Skip to main content

A Survey of PSO Contributions to Water and Environmental Sciences

  • Chapter
  • First Online:
Book cover Computational Intelligence for Water and Environmental Sciences

Abstract

Particle Swarm Optimization (PSO) is a nature-inspired optimizer that has attracted a lot of attention since its inception in 1995 due to its ease of application and promising results. The inspiration of PSO is the collaborative swarm behavior of biological populations—a noted computational intelligence technique. There is no doubt that PSO has made outstanding contributions to vast water and environmental science problems in the real world thus far. The standard PSO has been improved many times over the past decades, leading to various hybrid, multi-objective, and improved versions. This chapter aims to present a comprehensive overview of PSO application in solving such problems, initially discussing how PSO works and obtains optimal solution. Subsequently, different versions of PSO are presented followed by their respective contributions to the water and environmental problems. Our survey revealed that PSO has been employed both solely and collaboratively with other approaches like machine learning techniques and simulation software to solve single- and multiple-objective problems of different sectors from surface water to renewable energy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, N. A., Abd Rahim, N., Gan, C. K., & Nor Adzman, N. (2019). Forecasting solar power using hybrid firefly and particle swarm optimization (HFPSO) for optimizing the parameters in a wavelet transform-adaptive neuro fuzzy inference system (WT-ANFIS). Applied Sciences, 9(16), 3214.

    Article  Google Scholar 

  • Adeyeri, O. E., Laux, P., Arnault, J., Lawin, A. E., & Kunstmann, H. (2020). Conceptual hydrological model calibration using multi-objective optimization techniques over the transboundary Komadugu-Yobe basin, Lake Chad Area, West Africa. Journal of Hydrology: Regional Studies, 27, 100655.

    Google Scholar 

  • Ahmadi, Z., Safavi, H., & Zekri, M. (2021). Forecasting groundwater level under climate change and water resources management scenarios. Journal of Water and Wastewater, 31(6), 34–47.

    Google Scholar 

  • Alaviani, F., Sedghi, H., Moghaddam, A. A., & Babazadeh, H. (2018). Adopting GMS–PSO model to reduce groundwater withdrawal by integrated water resources management. International Journal of Environmental Research, 12(5), 619–629.

    Article  Google Scholar 

  • Álvarez-Alvarado, J. M., Ríos-Moreno, J. G., Obregón-Biosca, S. A., Ronquillo-Lomelí, G., Ventura-Ramos, E., & Trejo-Perea, M. (2021). Hybrid techniques to predict solar radiation using support vector machine and search optimization algorithms: A review. Applied Sciences, 11(3), 1044.

    Article  Google Scholar 

  • Aydilek, I. B. (2018). A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Applied Soft Computing, 66, 232–249.

    Article  Google Scholar 

  • Azad, A., Manoochehri, M., Kashi, H., Farzin, S., Karami, H., Nourani, V., & Shiri, J. (2019). Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling. Journal of Hydrology, 571, 214–224.

    Article  Google Scholar 

  • Babu, K. J., & Vijayalakshmi, D. P. (2013). Self-adaptive PSO-GA hybrid model for combinatorial water distribution network design. Journal of Pipeline Systems Engineering and Practice, 4(1), 57–67.

    Article  Google Scholar 

  • Bian, Y., Yang, M., Fan, X., & Liu, Y. (2018). A fire detection algorithm based on Tchebichef moment invariants and PSO-SVM. Algorithms, 11(6), 79.

    Article  MathSciNet  MATH  Google Scholar 

  • Bomhof, J., Tolson, B. A., & Kouwen, N. (2019). Comparing single and multi-objective hydrologic model calibration considering reservoir inflow and streamflow observations. Canadian Water Resources Journal/revue Canadienne Des Ressources Hydriques, 44(4), 319–336.

    Article  Google Scholar 

  • Chaturvedi, K. T., Pandit, M., & Srivastava, L. (2009). Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch. International Journal of Electrical Power & Energy Systems, 31(6), 249–257.

    Article  Google Scholar 

  • Chen, G., Huang, X., Jia, J., & Min, Z. (2006). Natural exponential inertia weight strategy in particle swarm optimization. In 6th world congress on intelligent control and automation (Vol. 1, pp. 3672–3675). IEEE.

    Google Scholar 

  • Chen, J., Yu, C., Cai, M., Wang, H., & Zhou, P. (2020). Multi-objective optimal allocation of urban water resources while considering conflict resolution based on the PSO algorithm: A case study of Kunming. China. Sustainability, 12(4), 1337.

    Article  Google Scholar 

  • Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems (Vol. 5, pp. 79–104). Springer.

    Google Scholar 

  • Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256–279.

    Article  Google Scholar 

  • Corne, D. W., Jerram, N. R., Knowles, J. D., & Oates, M. J. (2001). PESA-II: Region-based selection in evolutionary multiobjective optimization. In Proceedings of the 3rd annual conference on genetic and evolutionary computation (pp. 283–290).

    Google Scholar 

  • Darabi, H., Mohamadi, S., Karimidastenaei, Z., Kisi, O., Ehteram, M., ELShafie, A., & Haghighi, A. T. (2021). Prediction of daily suspended sediment load (SSL) using new optimization algorithms and soft computing models. Soft Computing, 25(11), 7609–7626.

    Article  Google Scholar 

  • Daraeikhah, M., Meraji, S. H., & Afshar, M. H. (2009). Application of particle swarm optimization to optimal design of cascade stilling basins. Scientia Iranica, 16(1).

    Google Scholar 

  • Eberhart, R. C., & Shi, Y. (2001). Tracking and optimizing dynamic systems with particle swarms. In Proceedings of the 2001 IEEE congress on evolutionary computation (Vol. 1, pp. 94–100).

    Google Scholar 

  • Ehteram, M., Karami, H., Mousavi, S. F., Farzin, S., & Kisi, O. (2017). Optimization of energy management and conversion in the multi-reservoir systems based on evolutionary algorithms. Journal of Cleaner Production, 168, 1132–1142.

    Article  Google Scholar 

  • Ehteram, M., Binti Othman, F., Mundher Yaseen, Z., Abdulmohsin Afan, H., Falah Allawi, M., Najah Ahmed, A., Shahid, S., P Singh, V., & El-Shafie, A. (2018). Improving the Muskingum flood routing method using a hybrid of particle swarm optimization and bat algorithm. Water, 10(6), 807.

    Google Scholar 

  • Ehteram, M., Ahmed, A. N., Fai, C. M., Afan, H. A., & El-Shafie, A. (2019). Accuracy enhancement for zone mapping of a solar radiation forecasting based multi-objective model for better management of the generation of renewable energy. Energies, 12(14), 2730.

    Article  Google Scholar 

  • Ehteram, M., Singh, V. P., Ferdowsi, A., Mousavi, S. F., Farzin, S., Karami, H., Mohd, N. S., Afan, H. A., Lai, S. H., Kisi, O., Malek, M. A., & El-Shafie, A. (2019b). An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration. PloS one, 14(5), e0217499

    Google Scholar 

  • Ehteram, M., Ferdowsi, A., Faramarzpour, M., Al-Janabi, A. M. S., Al-Ansari, N., Bokde, N. D., & Yaseen, Z. M. (2021). Hybridization of artificial intelligence models with nature inspired optimization algorithms for lake water level prediction and uncertainty analysis. Alexandria Engineering Journal, 60(2), 2193–2208.

    Article  Google Scholar 

  • Fan, S. K. S., & Chiu, Y. Y. (2007). A decreasing inertia weight particle swarm optimizer. Engineering Optimization, 39(2), 203–228.

    Article  MathSciNet  Google Scholar 

  • Farmani, R., Savic, D. A., & Walters, G. A. (2005). Evolutionary multi-objective optimization in water distribution network design. Engineering Optimization, 37(2), 167–183.

    Article  Google Scholar 

  • Farzin, S., & Valikhan Anaraki, M. (2020). Optimal construction of an open channel by considering different conditions and uncertainty: Application of evolutionary methods. Engineering Optimization, 1–19.

    Google Scholar 

  • Feng, Y., Teng, G. F., Wang, A. X., & Yao, Y. M. (2007). Chaotic inertia weight in particle swarm optimization. In Second International Conference on Innovative Computing, Information and Control (ICICIC 2007) (pp. 475–475). IEEE.

    Google Scholar 

  • Ferdowsi, A., Farzin, S., Mousavi, S. F., & Karami, H. (2019). Hybrid Bat & Particle Swarm Algorithm for optimization of labyrinth spillway based on half & quarter round crest shapes. Flow Measurement and Instrumentation, 66, 209–217.

    Article  Google Scholar 

  • Ferdowsi, A., Hoseini, S. M., Farzin, S., Faramarzpour, M., & Mousavi, S. F. (2020). Shape optimization of gravity dams using a nature-inspired approach. Journal of Soft Computing in Civil Engineering, 4(3), 65–78.

    Google Scholar 

  • Ferdowsi, A., Mousavi, S. F., Farzin, S., & Karami, H. (2020). Optimization of dam’s spillway design under climate change conditions. Journal of Hydroinformatics, 22(4), 916–936.

    Article  Google Scholar 

  • Ferdowsi, A., Singh, V. P., Ehteram, M., & Mirjalili, S. (2021a). Multi-objective optimization approaches for design, planning, and management of water resource systems. In Essential Tools for Water Resources Analysis, Planning, and Management (pp. 275–303). Springer.

    Google Scholar 

  • Ferdowsi, A., Valikhan-Anaraki, M., Mousavi, S. F., Farzin, S., & Mirjalili, S. (2021b). Developing a model for multi-objective optimization of open channels and labyrinth weirs: Theory and application in Isfahan Irrigation Networks. Flow Measurement and Instrumentation, 101971.

    Google Scholar 

  • Gutierrez, J. C. T., Adamatti, D. S., & Bravo, J. M. (2019). A new stopping criterion for multi-objective evolutionary algorithms: Application in the calibration of a hydrologic model. Computational Geosciences, 23(6), 1219–1235.

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison, K. R., Engelbrecht, A. P., & Ombuki-Berman, B. M. (2016). Inertia weight control strategies for particle swarm optimization. Swarm Intelligence, 10(4), 267–305.

    Article  Google Scholar 

  • Ghazvinian, H., Mousavi, S. F., Karami, H., Farzin, S., Ehteram, M., Hossain, M. S., Fai, C. M., Hashim, H.B., Singh, V. P., Ros, F. C., Ahmed, A. N., & El-Shafie, A. (2019). Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction. PLoS One, 14(5), e0217634.

    Google Scholar 

  • Hosseini, M., & Kerachian, R. (2017). A data fusion-based methodology for optimal redesign of groundwater monitoring networks. Journal of Hydrology, 552, 267–282.

    Article  Google Scholar 

  • Hu, L. M., & Li, Y. Z. (2012). Optimization design of gravity dam section based on PSO algorithm. In Advanced Materials Research, 424, 535–539.

    Article  Google Scholar 

  • Hu, X., & Eberhart, R. (2002). Multiobjective optimization using dynamic neighborhood particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600) (Vol. 2, pp. 1677–1681). IEEE.

    Google Scholar 

  • Hu, X., Eberhart, R. C., & Shi, Y. (2003). Particle swarm with extended memory for multiobjective optimization. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706) (pp. 193–197). IEEE.

    Google Scholar 

  • Huang, Y., Xiang, Y., Zhao, R., & Cheng, Z. (2020). Air quality prediction using improved PSO-BP neural network. IEEE Access, 8, 99346–99353.

    Article  Google Scholar 

  • Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777–784.

    Article  MathSciNet  MATH  Google Scholar 

  • Jazayeri, P., & Moeini, R. (2020). Construction cost minimization of the stepped spillway using improved particle swarm optimization and artificial bee colony algorithms. Water and Environment Journal, 34, 468–480.

    Article  Google Scholar 

  • Jiao, B., Lian, Z., & Gu, X. (2008). A dynamic inertia weight particle swarm optimization algorithm. Chaos, Solitons & Fractals, 37(3), 698–705.

    Article  MATH  Google Scholar 

  • Kennedy, J., & Eberhart, R., (1995). Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks (Vol. 4, pp. 1942–1948). IEEE.

    Google Scholar 

  • Kentzoglanakis, K., & Poole, M. (2009). Particle swarm optimization with an oscillating inertia weight. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (pp. 1749–1750).

    Google Scholar 

  • Kim, Y. G., Sun, B. Q., Kim, P., Jo, M. B., Ri, T. H., & Pak, G. H. (2021). A study on optimal operation of gate-controlled reservoir system for flood control based on PSO algorithm combined with rearrangement method of partial solution groups. Journal of Hydrology, 593, 125783.

    Article  Google Scholar 

  • Liu, D., Li, G., Fu, Q., Li, M., Liu, C., Faiz, M. A., Khan, M. I., Li, T., & Cui, S. (2018). Application of particle swarm optimization and extreme learning machine forecasting models for regional groundwater depth using nonlinear prediction models as preprocessor. Journal of Hydrologic Engineering, 23(12), 04018052.

    Google Scholar 

  • Ma, S., He, J., Liu, F., & Yu, Y. (2011). Land-use spatial optimization based on PSO algorithm. Geo-Spatial Information Science, 14(1), 54–61.

    Article  Google Scholar 

  • Meraji, S. H., Afshar, M. H., & Afshar, A. (2005). Reservoir operation by particle swarm optimization algorithm. In Proceedings of the 7th International Conference of Civil Engineering, (Icce7th) (pp. 8–10).

    Google Scholar 

  • Minaee, R. P., Afsharnia, M., Moghaddam, A., Ebrahimi, A. A., Askarishahi, M., & Mokhtari, M. (2019). Calibration of water quality model for distribution networks using genetic algorithm, particle swarm optimization, and hybrid methods. MethodsX, 6, 540–548.

    Article  Google Scholar 

  • Mirjalili, S., Jangir, P., Mirjalili, S. Z., Saremi, S., & Trivedi, I. N. (2017). Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowledge-Based Systems, 134, 50–71.

    Article  Google Scholar 

  • Mirzaie-Nodoushan, F., Bozorg-Haddad, O., & Loáiciga, H. A. (2017). Optimal design of groundwater-level monitoring networks. Journal of Hydroinformatics, 19(6), 920–929.

    Article  Google Scholar 

  • Mohandes, M. A. (2012). Modeling global solar radiation using Particle Swarm Optimization (PSO). Solar Energy, 86(11), 3137–3145.

    Article  Google Scholar 

  • Monsef, H., Naghashzadegan, M., Jamali, A., & Farmani, R. (2019). Comparison of evolutionary multi objective optimization algorithms in optimum design of water distribution network. Ain Shams Engineering Journal, 10(1), 103–111.

    Article  Google Scholar 

  • Mostafaie, A., Forootan, E., Safari, A., & Schumacher, M. (2018). Comparing multi-objective optimization techniques to calibrate a conceptual hydrological model using in situ runoff and daily GRACE data. Computational Geosciences, 22(3), 789–814.

    Article  MathSciNet  MATH  Google Scholar 

  • Mostaghim, S., & Teich, J. (2003). Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706) (pp. 26–33). IEEE.

    Google Scholar 

  • Nagesh Kumar, D., & Janga Reddy, M. (2007). Multipurpose reservoir operation using particle swarm optimization. Journal of Water Resources Planning and Management, 133(3), 192–201.

    Article  Google Scholar 

  • Parsapour-Moghaddam, P., Abed-Elmdoust, A., & Kerachian, R. (2015). A heuristic evolutionary game theoretic methodology for conjunctive use of surface and groundwater resources. Water Resources Management, 29(11), 3905–3918.

    Article  Google Scholar 

  • Piotrowski, A. P., Napiorkowski, J. J., & Piotrowska, A. E. (2020). Population size in particle swarm optimization. Swarm and Evolutionary Computation, 58, 100718.

    Article  Google Scholar 

  • Poli, R. (2009). Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Transactions on Evolutionary Computation, 13(4), 712–721.

    Article  Google Scholar 

  • Poli, R., & Broomhead, D. (2007). Exact analysis of the sampling distribution for the canonical particle swarm optimiser and its convergence during stagnation. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (pp. 134–141). ACM.

    Google Scholar 

  • Rezaei, F., Safavi, H. R., & Zekri, M. (2017). A hybrid fuzzy-based multi-objective PSO algorithm for conjunctive water use and optimal multi-crop pattern planning. Water Resources Management, 31(4), 1139–1155.

    Article  Google Scholar 

  • Saadatpour, M., & Afshar, A. (2013). Multi objective simulation-optimization approach in pollution spill response management model in reservoirs. Water Resources Management, 27(6), 1851–1865.

    Article  Google Scholar 

  • SaberChenari, K., Abghari, H., & Tabari, H. (2016). Application of PSO algorithm in short-term optimization of reservoir operation. Environmental Monitoring and Assessment, 188(12), 1–11.

    Article  Google Scholar 

  • Sadeghi-Tabas, S., Samadi, S. Z., Akbarpour, A., & Pourreza-Bilondi, M. (2017). Sustainable groundwater modeling using single-and multi-objective optimization algorithms. Journal of Hydroinformatics, 19(1), 97–114.

    Article  Google Scholar 

  • Sengupta, S., Basak, S., & Peters, R. A. (2019). Particle swarm optimization: A survey of historical and recent developments with hybridization perspectives. Machine Learning and Knowledge Extraction, 1(1), 157–191.

    Article  Google Scholar 

  • Surco, D. F., Vecchi, T. P., & Ravagnani, M. A. (2018). Optimization of water distribution networks using a modified particle swarm optimization algorithm. Water Science and Technology: Water Supply, 18(2), 660–678.

    Google Scholar 

  • Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360) (pp. 69–73). IEEE.

    Google Scholar 

  • Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) (Vol. 3, pp. 1945–1950). IEEE.

    Google Scholar 

  • Suribabu, C. R., & Neelakantan, T. R. (2006). Design of water distribution networks using particle swarm optimization. Urban Water Journal, 3(2), 111–120.

    Article  Google Scholar 

  • Tapoglou, E., Trichakis, I. C., Dokou, Z., Nikolos, I. K., & Karatzas, G. P. (2014). Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization. Hydrological Sciences Journal, 59(6), 1225–1239.

    Article  Google Scholar 

  • Thangaraj, R., Pant, M., Abraham, A., & Bouvry, P. (2011). Particle optimization: Hybridization perspectives and experimental illustrations. Applied Mathematics and Computation, 217(12), 5208–5226.

    Article  MATH  Google Scholar 

  • Tanweer, M. R., Suresh, S., & Sundararajan, N. (2015). Self regulating particle swarm optimization algorithm. Information Sciences, 294, 182–202.

    Article  MathSciNet  MATH  Google Scholar 

  • Taravatrooy, N., Nikoo, M. R., Adamowski, J. F., & Khoramshokooh, N. (2019). Fuzzy-based conflict resolution management of groundwater in-situ bioremediation under hydrogeological uncertainty. Journal of Hydrology, 571, 376–389.

    Article  Google Scholar 

  • Wang, H., Lei, X., Khu, S. T., & Song, L. (2019). Optimization of pump start-up depth in drainage pumping station based on SWMM and PSO. Water, 11(5), 1002.

    Article  Google Scholar 

  • Wu, W., Simpson, A. R., Maier, H. R., & Marchi, A. (2012). Incorporation of variable-speed pumping in multiobjective genetic algorithm optimization of the design of water transmission systems. Journal of Water Resources Planning and Management, 138(5), 543–552.

    Article  Google Scholar 

  • Xiang, Y., & Jiang, L. (2009). Water quality prediction using LS-SVM and particle swarm optimization. In 2009 Second International Workshop on Knowledge Discovery and Data Mining (pp. 900–904). IEEE.

    Google Scholar 

  • Yang, C., Gao, W., Liu, N., & Song, C. (2015). Low-discrepancy sequence initialized particle swarm optimization algorithm with high-order nonlinear time-varying inertia weight. Applied Soft Computing, 29, 386–394.

    Article  Google Scholar 

  • Yang, X. S., Gandomi, A. H., Talatahari, S., & Alavi, A. H. (Eds.). (2012). Metaheuristics in water, geotechnical and transport engineering. Elsevier.

    Google Scholar 

  • Yaseen, Z. M., Allawi, M. F., Karami, H., Ehteram, M., Farzin, S., Ahmed, A. N., Koting, S. B., Mohd, N. S., Jaafar, W. Z. B., Afan, H. A., & El-Shafie, A. (2019). A hybrid bat–swarm algorithm for optimizing dam and reservoir operation. Neural Computing and Applications, 31(12), 8807-8821.

    Google Scholar 

  • Zhang, R., Liu, J., Gao, H., & Mao, G. (2018). Can multi-objective calibration of streamflow guarantee better hydrological model accuracy? Journal of Hydroinformatics, 20(3), 687–698.

    Article  Google Scholar 

  • Zhang, X., Srinivasan, R., Zhao, K., & Liew, M. V. (2009). Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrological Processes: An International Journal, 23(3), 430–441.

    Article  Google Scholar 

  • Zhang, X., Srinivasan, R., & Liew, M. V. (2010). On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model. Hydrological Processes: An International Journal, 24(8), 955–969.

    Article  Google Scholar 

  • Zhang, Y., Zhong, Y., Gong, Y., & Zheng, L. (2019). The optimization of visual comfort and energy consumption induced by natural light based on PSO. Sustainability, 11(1), 49.

    Article  Google Scholar 

  • Zheng, F., Zecchin, A. C., Maier, H. R., & Simpson, A. R. (2016). Comparison of the searching behavior of NSGA-II, SAMODE, and Borg MOEAs applied to water distribution system design problems. Journal of Water Resources Planning and Management, 142(7), 04016017.

    Article  Google Scholar 

  • Zounemat-Kermani, M., Mahdavi-Meymand, A., Fadaee, M., Batelaan, O., & Hinkelmann, R. (2021). Groundwater quality modeling: On the analogy between integrative PSO and MRFO mathematical and machine learning models. Environmental Quality Management. https://doi.org/10.1002/tqem.21775

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Ferdowsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferdowsi, A., Mousavi, SF., Mohamad Hoseini, S., Faramarzpour, M., Gandomi, A.H. (2022). A Survey of PSO Contributions to Water and Environmental Sciences. In: Bozorg-Haddad, O., Zolghadr-Asli, B. (eds) Computational Intelligence for Water and Environmental Sciences. Studies in Computational Intelligence, vol 1043. Springer, Singapore. https://doi.org/10.1007/978-981-19-2519-1_4

Download citation

Publish with us

Policies and ethics