Skip to main content

Statistical Characteristics of Extreme Rainfall Events Over the Indian Subcontinent

  • Chapter
  • First Online:
Extreme Natural Events

Abstract

The understanding of various characteristics of rainfall is essential for water resources management. However, the highly varying nature of rainfall is constrained in accurate estimation of rainfall over a particular region. Such variability in rainfall leads to either floods or droughts, and both are potentially catastrophic. Moreover, anthropogenic climate change further complicates understanding the various characteristics of rainfall. Thus, understanding this chaotic nature of rainfall is not only interesting but also challenging. Over the Indian subcontinent, considerable attention is given to understanding the various statistical characteristics of seasonal, daily and extreme rainfall. However, the daily rainfall distribution inequality is not fully understood across the seasons over the Indian subcontinent. In this regard, the present study aims to employ the GINI inequality index to understand the daily rainfall concentration. The investigation of spatial and temporal variation in daily rainfall concentration helps in understanding atmospheric processes that influence rainfall variability. In addition, the peak over threshold method and two-parameter gamma distributions are employed to understand the statistical character and its relationship with rainfall distribution over the Indian subcontinent for all the seasons. The results would have significant implications in the flood and drought forecasting and water resources planners for sustainable water resources management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajayamohan, R.S., W.J. Merryfield, and V.V. Kharin. 2010. Increasing trend of synoptic activity and its relationship with extreme rain events over central India. Journal of Climate 23 (4): 1004–1013.

    Article  Google Scholar 

  • Anandh, P.C., and N.K. Vissa. 2020. On the linkage between extreme rainfall and the Madden–Julian oscillation over the Indian region. Meteorological Applications 27 (2): e1901.

    Article  Google Scholar 

  • Anandh, P.C., N.K. Vissa, and C. Broderick. 2018. Role of MJO in modulating rainfall characteristics observed over India in all seasons utilizing TRMM. International Journal of Climatology 38 (5): 2352–2373.

    Article  Google Scholar 

  • Bharti, V., C. Singh, J. Ettema, and T.A.R. Turkington. 2016. Spatiotemporal characteristics of extreme rainfall events over the Northwest Himalaya using satellite data. International Journal of Climatology 36 (12): 3949–3962.

    Article  Google Scholar 

  • Boyaj, A., K. Ashok, S. Ghosh, A. Devanand, and G. Dandu. 2018. The Chennai extreme rainfall event in 2015: The Bay of Bengal connection. Climate Dynamics 50 (7): 2867–2879.

    Article  Google Scholar 

  • Cai, W., S. Borlace, M. Lengaigne, P. Van Rensch, M. Collins, G. Vecchi, A. Timmermann, A. Santoso, M.J. McPhaden, L. Wu, and M.H. England. 2014a. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change 4 (2): 111–116.

    Article  Google Scholar 

  • Cai, W., A. Santoso, G. Wang, E. Weller, L. Wu, K. Ashok, Y. Masumoto, and T. Yamagata. 2014b. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510 (7504): 254–258.

    Article  Google Scholar 

  • Cai, W., G. Wang, A. Santoso, M.J. McPhaden, L. Wu, F.F. Jin, A. Timmermann, M. Collins, G. Vecchi, M. Lengaigne, and M.H. England. 2015. Increased frequency of extreme La Niña events under greenhouse warming. Nature Climate Change 5 (2): 132–137.

    Article  Google Scholar 

  • Dash, S.K., M.A. Kulkarni, U.C. Mohanty, and K. Prasad. 2009. Changes in the characteristics of rain events in India. Journal of Geophysical Research: Atmospheres 114 (D10).

    Google Scholar 

  • Deshpande, M., V.K. Singh, M.K. Ganadhi, M.K. Roxy, R. Emmanuel, and U. Kumar. 2021. Changing status of tropical cyclones over the north Indian Ocean. Climate Dynamics: 1–23.

    Google Scholar 

  • Dimri, A.P., D. Niyogi, A.P. Barros, J. Ridley, U.C. Mohanty, T. Yasunari, and D.R. Sikka. 2015. Western disturbances: A review. Reviews of Geophysics 53: 225–246.

    Article  Google Scholar 

  • Eckstein, D., V. KĂĽnzel, L. Schäfer. 2021. Global climate risk index 2021. Who suffers most from extreme weather events, 2000–2019, 1–52. Germnay: Germanwatch e.V.

    Google Scholar 

  • Fletcher, J.K., D.J. Parker, A.G. Turner, A. Menon, G.M. Martin, C.E. Birch, A.K. Mitra, G. Mrudula, K.M. Hunt, C.M. Taylor, and R.A. Houze. 2020. The dynamic and thermodynamic structure of the monsoon over southern India: New observations from the INCOMPASS IOP. Quarterly Journal of the Royal Meteorological Society 146 (731): 2867–2890.

    Article  Google Scholar 

  • Flynn, W.J., S.W. Nesbitt, A.M. Anders, and P. Garg. 2017. Mesoscale precipitation characteristics near the Western Ghats during the Indian Summer Monsoon as simulated by a high-resolution regional model. Quarterly Journal of the Royal Meteorological Society 143 (709): 3070–3084.

    Article  Google Scholar 

  • Francis, P.A., and S. Gadgil. 2006. Intense rainfall events over the west coast of India. Meteorology and Atmospheric Physics 94 (1): 27–42.

    Article  Google Scholar 

  • Ghosh, S., H. Vittal, T. Sharma, S. Karmakar, K.S. Kasiviswanathan, Y. Dhanesh, K.P. Sudheer, and S.S. Gunthe. 2016. Indian summer monsoon rainfall: Implications of contrasting trends in the spatial variability of means and extremes. PLoS ONE 11 (7): e0158670.

    Article  Google Scholar 

  • Goswami, B.N., V. Venugopal, D. Sengupta, M.S. Madhusoodanan, and P.K. Xavier. 2006. Increasing trend of extreme rain events over India in a warming environment. Science 314 (5804): 1442–1445.

    Article  Google Scholar 

  • Guhathakurta, P., O.P. Sreejith, and P.A. Menon. 2011. Impact of climate change on extreme rainfall events and flood risk in India. Journal of Earth System Science 120 (3): 359–373.

    Article  Google Scholar 

  • Hamada, A., Y. Murayama, and Y.N. Takayabu. 2014. Regional characteristics of extreme rainfall extracted from TRMM PR measurements. Journal of Climate 27 (21): 8151–8169.

    Article  Google Scholar 

  • Houze, R.A., L.A. McMurdie, K.L. Rasmussen, A. Kumar, and M.M. Chaplin. 2017. Multiscale aspects of the storm producing the June 2013 flooding in Uttarakhand, India. Monthly Weather Review 145 (11): 4447–4466.

    Article  Google Scholar 

  • Huffman, G.J., D.T. Bolvin, E.J. Nelkin, D.B. Wolff, R.F. Adler, G. Gu, Y. Hong, K.P. Bowman, and E.F. Stocker. 2007. The TRMM multi-satellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology 8 (1): 38–55.

    Article  Google Scholar 

  • Husak, G.J., J. Michaelsen, and C. Funk. 2007. Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. International Journal of Climatology 27 (7): 935–944.

    Article  Google Scholar 

  • Jain, S.K., and V. Kumar. 2012. Trend analysis of rainfall and temperature data for India. Current Science: 37–49.

    Google Scholar 

  • Kishore, P., S. Jyothi, G. Basha, S.V.B. Rao, M. Rajeevan, I. Velicogna, and T.C. Sutterley. 2016. Precipitation climatology over India: Validation with observations and reanalysis datasets and spatial trends. Climate Dynamics 46 (1–2): 541–556.

    Article  Google Scholar 

  • Krishnamurthy, V., & Ajayamohan, R.S. 2010. Composite structure of monsoon low pressure systems and its relation to Indian rainfall. Journal of Climate 23(16): 4285–4305.

    Google Scholar 

  • Kumar, V., S.K. Jain, and Y. Singh. 2010. Analysis of long-term rainfall trends in India. Hydrological Sciences Journal 55 (4): 484–496.

    Article  Google Scholar 

  • Li, C., F. Zwiers, X. Zhang, G. Li, Y. Sun, and M. Wehner. 2020. Changes in annual extremes of daily temperature and precipitation in CMIP6 models. Journal of Climate: 1–61.

    Google Scholar 

  • Madhura, R.K., R. Krishnan, J.V. Revadekar, M. Mujumdar, and B.N. Goswami. 2015. Changes in western disturbances over the Western Himalayas in a warming environment. Climate Dynamics 44 (3–4): 1157–1168.

    Article  Google Scholar 

  • Maheskumar, R.S., S.G. Narkhedkar, S.B. Morwal, B. Padmakumari, D.R. Kothawale, R.R. Joshi, C.G. Deshpande, R.V. Bhalwankar, and J.R. Kulkarni. 2014. Mechanism of high rainfall over the Indian west coast region during the monsoon season. Climate Dynamics 43 (5–6): 1513–1529.

    Article  Google Scholar 

  • Martin-Vide, J. 2004. Spatial distribution of a daily precipitation concentration index in peninsular Spain. International Journal of Climatology 24 (8): 959–971.

    Article  Google Scholar 

  • May, W. 2004. Variability and extremes of daily rainfall during the Indian summer monsoon in the period 1901–1989. Global and Planetary Change 44 (1–4): 83–105.

    Article  Google Scholar 

  • Mishra, A.K., and V.P. Singh. 2010. Changes in extreme precipitation in Texas. Journal of Geophysical Research: Atmospheres 115 (D14).

    Google Scholar 

  • Nandargi, S., and O.N. Dhar. 2011. Extreme rainfall events over the Himalayas between 1871 and 2007. Hydrological Sciences Journal 56 (6): 930–945.

    Article  Google Scholar 

  • Pattanaik, D.R., and M. Rajeevan. 2010. Variability of extreme rainfall events over India during southwest monsoon season. Meteorological Applications 17 (1): 88–104.

    Article  Google Scholar 

  • Prakash, S., A.K. Mitra, I.M. Momin, D.S. Pai, E.N. Rajagopal, and S. Basu. 2015. Comparison of TMPA-3B42 versions 6 and 7 precipitation products with gauge-based data over India for the southwest monsoon period. Journal of Hydrometeorology 16 (1): 346–362.

    Article  Google Scholar 

  • Prakash, S., A.K. Mitra, E.N. Rajagopal, and D.S. Pai. 2016. Assessment of TRMM-based TMPA-3B42 and GSMaP precipitation products over India for the peak southwest monsoon season. International Journal of Climatology 36 (4): 1614–1631.

    Article  Google Scholar 

  • Prein, A.F., R.M. Rasmussen, K. Ikeda, C. Liu, M.P. Clark, and G.J. Holland. 2017. The future intensification of hourly precipitation extremes. Nature Climate Change 7 (1): 48–52.

    Article  Google Scholar 

  • Raj, Y.E.A. 2003. Onset, withdrawal and intra-seasonal variation of northeast monsoon over coastal Tamil Nadu, 1901–2000. Mausam 54 (3): 605–614.

    Article  Google Scholar 

  • Rajah, K., T. O’Leary, A. Turner, G. Petrakis, M. Leonard, and S. Westra. 2014. Changes to the temporal distribution of daily precipitation. Geophysical Research Letters 41 (24): 8887–8894.

    Article  Google Scholar 

  • Rakhecha, P.R., and M.K. Soman. 1994. Trends in the annual extreme rainfall events of 1 to 3 days duration over India. Theoretical and Applied Climatology 48 (4): 227–237.

    Article  Google Scholar 

  • Romatschke, U., S. Medina, and R.A. Houze. 2010. Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. Journal of Climate 23 (2): 419–439.

    Article  Google Scholar 

  • Roxy, M.K., S. Ghosh, A. Pathak, R. Athulya, M. Mujumdar, R. Murtugudde, P. Terray, and M. Rajeevan. 2017. A threefold rise in widespread extreme rain events over central India. Nature Communications 8 (1): 1–11.

    Article  Google Scholar 

  • Sahu, R.K., J. Dadich, B. Tyagi, and N.K. Vissa. 2020. Trends of thermodynamic indices thresholds over two tropical stations of north-east India during pre-monsoon thunderstorms. Journal of Atmospheric and Solar-Terrestrial Physics 211: 105472.

    Article  Google Scholar 

  • Sato, T. 2013. Mechanism of orographic precipitation around the Meghalaya Plateau associated with intraseasonal oscillation and the diurnal cycle. Monthly Weather Review 141 (7): 2451–2466.

    Article  Google Scholar 

  • Singh, D., M. Tsiang, B. Rajaratnam, and N.S. Diffenbaugh. 2014. Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nature Climate Change 4 (6): 456–461.

    Article  Google Scholar 

  • Singh, J., S. Sekharan, S. Karmakar, S. Ghosh, P.E. Zope, and T.I. Eldho. 2017. Spatio-temporal analysis of sub-hourly rainfall over Mumbai, India: Is statistical forecasting futile? Journal of Earth System Science 126 (3): 38.

    Article  Google Scholar 

  • Subramanian, A., M. Jochum, A.J. Miller, R. Neale, H. Seo, D. Waliser, and R. Murtugudde. 2014. The MJO and global warming: A study in CCSM4. Climate Dynamics 42 (7–8): 2019–2031.

    Article  Google Scholar 

  • Suman, M., and R. Maity. 2020. Southward shift of precipitation extremes over south Asia: Evidences from CORDEX data. Scientific Reports 10 (1): 1–11.

    Article  Google Scholar 

  • Trenberth, K.E. 2012. Framing the way to relate climate extremes to climate change. Climatic Change 115 (2): 283–290.

    Article  Google Scholar 

  • Tyagi, B., V.N. Krishna, and A.N.V. Satyanarayana. 2011. Study of thermodynamic indices in forecasting pre-monsoon thunderstorms over Kolkata during STORM pilot phase 2006–2008. Natural Hazards 56 (3): 681–698.

    Article  Google Scholar 

  • Varikoden, H., B. Preethi, and J.V. Revadekar. 2012. Diurnal and spatial variation of Indian summer monsoon rainfall using tropical rainfall measuring mission rain rate. Journal of Hydrology 475: 248–258.

    Article  Google Scholar 

  • Vialard, J., P. Terray, J.P. Duvel, R.S. Nanjundiah, S.S.C. Shenoi, and D. Shankar. 2011. Factors controlling January–April rainfall over southern India and Sri Lanka. Climate Dynamics 37 (3): 493–507.

    Article  Google Scholar 

  • Virts, K.S., and R.A. Houze. 2016. Seasonal and intraseasonal variability of mesoscale convective systems over the South Asian monsoon region. Journal of the Atmospheric Sciences 73 (12): 4753–4774.

    Article  Google Scholar 

  • Vissa, N.K., P.C. Anandh, V.S. Gulakaram, and G. Konda. 2021. Role and response of ocean–atmosphere interactions during Amphan (2020) super cyclone. Acta Geophysica: 1–14.

    Google Scholar 

  • Vissa, N.K., A.N.V. Satyanarayana, and B.P. Kumar. 2013. Intensity of tropical cyclones during pre-and post-monsoon seasons in relation to accumulated tropical cyclone heat potential over Bay of Bengal. Natural Hazards 68 (2): 351–371.

    Article  Google Scholar 

  • Wilks, D.S. 1990. Maximum likelihood estimation for the gamma distribution using data containing zeros. Journal of Climate 3 (12): 1495–1501.

    Article  Google Scholar 

  • Yaduvanshi, A., P.K. Srivastava, and A.C. Pandey. 2015. Integrating TRMM and MODIS satellite with socio-economic vulnerability for monitoring drought risk over a tropical region of India. Physics and Chemistry of the Earth, Parts a/b/c 83: 14–27.

    Article  Google Scholar 

Download references

Acknowledgements

P. C. Anandh acknowledges the National Institute of Technology for the technical and financial support for the research work. The authors would like to acknowledge Goddard Earth Sciences Data and Information Services Center (GES DISC) for providing Tropical Rainfall Measuring Mission (TRMM) data and the Indian Meteorological Department for providing tropical cyclones best tracks. NKV would like to acknowledge the Science and Engineering Research Board (SERB), Government of India (Grant Ref: ECR/2016/001896). Authors acknowledging anonymous reviewers and editors for the constructive and meticulous comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Krishna Vissa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Centre for Science & Technol. of the, Non-aligned and Other Devel. Countries

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anandh, P.C., Vissa, N.K., Tyagi, B. (2022). Statistical Characteristics of Extreme Rainfall Events Over the Indian Subcontinent. In: Unnikrishnan, A., Tangang, F., Durrheim, R.J. (eds) Extreme Natural Events. Springer, Singapore. https://doi.org/10.1007/978-981-19-2511-5_4

Download citation

Publish with us

Policies and ethics