Skip to main content

Plants- and Animal-Derived Enzymes and Their Potential Application in Food Processing and Preservation

  • Chapter
  • First Online:
Novel Food Grade Enzymes
  • 681 Accesses

Abstract

Enzymes are biological catalysts which increase the rate of biochemical reactions in living cells. It is important that enzymologist understands the specific action of particular enzyme in a plant or animal tissue and applies these properties in vitro and in a food product. Most enzymes can be used as processing aids and as protection agents against microbial and deteriorative processes. Although the advent of recombinant DNA technology and advances made in food applications by microorganisms are more practical and economic, some of these enzymes are sufficiently abundant in their natural sources to make them amenable to large-scale production (for example, egg-white lysozyme and plant proteases). In this chapter, several plant and animal enzymes, their occurrence, and potential applications in food industry will be presented. Emphasis will be made on enzyme working on carbohydrates, proteins, and lipids. A section is devoted to miscellaneous enzymes used in food industry, such as phenylalanine ammonia lyase of wheat seedling which metabolizes Phe, thereby rendering foods suitable for PKU patients. In the final section of this chapter, examples of chemical modification of enzymes to improve their properties will be discussed and examples of the studies on modification of chicken egg-white lysozyme to enhance its functional and antimicrobial activities, performed in the laboratory of this author, will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aehle, W. (Ed.). (2007). Enzymes in industry, production and applications (3rd ed., pp. 1–12). Wiley-VCH Verlag GmbH and Co. KGaA.

    Google Scholar 

  • Aiyer, P. V. (2005). Amylases and their applications. African Journal of Biotechnology, 4, 1525–1529.

    CAS  Google Scholar 

  • Al Hafid, N., & Christodoulou, J. (2015). Phenylketonuria: A review of current and future treatments. Translational Pediatrics, 4, 304–317.

    PubMed  PubMed Central  Google Scholar 

  • Alirezaei, M., Aminlari, M., Gheisar, H. R., & Tavana, M. (2011). Actinidin: A promising milk coagulating enzyme. European Journal of Food Research and Review, 1, 43–51.

    Google Scholar 

  • Alkorta, I., Garbisu, L. M. J., & Serra, J. L. (1998). Industrial applications of pectic enzymes: A review. Process Biochemistry, 33, 21–28.

    Article  CAS  Google Scholar 

  • Amal Ben Amira, A., Besbes, S., Attia, H., & Blecker, C. (2017). Milk-clotting properties of plant rennets and their enzymatic, rheological and sensory role in cheese making: A review. International Journal of Food Properties, 20, S76–S93.

    Article  CAS  Google Scholar 

  • Aminlari, L., Mohammadi Hashemi, M., & Aminlari, M. (2014). Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods. Journal of Food Science., 79, R1077–R1090.

    Article  CAS  PubMed  Google Scholar 

  • Aminlari, L., Roshanzadeh, S., Jafarpoor, D., & Aminlari, M. (2010). Changes in phenylalanine ammonia lyase activity of wheat seedling during storage at different temperatures. In First International Congress on Food Technology, November 3–6, 2010, Antalya, Turkey.

    Google Scholar 

  • Aminlari, M., Shekarforoush, S. S., Gheisari, H. R., & Golestan, L. (2009). Effect of actinidin on the protein solubility, water holding capacity, texture, electrophoretic pattern of beef, and on the quality attributes of a sausage product. Journal of Food Science, 74, C221–C226.

    Article  CAS  PubMed  Google Scholar 

  • Aminlari, M., & Vaseghi, T. (2006). Biochemical properties and biological functions of the enzyme rhodanese in domestic animals. Iranian Journal of Veterinary Research, 7, 1–13.

    Google Scholar 

  • Arshad, M. S., Kwon, J. H., Imran, M., Sohaib, M., Aslam, A., Nawaz, I., Amjad, Z., Khan, U., & Javed, M. (2016). Plant and bacterial proteases: A key towards improving meat tenderization, a mini review. Cogent Food and Agriculture, 2, 1261780. https://doi.org/10.1080/23311932.2016.1261780.

    Article  Google Scholar 

  • Autio, K., Harkonen, H., Parkkonen, T., Frigard, T., Poutanen, K., Siika-Aho, M., & Aman, M. (1996). Effects of purified endo β-glucanase on the structural and baking characteristics of rye doughs. Lebensmittel-Wissenschaft und -Technologie, 29, 18–27.

    Article  CAS  Google Scholar 

  • Bamforth, C. W. (2009). Current perspectives on the role of enzymes in brewing. Journal of Cereal Science, 50, 353–357.

    Article  CAS  Google Scholar 

  • Bell, S. M., Wendt, D. J., Zhang, Y., Taylor, T. W., Long, S., TsurudaL, Z. B., Laipis, P., & Fitzpatrick, P. A. (2017). Formulation and PEGylation optimization of the therapeutic PEGylated phenylalanine ammonia lyase for the treatment of phenylketonuria. PLoS One, 12, e0173269. https://doi.org/10.1371/journal.pone.0173269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benen, J. A. E., Voragen, A. G. I., & Visser, J. (2003). Pectic enzymes. In J. R. Whitaker, A. G. J. Voragen, & D. W. S. Wong (Eds.), Handbook of food enzymology. Marcel Dekker.

    Google Scholar 

  • Bhardwaj, N., Kumar, B., & Verma, P. A. (2019). Detailed overview of xylanases: An emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 6, 40.

    Article  Google Scholar 

  • Bhat, Z. F., Kumar, S., & Bhat, H. F. (2015). Bioactive peptides of animal origin: A review. Journal of Food Science and Technology, 9, 5377–5392. https://doi.org/10.1007/s13197-015-1731-5

    Article  CAS  Google Scholar 

  • Biely, P. (2003). Xylanolytic enzymes. In J. R. Whitaker, A. G. J. Voragen, & D. W. S. Wong (Eds.), Handbook of food enzymology. Marcel Dekker.

    Google Scholar 

  • Boland, M. (2013). Kiwifruit proteins and enzymes: Actinidin and other significant proteins. Advances in Food and Nutrition Research, 68, 59–80.

    Article  PubMed  Google Scholar 

  • Bourne, Y., & Henrissat, B. (2001). Glycoside hydrolases and glycosyltransferases: Families and functional modules. Current Opinion in Structural Biology, 11, 593–600. https://doi.org/10.1016/s0959-440x(00)00253-0

    Article  CAS  PubMed  Google Scholar 

  • Branen, K. J., & Davidson, P. M. (2004). Enhancement of nisin, lysozyme and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lacto-ferrin. International Journal of Food Microbiology, 90, 63–73.

    Article  CAS  PubMed  Google Scholar 

  • Breaker, R. R. (1997). DNA enzymes. Nature Biotechnology, 15, 427–431.

    Article  CAS  PubMed  Google Scholar 

  • Camm, E. L., & Towers, G. (1973). Phenylalanine ammonia lyase. Phytochemistry, 12, 961–973. https://doi.org/10.1016/0031-9422(73)85001-0.

    Article  CAS  Google Scholar 

  • Casado, V., Martín, D., Torres, C., & Reglero, G. (2012). Phospholipases in food industry: A review. In G. Sandoval (Ed.), Lipases and phospholipases: Methods and protocols, methods in molecular biology (Vol. 861, pp. 495–523). Springer Science and Business Media. https://doi.org/10.1007/978-1-61779-600-5_29

    Chapter  Google Scholar 

  • Cegielska-Radziejewska, R., & Szablewski, T. (2013). Effect of modified lysozyme on the microflora and sensory attributes of ground pork. Journal of Food Protection, 76, 338–342.

    Article  CAS  PubMed  Google Scholar 

  • Chahardahcherik, M., Ashrafi, M., Ghasemi, Y., & Aminlari, M. (2020). Effect of chemical modification with carboxymethyl dextran on kinetic, structural and immunological properties of asparaginase. Analytical Biochemistry, 591, 113537. https://doi.org/10.1016/j.ab.2019.113537

    Article  CAS  PubMed  Google Scholar 

  • Chalamaiah, M., Dinesh Kumar, B., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135, 3020–3038.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary, M., & Gupta, R. (2012). Cyanide detoxifying enzyme: Rhodanese. Current Biotechnology, 1, 327–335.

    Article  CAS  Google Scholar 

  • Choi, J., Latha, S., Hasan, A., & Anad, S. (2012). Bioactive peptides in dairy products. International Journal of Dairy Technology, 65, 1–12.

    Article  CAS  Google Scholar 

  • Christophersen, C., Otzen, D. E., Norman, B. E., Christensen, S., & Schäfer, T. (1998). Enzymatic characterization of Novamyl[R], a thermostable alpha-amylase. Starch-Stuttgart, 50, 39–45.

    Article  CAS  Google Scholar 

  • Clemente, A. (2000). Enzymatic protein hydrolysates in human nutrition. Trends in Food Science and Technology, 11, 254–262.

    Article  CAS  Google Scholar 

  • Cunningham, F. E., Proctor, V. A., & Goetsch, S. J. (1991). Egg-white lysozyme as a food preservative: An overview. World’s Poultry Science Journal, 47, 141–163.

    Article  Google Scholar 

  • Das, R., & Kayastha, A. M. (2019). β-Amylase: General properties, mechanism and panorama of applications by immobilization on nano-structures. In Q. Husain & M. Ullah (Eds.), Biocatalysis, enzymatic basics and applications (pp. 17–38). Springer.

    Chapter  Google Scholar 

  • Demain, A. L. (2009). Antibiotics: Natural products essential to human health. Medicinal Research Reviews, 29, 821–842.

    Article  CAS  PubMed  Google Scholar 

  • Di Cera, E. (2009). Serine proteases. IUBMB Life, 61, 510–515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diamond, S. L. (2007). Methods for mapping protease specificity. Current Opinion in Chemical Biology, 11, 46–51.

    Article  CAS  PubMed  Google Scholar 

  • Ding, Z., Harding, C. O., & Thöny, B. (2004). State-of-the-art 2003 on PKU gene therapy. Molecular Genetics and Metabolism, 81, 3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit, S., Upadhyay, S. K., Singh, H., Pandey, B., Chandrashekar, K., & Verma, P. C. (2013). Pectin methylesterasease of Datura species, purification, and characterization from Datura stramonium and its application. Plant Signaling & Behavior, 8, e25681. https://doi.org/10.4161/psb.25681

    Article  CAS  Google Scholar 

  • Domingo, C., Roberts, K., Stacey, N. J., Connerton, I., Ruíz-Teran, F., & MC, M. C. (1998). Apectatelyase from Zinnia elegans is auxin inducible. The Plant Journal, 13, 17–28.

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimnejad, H., Gheisari, H. R., & Khan Nazer, A. H. (2013). Pea seedling amine oxidase application: An emerging antihistamine strategy in tuna fish. Journal of Food Processing and Technology, 4, 242–248. https://doi.org/10.4172/2157-7110.1000242

    Article  CAS  Google Scholar 

  • El-Sohaimy, S. A., Hafez, E. E., & El-Saadani, M. A. (2010). Cloning and in vitro-transcription of chymosin gene in E. coli. The Open Nutraceuticals Journal, 3, 63–68.

    Article  CAS  Google Scholar 

  • Englund, P. T., King, T. P., Craig, L. C., & Walti, A. (1968). Studies on ficin. I. Its isolation and characterization. Biochemistry, 7, 163–175.

    Article  CAS  PubMed  Google Scholar 

  • Esmaeilpour, M., Ehsani, M. R., Aminlari, M., Shekarforoush, S. S., & Hoseini, E. (2016). Antimicrobial activity of peptides derived from enzymatic hydrolysis of goat milk caseins. Comparative Clinical Pathology, 25, 599–605. https://doi.org/10.1007/s00580-016-2237-x

    Article  CAS  Google Scholar 

  • Esmaeilpour, M., Ehsani, M. R., Aminlari, M., Shekarforoush, S. S., & Hoseini, E. (2017). Antimicrobial peptides derived from goat’s milk whey proteins obtained by enzymatic hydrolysis. Journal of Food Biosciences and Technology, 7, 65–72.

    Google Scholar 

  • Fernandes, P. (2018). Enzymatic processing in the food industry. Elsevier.

    Book  Google Scholar 

  • Fox, P. F. (1993). Exogenous enzymes in dairy technology—A review. Journal of Food Biochemistry, 17, 173–199.

    Article  CAS  Google Scholar 

  • Frushicheva, M. P., Mills, M. J. L., Schopf, P., Singh, M. K., Prasad, R. B., & Warshel, A. (2014). Computer aided enzyme design and catalytic concepts. Current Opinion in Chemical Biology, 21, 56–62.

    Article  CAS  PubMed  Google Scholar 

  • Gheisari, H. R., Shekarforoush, S. S., & Aminlari, M. (2008). Application of fresh, defrosted and actinidin-tenderized camel and cattle meat in the production of emulsion type sausages. Advances in Food Sciences, 30, 1–7.

    Google Scholar 

  • Gigot, C., Ongena, M., Fauconnier, M., Wathelet, J., Jardin, P. D., & Thonart, P. (2010). The lipoxygenase metabolic pathway in plants: Potential for industrial production of natural green leaf volatiles. Biotechnology, Agronomy, Society and Environment, 14, 451–460.

    Google Scholar 

  • Gokoglu, N., Yerlikaya, P., Ucak, I., & Yatmaz, H. A. (2017). Effect of bromelain and papain enzymes addition on physiochemical and textural properties of squid (Loligo vulgaris). Food Measure, 11, 345–353. https://doi.org/10.1007/s11694-016-9403-3

    Article  Google Scholar 

  • Goldson, A., Lam, M., Scaman, C. H., Clemens, S., & Kermode, A. (2008). Screening of phenylalanine ammonia lyase in plant tissues, and retention of activity during dehydration. Journal of the Science of Food and Agriculture, 88, 619–625.

    Article  CAS  Google Scholar 

  • Gomaa, A. M. (2018). Application of enzymes in brewing. Journal of Nutrition and Food Science Forecast, 1, 1–5.

    Google Scholar 

  • Grahn, S., Kurth, T., Ullmann, D., & Jakubke, H. (1999). S′ subsite mapping of serine proteases based on fluorescence resonance energy transfer. Biochimica et Biophysica Acta, 1431, 329–337.

    Article  CAS  PubMed  Google Scholar 

  • Green, M. L. (1977). Review of the progress of dairy science: Milk coagulants. The Journal of Dairy Research, 44, 159–188.

    Article  CAS  Google Scholar 

  • Gunstone, F. D. (Ed.). (1999). Lipid synthesis and manufacture (Vol. 472). CRC Press LLC.

    Google Scholar 

  • Gupta, R., Kohli, P., & Kalia, M. (2015). Pectin methylesteraseases: A review. Journal of Bioprocessing and Biotechniques, 5, 1–5. https://doi.org/10.4172/2155-9821.1000227

    Article  CAS  Google Scholar 

  • Hebeda, R. E., Bowles, L. K., & Teague, W. M. (1991). Use of intermediate stability enzymes for retarding staling in baked goods. Cereal Foods World, 36, 619–624.

    CAS  Google Scholar 

  • Hedstrom, L. (2002). Serine protease mechanism and specificity. Chemical Reviews, 102, 4501–4523.

    Article  CAS  PubMed  Google Scholar 

  • Hefferon, K. (2017). Cellulase production in transgenic plants: Molecular pharming with a twist. Advances in Biotechnology and Microbiology, 6, 555685. https://doi.org/10.19080/AIBM.2017.06.555685

    Article  Google Scholar 

  • Hughes, H. A. (1999). Biosynthesis and degradation of cyanogenic glycosides. In D. Barton, K. Nakanishi, & O. Meth-Cohn (Eds.), Comprehensive natural product chemistry (pp. 881–895). Pergamon Press.

    Chapter  Google Scholar 

  • Ibrahim, H. R., Hl, H., Fujiki, M., Kim, M., & Yamamoto, T. (1994). Enhanced anti-microbial action of lysozyme against gram-negative and gram-positive bacteria due to modification with perillaldehyde. Journal of Agricultural and Food Chemistry, 42, 1813–1817.

    Article  CAS  Google Scholar 

  • Ikeda, K., Inada, Y., Schiltz, E., Fujii, T., Takahashi, M., Mitsui, K., Kodera, Y., Matsushima, A., Schulz, G. E., & Nishimura, H. (2005). Phenylalanine ammonia-lyase modified with polyethylene glycol: Potential therapeutic agent for phenylketonuria. Amino Acids, 29, 283–287. https://doi.org/10.1007/s00726-005-0218-5

    Article  CAS  PubMed  Google Scholar 

  • Illanes, A. (2008). Enzyme production. In A. Illanes (Ed.), Enzyme biocatalysis (pp. 57–106). Springer.

    Chapter  Google Scholar 

  • Istrati, D. (2008). The influence of enzymatic tenderization with papain on functional properties of adult beef. Journal of Agroalimentary Processes and Technologies, 14, 140–146.

    CAS  Google Scholar 

  • Ito, A., & Ma, J. (2003). Amine oxidase. In J. R. Whitaker, A. G. J. Voragen, & D. W. S. Wong (Eds.), Handbook of food enzymology. Marcel Dekker.

    Google Scholar 

  • Javed, R., Nawaz, A., Munir, M., Hanif, M., Mukhtar, H., Ul Haq, I., & Abdullah, R. (2018). Extraction, purification and industrial applications of pectinase: A review. Journal of Biotechnology and Bioresearch, 1, 1–6.

    Google Scholar 

  • Kaushal, Y., Singh, S. G., Raina, A., & Arya, S. K. (2018). Catalase enzyme: Application in bioremediation and food industry. Biocatalysis and Agricultural Biotechnology, 16, 192–199. https://doi.org/10.1016/j.bcab.2018.07.035

    Article  Google Scholar 

  • Kawaguchi, Y., Kosugi, S., Sasaki, K., Uozumi, T., & Beppu, T. (1987). Production of chymosin in Escherichia coli cells and its enzymatic properties. Agricultural and Biological Chemistry, 51, 1871–1877. https://doi.org/10.1080/00021369.1987.10868318

    Article  CAS  Google Scholar 

  • Kilcawley, K. N., Wilkinson, M. G., & Fox, P. F. (1998). Enzyme-modified cheese. International Dairy Journal, 8, 1–10.

    Article  CAS  Google Scholar 

  • Kim, S. Y., Gunasekaran, S., & Olson, N. F. (2004a). Combined use of chymosin and protease from cryphonectria parasitica for control of meltability and firmness of cheddar cheese. Journal of Dairy Science, 87, 274–283.

    Article  CAS  PubMed  Google Scholar 

  • Kim, W., Erlandsen, E., Surendran, S., Stevens, R., Gamez, A., Michols-Matalon, K., Tyring, S. K., & Matalon, R. (2004b). Trends in enzyme therapy for phenylketonuria. Molecular Therapy, 10, 220–224. https://doi.org/10.1016/j.ymthe.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  • Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44, 3358–3393. https://doi.org/10.1002/anie.200460587

    Article  CAS  PubMed  Google Scholar 

  • Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Journal of Dairy Technology, 16, 945–960.

    Article  CAS  Google Scholar 

  • Kumar, D., Kumar, S. S., Kumar, J., Kumar, O., Mishra, S. V., Kumar, R., & Malyan, S. K. (2017). Xylanases and their industrial applications: A review. Biochemical and Cellular Archives, 17, 353–360.

    Google Scholar 

  • Laurikainen, T., Harkonen, H., Autio, K., & Poutanen, K. (1998). Effects of enzymes in fibre-enriched baking. Journal of the Science of Food and Agriculture, 76, 239–249.

    Article  CAS  Google Scholar 

  • Levy, H. L. (1999). Phenylketonuria: Old disease, new approach to treatment. Proceedings of the National Academy of Sciences of the United States of America, 96, 1811–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis, D., & Luh, B. S. (2007). Development and distribution of actinidin in kiwifruit (Actinidia chinensis) and its partial characterization. Journal of Food Biochemistry, 12, 109–116. https://doi.org/10.1111/j.1745-4514.1988.tb00363.x

    Article  Google Scholar 

  • Lewis, D. A., & Luh, B. S. (1988). Application of actinidin from kiwifruit to meat tenderization and characterization of beef muscle protein hydrolysis. Journal of Food Biochemistry, 12, 147–158.

    Article  CAS  Google Scholar 

  • Lian, T., Wang, L., & Liu, Y. (2013). A new insight into the role of calpains in post-mortem meat tenderization in domestic animals: A review. Asian-Australasian Journal of Animal Sciences, 26, 443–454. https://doi.org/10.5713/ajas.2012.12365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Piero, A. R., Puglisi, I., & Petrone, G. (2011). Characterization of the purified actinidin as a plant coagulant of bovine milk. European Food Research and Technology, 233, 517–524. https://doi.org/10.1007/s00217-011-1543-4

    Article  CAS  Google Scholar 

  • Losso, J. N., Nakai, S., & Charter, E. A. (2000). Lysozyme. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 185–210). CRC Press LLC.

    Google Scholar 

  • MacGregor, A. W., & Morgan, J. E. (1992). Determination of specific activities of malt α-amylases. Journal of Cereal Science, 16, 267–277.

    Article  CAS  Google Scholar 

  • Mansfeld, J. (2009). Plant phospholipases A2: Perspectives on biotechnological applications. Biotechnology Letters, 31, 1373–1380.

    Article  CAS  PubMed  Google Scholar 

  • Marques, A. C., Marostica, M. R., Jr., & Maria Pastore, G. M. (2010). Some nutritional, technological and environmental advances in the use of enzymes in meat products. Enzyme Research, 480923. https://doi.org/10.4061/2010/480923

  • Mazorra-Manzano, M. A., Ramírez-Suarez, J. C., & Yada, R. (2018). Plant proteases for bioactive peptides release: A review. Critical Reviews in Food Science and Nutrition, 58, 2147–2163. https://doi.org/10.1080/10408398.2017.1308312

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei, M., Mirdamadi, S., Ehsani, M. R., & Aminlari, M. (2016). Antioxidant, ACE-inhibitory and antimicrobial activities of Kluyveromyces marxianus protein hydrolysates and their peptide fractions. Functional Foods in Health and Disease, 6, 425–439. https://doi.org/10.31989/ffhd.v6i7.250

    Article  Google Scholar 

  • Mirzaei, M., Mirdamadi, S., Ehsani, M. R., & Aminlari, M. (2017). Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking. Journal of Food and Drug Analysis. https://doi.org/10.1016/j.jfda.2017.07.008

  • Mirzaei, M., Mirdamadi, S., Ehsani, M. R., Aminlari, M., & Hosseini, E. (2015). Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. Journal of Functional Foods, 19(Part A), 259–268.

    Article  CAS  Google Scholar 

  • Mizani, M., Aminlari, M., & Khodabandeh, M. (2005). An effective method for producing a nutritive protein extract powder from shrimp-head waste. Food Science and Technology International, 11, 49–54. https://doi.org/10.1177/1082013205051271

    Article  CAS  Google Scholar 

  • Morellon-Sterling, R., El-Siar, H., Tavano, O. L., Berenguer-Murcia, A., & Fernández-Lafuente, R. (2020). Ficin: A protease extract with relevance in biotechnology and biocatalysis. International Journal of Biological Macromolecules, 162, 394–404.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, K. R., Gerrard, J., Every, D., Ross, M., & Margy Gilpin, M. (1997). Staling in starch breads: The effect of antistaling α-amylase. Starch-Starke, 49, 54–59.

    Article  CAS  Google Scholar 

  • Morton, H. J. D., Bekhit, A. E. D., & Sedcole, J. R. (2009). Pre-rigor infusion with kiwifruit juice improves lamb tenderness. Meat Science, 82, 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Mosafa, L., Moghadam, M., & Shahed, M. (2013). Papain enzyme supported on magnetic nanoparticles: Preparation, characterization and application in the fruit juice clarification. Chinese Journal of Catalysis, 34, 1897–1904.

    Article  CAS  Google Scholar 

  • Nafi, A., Foo, H. L., Jamilah, B., & Ghazali, H. M. (2013). Properties of proteolytic enzyme, from ginger (Zingiber officinale roscoe). International Food Research Journal, 20, 363–368.

    CAS  Google Scholar 

  • Naila, A., Flint, S., Fletcher, G., Bremer, P., & Meerdink, G. (2010). Control of biogenic amines in food-existing and emerging approaches. Journal of Food Science, 75, R139–R150. https://doi.org/10.1111/j.1750-3841.2010.01774.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair, I. C., & Jayachandran, K. (2019). Aspartic proteasae in food industry. In B. Parameswaran, S. Varjani, & S. Raveendran (Eds.), Green bioprocess. Enzymes in industrial food processing (pp. 15–30). Springer.

    Chapter  Google Scholar 

  • NAS. (1996). Food chemical codex (4th ed., pp. 787, 803–807). National Academy Press.

    Google Scholar 

  • Nelson, J. (1977). Impact of new milk clotting enzymes on cheese technology. Journal of Dairy Science, 58, 1739–1750.

    Article  Google Scholar 

  • Otto, H. H., & Schirmeister, T. (1997). Cysteine proteases and their inhibitors. Chemical Reviews, 97, 133–171.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D., & Mohan, R. (2000). Advances in microbial amylases. Biotechnology and Applied Biochemistry, 31, 135–152.

    Article  CAS  PubMed  Google Scholar 

  • Parkin, K. L. (2017). Enzymes. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Fennema’s food chemistry (pp. 331–436). CRC Press.

    Google Scholar 

  • Poulsen, P. B., & Buchholz, K. (2003). History of enzymology with emphasis on food production. In J. R. Whitaker, A. G. J. Varagen, & D. W. S. Wong (Eds.), Handbook of food enzymology. Marcel Dekker.

    Google Scholar 

  • Proctor, V. A., & Cunningham, F. E. (1988). The chemistry of lysozyme and it use as a food preservative and a pharmaceutical. Critical Reviews in Food Science and Nutrition, 26, 359–395.

    Article  CAS  PubMed  Google Scholar 

  • Ramezani, R., Aminlari, M., & Fallahi, H. (2003). Effect of chemically modified soy proteins and ficin-tenderized meat on the quality attributes of sausage. Journal of Food Science, 68, 85–88. https://doi.org/10.1111/jfds.2003.68.issue-1

    Article  CAS  Google Scholar 

  • Ramrakhiani, L., & Chand, S. (2011). Recent progress on phospholipases: Different sources, assay methods, industrial potential and pathogenicity. Applied Biochemistry and Biotechnology, 164, 991–1022. https://doi.org/10.1007/s12010-011-9190-6

    Article  CAS  PubMed  Google Scholar 

  • Rocha, G. A., Trindade, M. A., Netto, F. M., & Favaro-Trindade, C. S. (2009). Microcapsules of a casein hydrolysate: Production, characterization, and application in protein bars. Food Science and Technology International, 15, 407–413.

    Article  CAS  Google Scholar 

  • Romero-Segura, C., Sanz, C., & Perez, A. G. (2009). Purification and characterization of an olive fruit β-glucosidase involved in the biosynthesis of virgin olive oil phenolics. Journal of Agricultural and Food Chemistry, 57, 7983–7988.

    Article  CAS  PubMed  Google Scholar 

  • Rui, X., Boye, J., Simpson, B. K., & Prasher, S. O. (2012). Angiotensin I-converting enzyme inhibitory properties of Phaseolus vulgaris bean hydrolysates: Effects of different thermal and enzymatic digestion treatments. Food Research International, 49, 739–746.

    Article  CAS  Google Scholar 

  • Ruiz-Capillas, C., & Herrero, A. M. (2019). Impact of biogenic amines on food quality and safety. Food, 8, 62. https://doi.org/10.3390/foods8020062

    Article  CAS  Google Scholar 

  • Sabbione, A. C., Ibañez, S. M., Martínez, E. N., Añón, M. C., & Scilingo, A. A. (2016). Antithrombotic and antioxidant activity of amaranth hydrolysate obtained by activation of an endogenous protease. Plant Foods for Human Nutrition, 71, 174–182.

    Article  CAS  PubMed  Google Scholar 

  • Saini, R., Saini, H. S., & Dahiya, A. (2017). Amylases: Characteristics and industrial applications. Journal of Pharmacognosy and Phytochemistry, 6, 1865–1871.

    CAS  Google Scholar 

  • Sánchez, A., & Vázquez, A. (2017). Bioactive peptides: A review. Food Quality Safety, 1, 29–46. https://doi.org/10.1093/fqs/fyx006

    Article  Google Scholar 

  • Sarkissian, C. N., Shao, Z., Blain, F., Peevers, R., Su, H., Heft, R., Chang, T. M. S., & Scriver, C. R. A. (1999). A different approach to treatment of phenylketonuria: Phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proceedings of the National Academy of Sciences of the United States of America, 96, 2339–2344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid, R. D., & Verger, R. (1998). Lipases. Interfacial enzymes with attractive applications. Angewandte Chemie International Edition, 37, 1608–1633.

    Article  PubMed  Google Scholar 

  • Schols, H. A., & Voragen, A. G. J. (2003). Pectic polysaccharides. In J. R. Whitaker, A. G. J. Voragen, & D. W. S. Wong (Eds.), Handbook of food enzymology. Marcel Dekker.

    Google Scholar 

  • Semenova, M. V., Sinitsyna, O. A., Morozova, V. V., Fedorova, E. A., Gusakov, A. V., Sokolova, L. M., Koshelov, A. A., Bubonova, T. V., Vinetskii, Y. P., & Sinitsyn, A. P. (2006). Use of a preparation from fungal pectin lyase in the food industry. Applied Biochemistry and Microbiology, 42, 598–602.

    Article  CAS  Google Scholar 

  • Seo, S., Karboune, S., L’Hocine, L., & Yaylayan, V. A. (2013). Characterization of glycated lysozyme with galactose, galactooligosaccharides and galactan: Effect of glycation on functional properties of lysozyme. LWT—Food Science and Technology, 53, 44–53.

    Article  CAS  Google Scholar 

  • Shah, M. H., Mir, S. A., & Paray, M. A. (2014). Plant proteases as milk-clotting enzymes in cheesemaking: A review. Dairy Science and Technology, 94, 5–16.

    Article  CAS  Google Scholar 

  • Shahidi, S., Jamili, S., Mostafavi, P. G., Rezaie, S., & Khorramizadeh, M. (2018). Assessment of the inhibitory effects of ficin-hydrolyzed gelatin derived from squid (Uroteuthis duvauceli) on breast cancer cell lines and animal model. Iranian Journal of Allergy, Asthma and Immunology, 17, 436–452. https://doi.org/10.18502/ijaai.v17i5.302

    Article  Google Scholar 

  • Shi, Y., Mandal, R., Singh, A., & Singh, A. P. (2020). Legume lipoxygenase: Strategies for application in food industry. Legume Science, e44. https://doi.org/10.1002/leg3.44

  • Singh, G., Verma, A. K., & Kumar, V. (2016). Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech, 6, 1–14. https://doi.org/10.1007/s13205-015-0328-z

    Article  PubMed  Google Scholar 

  • Sinha, R., Radha, C., Prakash, J., & Kaul, P. (2007). Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation. Food Chemistry, 101, 1484–1491.

    Article  CAS  Google Scholar 

  • Song, H., Wang, P., Li, C., Han, S., Lopez-Baltazar, J., Zhang, X., & Wang, X. (2016). Identification of lipoxygenase (LOX) genes from legumes and their responses in wild type and cultivated peanut upon Aspergillus flavus infection. Scientific Reports, 6, 35245. https://doi.org/10.1038/srep35245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnet, P. E., & Gazzillo, J. A. (1991). Evaluation of lipase selectivity for hydrolysis. Journal of the American Oil Chemists’ Society, 68, 11–15.

    Article  CAS  Google Scholar 

  • Stránská, J., Sebela, M., Tarkowski, P., Rehulka, P., Chmelík, J., Popa, I., & Peč, P. (2007). Inhibition of plant amine oxidases by a novel series of diamine derivatives. Biochimie, 89, 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Tavano, O. S., Berenguer-Murcia, A., Secundo, F., & Fernandez-Lafuente, R. (2018). Biotechnological applications of proteases in food technology. Comprehensive Reviews in Food Science and Food Safety, 17, 412–436. https://doi.org/10.1111/1541-4337.12326

    Article  PubMed  Google Scholar 

  • Tenkanen, M., Niku-Paavola, M. L., Linder, K., & Viikari, L. (2003). Cellulases in food processing. In J. R. Whitakerm, A. G. J. Voragen, & D. W. S. Wong (Eds.), Handbook of food enzymology. Marcel Dekker.

    Google Scholar 

  • Thacker, S. P., Kothari, R. M., Ramamurthy, V., & Baroda, P. (1992). Characterization of barley β-amylase for application in maltose production. Starch/Starke, 44, 339–341.

    Article  CAS  Google Scholar 

  • Thalmann, M., Coiro, M., Meier, T., Wicker, T., Zeeman, S. C., & Santelia, D. (2019). The evolution of functional complexity within the β-amylase gene family in land plants. BMC Evolutionary Biology, 19, 66–84. https://doi.org/10.1186/s12862-019-1395-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiansilakul, Y., Benjakul, S., & Shahidi, F. (2007). Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chemistry, 103, 1385–1394.

    Article  CAS  Google Scholar 

  • Toohey, E. S., Kerr, M. J., van de Ven, R., & Hopkins, D. L. (2011). The effect of a kiwi fruit based solution on meat traits in beef m. semimembranosus (topside). Meat Science, 88, 468–471. https://doi.org/10.1016/j.meatsci.2011.01.028

    Article  CAS  PubMed  Google Scholar 

  • Uluisik, S., & Seymour, G. B. (2020). Pectate lyases: Their role in plants and importance in fruit ripening. Food Chemistry, 309, 125559. https://doi.org/10.1016/j.foodchem.2019.125559

    Article  CAS  PubMed  Google Scholar 

  • Ulusu, Y., Şentürk, S. B., Kuduğ, H., & Gökçe, I. (2016). Expression, purification and characterization of bovine chymosin enzyme using an inducible pTOL system. Preparative Biochemistry and Biotechnology, 46, 596–601.

    Article  CAS  PubMed  Google Scholar 

  • Van der Maarel, M. J. E. C., ven der Veen, B., Uitdehaag, J. C. M., Leemhius, H., & Dijkhuizem, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94, 137–165.

    Article  PubMed  Google Scholar 

  • Verma, S., Dixit, R., & Pandey, K. C. (2016). Cysteine proteases: Mode of activation and future prospects as pharmaceutical targets. Frontiers in Pharmacology, 7, 107. https://doi.org/10.3389/fphar.2016.00107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizovišek, M., Vidmar, R., Drag, M., Fonovic, M., Salvesen, G. S., & Turk, B. (2018). Protease specificity: Towards in vivo imaging applications and biomarker discovery. Trends in Biochemical Sciences, 43, 829–844. https://doi.org/10.1016/j.tibs.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  • Whitaker, J. R. (1990). New and future uses of enzymes in food processing. Food Biotechnology, 4, 669–697.

    Article  CAS  Google Scholar 

  • Whitaker, J. R. (1994). Principles of enzymology for food scientists (pp. 391–422). Marcel Dekker.

    Google Scholar 

  • Whitaker, J. R. (2003). Proteolytic enzymes. In J. R. Whitaker, A. G. J. Voragen, & D. W. S. Wong (Eds.), Handbook of food enzymology. Marcel Dekker.

    Google Scholar 

  • Williams, D. C., Lim, M. H., Chen, A. O., Pangborn, R. M., & Whitaker, J. R. (1986). Blanching of vegetables for freezing: Which indicator enzyme to choose. Food Technology, 40, 130–140.

    CAS  Google Scholar 

  • Wong, D. W. S. (2003). Lipase. In J. R. Whitaker, A. G. J. Voragen, & D. W. S. Wong (Eds.), Handbook of food enzymology. Marcel Dekker.

    Google Scholar 

  • Wong, D. W. S., & Robertson, G. H. (2007). α-Amylases. In J. R. Whitaker, A. G. J. Varagen, & D. W. S. Wong (Eds.), Handbook of food enzymology. Marcel Dekker.

    Google Scholar 

  • Wong, D. W. S., & Whitaker, J. R. (2003). Catalase. In J. R. Whitaker, A. G. J. Voragen, & D. W. S. Wong (Eds.), Handbook of food enzymology. Marcel Dekker.

    Google Scholar 

  • Woolcock, K. (2016). Structure of a DNA enzyme. Nature Structural and Molecular Biology, 23, 97.

    Article  CAS  PubMed  Google Scholar 

  • Yapo, B. M. (2011). Pectic substances: From simple pectic polysaccharides to complex pectins. A new hypothetical mode. Carbohydrate Polymers, 86, 373–385. https://doi.org/10.1016/j.carbpol.2011.05.065

    Article  CAS  Google Scholar 

  • Zhang, W., Xiao, S., & Ahn, D. U. (2013). Protein oxidation: Basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition, 53, 1191–1201. https://doi.org/10.1080/10408398.2011.577540

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X. Z., & Zhang, Y. H. P. (2013). Cellulases: Characteristics, sources, production, and applications. In S. T. Yang, H. A. El-Enshasy, & N. Thongchul (Eds.), Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers (1st ed.). John Wiley & Sons.

    Google Scholar 

  • Zhao, X., Shi-Jian, D., Tao, G., et al. (2010). Influence of phospholipase A2 (PLA2)-treated dried egg yolk on wheat dough rheological properties. LWT—Food Science and Technology, 43, 45–51.

    Article  CAS  Google Scholar 

  • Zhu, F., Du, B., Ma, Y., & Li, J. (2017). The glycosidic aroma precursors in wine: Occurrence, characterization and potential biological applications. Phytochemistry Reviews, 16, 565–571.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Aminlari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aminlari, M. (2022). Plants- and Animal-Derived Enzymes and Their Potential Application in Food Processing and Preservation. In: Dutt Tripathi, A., Darani, K.K., Srivastava, S.K. (eds) Novel Food Grade Enzymes . Springer, Singapore. https://doi.org/10.1007/978-981-19-1288-7_2

Download citation

Publish with us

Policies and ethics