Skip to main content

A Piecewise Affine System Modeling Approach of Thin McKibben Muscle Servo Actuator

  • Conference paper
  • First Online:
Enabling Industry 4.0 through Advances in Mechatronics

Abstract

Dynamic characteristic of thin McKibben muscle has not yet been fully investigated. Therefore, the objective of this study is to propose a piecewise affine system to model a thin McKibben muscle servo actuator. The static and dynamic modeling of the actuator has been performed using first principle approach. Different models for extension and retraction operations have been presented. The step input responses of the model have been simulated and compared to the actual system response. Result shows that the model’s response is similar to the actual system with steady-state errors of 1.18% for 0.2 MPa input and 0% for 0.25 and 0.3 MPa inputs. The evidence from this study suggests that a piecewise affine system can be used to model a thin McKibben muscle servo actuator, which would facilitate future development of a novel switching controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kodama T, Kogiso K (2017) Applications of UKF and EnKF to estimation of contraction ratio of McKibben pneumatic artificial muscles. In 2017 American control conference (ACC). IEEE, Washington, pp 5217–5222

    Google Scholar 

  2. Martens M, Boblan I (2017) Modeling the static force of a Festo pneumatic muscle actuator: a new approach and a comparison to existing models. Actuators 6(1):33

    Article  Google Scholar 

  3. Yi J, Chen XJ, Song CY, Wang Z (2018) Fiber-reinforced origamic robotic actuator. Soft Robot 5(1):81–92

    Article  Google Scholar 

  4. Faudzi AAM, Endo G, Kurumaya S, Suzumori K (2017) Long-legged hexapod Giacometti robot using thin soft McKibben actuator. IEEE Robot Autom Lett 3(1):100–107

    Article  Google Scholar 

  5. S-Muscle. https://www.s-muscle.com. Accessed 1 July 2021

  6. Davis S, Tsagarakis N, Canderle J, Caldwell DG (2003) Enhanced modelling and performance in braided pneumatic muscle actuators. Int J Robot Res 22(3–4):213–227

    Article  Google Scholar 

  7. Hong WS, Mohd Faudzi AA, Rosli NR (2020) Design and control of biomimicry eye using soft actuator. PERINTIS eJ 10(1)

    Google Scholar 

  8. Chang T-H, Koizumi S, Nabae H, Endo G, Suzumori K, Hatakeyama K, et al (2020) A wearable ankle exercise device for deep vein thrombosis prevention using thin McKibben muscles. In: 2020 8th IEEE RAS/EMBS international conference for biomedical robotics and biomechatronics (BioRob), New York, USA, pp 42–47

    Google Scholar 

  9. Takahashi N, Furuya S, Koike H (2020) Soft Exoskeleton glove with human anatomical architecture: production of dexterous finger movements and skillful piano performance. IEEE Trans Haptics 13(4):679–690

    Article  Google Scholar 

  10. Mohamed MF, Hanif ASM, Faudzi AA (2020) Segmentation of a soft body and its bending performance using thin Mckibben muscle. Int J Autom Mech Eng 17(1):7533–7541

    Article  Google Scholar 

  11. Ying S, Al-Shammari N, Faudzi A, Sabzehmeidani Y (2020) Continuous progressive actuator robot for hand rehabilitation. Eng Technol Appl Sci Res 10(1):5276–5280

    Google Scholar 

  12. Fan J, Jin J, Wang Q (2020) Humanoid muscle-skeleton robot arm design and control based on reinforcement learning. In: 2020 15th IEEE conference on industrial electronics and applications (ICIEA), Kristiansand, Norway, pp 541–546

    Google Scholar 

  13. Kurumaya S, Nabae H, Endo G, Suzumori K (2017) Design of thin McKibben muscle and multifilament structure. Sens Actuators A 261:66–74

    Article  Google Scholar 

  14. Andrikopoulos G, Nikolakopoulos G, Arvanitakis I, Manesis S (2014) Piecewise affine modeling and constrained optimal control for a pneumatic artificial muscle. IEEE Trans Industr Electron 61(2):904–916

    Article  Google Scholar 

  15. Schindele D, Aschemann H (2008) Nonlinear model predictive control of a high-speed linear axis driven by pneumatic muscles. In: 2008 American control conference. IEEE, Washington, pp 3017–3022

    Google Scholar 

  16. Mhd Yusoff MA, Mohd Faudzi AA, Hassan Basri MS (2021) Feasibility of Pi control for a double-acting cylinder actuated by Mckibben muscles. Springer, pp 327–339

    Google Scholar 

  17. Schulte H Jr (1961) The characteristics of the McKibben artificial muscle (1961) The Application of external power in prosthetics and orthotics. National Academy of Sciences-National Research Council, Washington DC, Appendix H, pp 94–115

    Google Scholar 

  18. Shen X (2010) Nonlinear model-based control of pneumatic artificial muscle servo systems. Control Eng Pract 18(3):311–317

    Article  Google Scholar 

  19. Endo N, Kizaki Y, Kamamichi N (2020) Flexible pneumatic bending actuator for a robotic tongue. J Robot Mechatron 32(5):894–902

    Article  Google Scholar 

  20. Andrikopoulos G, Nikolakopoulos G, Arvanitakis I, Manesis S (2013) Switching model predictive control of a pneumatic artificial muscle. Int J Control Autom Syst 11(6):1223–1231

    Article  Google Scholar 

  21. Borrelli F, Bemporad A, Morari M (2017) Predictive control for linear and hybrid systems. Cambridge University Press

    Google Scholar 

  22. Serres JL (2008) Dynamic characterization of a pneumatic muscle actuator and its application to a resistive training device. Ph.D. thesis, Wright State University, Ohio, USA

    Google Scholar 

  23. Herceg M, Kvasnica M, Jones CN, Morari M (2013) Multi-parametric Toolbox 3.0. In: 2013 European control conference (ECC), Zurich, Switzerland, pp 502–510

    Google Scholar 

  24. Lofberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: 2004 IEEE international conference on robotics and automation (IEEE Cat No04CH37508), pp 284–289

    Google Scholar 

  25. Torrisi FD, Bemporad A (2004) HYSDEL-a tool for generating computational hybrid models for analysis and synthesis problems. IEEE Trans Control Syst Technol 12(2):235–249

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the sponsorship provided by Ministry of Higher Education Malaysia (MOHE) through support under Fundamental Research Grant Scheme (FRGS/1/2019/TK04/UTM/02/41). The authors would also like to express appreciation to Universiti Teknologi Malaysia (UTM) and Engineering Research Centre, MARDI for facilities support and all the A2Lab UTM members for their direct or indirect support in making this publication possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Athif Mohd Faudzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mhd Yusoff, M.A., Mohd Faudzi, A.A., Hassan Basri, M.S., Rahmat, M.F. (2022). A Piecewise Affine System Modeling Approach of Thin McKibben Muscle Servo Actuator. In: Khairuddin, I.M., et al. Enabling Industry 4.0 through Advances in Mechatronics. Lecture Notes in Electrical Engineering, vol 900. Springer, Singapore. https://doi.org/10.1007/978-981-19-2095-0_11

Download citation

Publish with us

Policies and ethics