) Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem Soc Rev 41:5262–5284

    Article  CAS  Google Scholar 

  29. Jiang Y, Zhang X, Dai X, Zhang W, Sheng Q, Zhuo H, Xiao Y, Wang H (2017) Microwave-assisted synthesis of ultrafine Aunanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction. Nano Res 10:876–889

    Article  CAS  Google Scholar 

  30. Pan YY, Yuan BZ, Li YW, He DH (2010) Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chem Commun 46:2280–2282

    Article  CAS  Google Scholar 

  31. Chen Y-Z, Zhou Y-X, Wang H, Lu J, Uchida T, Xu Q, Yu S-H, Jiang H-L (2015) Multifunctional PdAg@MIL-101 for one-pot cascade reactions: combination of host−guest cooperation and bimetallic synergy in catalysis. ACS Catal 5:2062–2069

    Article  CAS  Google Scholar 

  32. Singh M, Solanki P, Patel P, Mondal A, Neogi S (2019) Highly active ultrasmall Ni nanoparticle embedded inside a robust metal-organic framework: remarkably improved adsorption, selectivity, and solvent-free efficient fixation of CO2. Inorg Chem 58:8100–8110

    Article  Google Scholar 

  33. Han Q, He C, Zhao M, Qi B, Niu J, Duan C (2013) Engineering chiral polyoxometalate hybrid metal-organic frameworks for asymmetric dihydroxylation of olefins. J Am Chem Soc 135:10186–10189

    Article  CAS  Google Scholar 

  34. Gong W, Chen X, Jiang H, Chu D, Cui Y, Liu Y (2019) Highly stable Zr(IV)-based metal-organic frameworks with chiral phosphoric acids for catalytic asymmetric tandem reactions. J Am Chem Soc 141:7498–7508

    Article  CAS  Google Scholar 

  35. Mo K, Yang Y, Cui Y (2014) A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis. J Am Chem Soc 136:1746–1749

    Article  CAS  Google Scholar 

  36. Wu C-D, Hu A, Zhang L, Lin W (2005) A homochiral porous metal−organic framework for highly enantioselective heterogeneous asymmetric catalysis. J Am Chem Soc 127:8940–8941

    Article  CAS  Google Scholar 

  37. Sawano T, Thacker NC, Lin Z, McIsaac AR, Lin W (2015) Robust, chiral, and porous BINAP-based metal−organic frameworks for highly enantioselective cyclization reactions. J Am Chem Soc 137:12241–12248

    Article  CAS  Google Scholar 

  38. Han Q, Qi B, Ren W, He C, Niu J, Duan C (2015) Polyoxometalate-based homochiralmetal-organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins. Nature Comm 6:10007–10008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan K. Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pal, T.K. (2022). Metal–Organic Frameworks (MOFs) for Heterogeneous Catalysis. In: Mukherjee, K., Layek, R.K., De, D. (eds) Tailored Functional Materials. Springer Proceedings in Materials, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-19-2572-6_11

Download citation

Publish with us

Policies and ethics