Skip to main content

Abiotic Stress Response and Adoption of Triticale

  • Chapter
  • First Online:
Omics Approach to Manage Abiotic Stress in Cereals

Abstract

Abiotic stressors have been demonstrated to have a significant impact on plant development and agricultural production, and yields have been clearly stalled or dropped in economically important crops where only large inputs ensure high yields. The latest manifestations of climate changes are thought to have exacerbated the detrimental impacts of abiotic stressors on plant production. On the other hand, the complexity of plant systems governing essential characteristics and the scarcity of germplasm for stress tolerance have hampered genetic advancements in major crops for greater yields or better features. The study of crop tolerance to abiotic stressors has, on the other hand, provided several results that have been published recently. This chapter discusses recent advances in the study of plant tolerance to abiotic stressors and summarizes the key tolerance pathways and signaling components implicated thus far in triticale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla OS, Trethowan R (1990) Expression of agronomic traits in triticale and other small grains under different moisture regimes. In: Proceedings of the second international triticale symposiu Passo Fundo, Rio Grande do Sul, Brazil. CIMMYT, Mexico, pp 246–248

    Google Scholar 

  • Abu Obaid AM, Melnyk AV, Onichko VI, Al-Rifaee MK, Al Tawaha AM (2018) Evaluation of six sunflower cultivars for forage productivity under salinity conditions. Adv Environ Biol 12(7):13–15

    Google Scholar 

  • Abu-Darwish MS, Abu Dieyeh ZH, Batarseh M, Al Tawaha AM (2009) Trace element contents and essential oil yields from wild thyme plant (thymus serpyllum l.) grown at different natural-variable environments, Jordan. J Food Agric Environ 7(3&4):920–924

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  CAS  PubMed  Google Scholar 

  • Akbarian A, Arzani A, Salehi M, Salehi M (2011) Evaluation of triticale genotypes for terminal drought tolerance using physiological traits. Indian J Agric Sci 81(12):1110–1115

    Google Scholar 

  • Akhtar I, Nazir N (2013) Effect of waterlogging and drought stress in plants. Int J Water Resour Environ Sci 2(2):34–40

    Google Scholar 

  • Al-Ghzawi ALA, Al Khateeb W, Rjoub A, Al-Tawaha ARM, Musallam I, Al Sane KO (2019) Lead toxicity affects growth and biochemical content in various genotypes of barley (Hordeum vulgare L.). Bulgarian J Agr Sci 25(1):55–61

    Google Scholar 

  • Al-Issa RMS, Odat N, Qrunfleh I, Hasan M, Al-Tawaha AR (2020) The impact of NaCl on different genotypes of tomato (Solanum Lycopersicon Mil) on germination, some physiology characteristics and gene expression. EurAsian J Biosci 14(2):4467–4470

    CAS  Google Scholar 

  • Al-Juthery HW, Habeeb KH, Altaee FJK, AL-Taey DK, Al-Tawaha ARM (2018) Effect of foliar application of different sources of nano-fertilizers on growth and yield of wheat. Biosci Res 15(4):3976–3985

    Google Scholar 

  • Al-Rifaee M, Turk MA, Tawaha AM (2004) Effect of seed size and plant population density on yield and yield components of local Faba Bean (Vicia faba L. major). Int J Agric Biol 6(2):294–299

    Google Scholar 

  • Al-Tawaha AM, Al-Ghzawi AM (2013) Response of barley cultivars to Chitosan application under semi-arid conditions. Res Crops 14(2):427–430

    Google Scholar 

  • Al-Tawaha AM, Odat N (2010) Use of sorghum and maize allelopathic properties to inhibit germination and growth of wild barley (Hordeum spontaneum). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(3):124–127

    Google Scholar 

  • Al-Tawaha AM, Seguin P (2006) Effects of seeding date, row spacing, and weeds on soybean seed isoflavone concentration. Can J Plant Sci 86:1079–1082

    Article  CAS  Google Scholar 

  • Al-Tawaha AM, Seguin P, Smith DL, Beaulieu C (2006) Foliar application of elicitors alters isoflavone concentrations and other seed characteristics of field-grown soybean. Can J Plant Sci 86:677–684

    Article  CAS  Google Scholar 

  • Al-Tawaha AM, Seguin P, Smith DL et al (2007) Effects of irrigation on isoflavone concentrations of soybean grown in southwestern Québec. J Agron Crop Sci 193(4):238–246

    Article  CAS  Google Scholar 

  • Al-Tawaha AM, Yadav SS, Turk M et al (2010) Crop production and management technologies for drought prone environments. In: Climate change and drought management in cool season grain legume crops. Springer, Berlin

    Google Scholar 

  • Al-Tawaha AR, Al-Karaki GN, Al-Tawaha AR, Sirajuddin SN, Makhadeh I, Edaroyati P, Wahab M, Youssef RA, Al Sultan W, Massadeh A (2018a) Effect of water flow rate on quantity and quality of lettuce (Lactuca sativa L.) in nutrient film technique (NFT) under hydroponics conditions. Bulgarian J Agr Sci 24(5):791–798

    Google Scholar 

  • Al-Tawaha AR, Turk MA, Al-Tawaha AR, Aludatt M, Wedyan MA, Al-Ramamneh EM, Hoang AT (2018b) Using chitosan to improve growth of maize cultivars under salinity conditions. Bulgarian J Agr Sci 24(3):437–442

    Google Scholar 

  • Al-Tawaha AM, Al-Tawaha AM, Aludatt MH, Al-Ghzawi AA, Wedyan MA, Al-Obidy SA, Al-Ramamneh EM (2018c) Effects of soil type and rainwater harvesting treatments in the growth, productivity and morphological trains of barley plants cultivated in semi-arid environment. Aust J Crop Sci 12(6):975–979

    Article  CAS  Google Scholar 

  • Al-Tawaha A, Al-Karaki G, Al Tawaha A, Sirajuddin SN, Makhadmeh I, Wahab PEM, Youssef RA, Alsultan W, Massadeh A (2018d) Effects water flow rate on quantity and quality of lettuce (Lactuca Sativa L.) in nutrient film technique (Nft) under hydroponics conditions. Bulgarian J Agr Sci 24(5):791–798

    Google Scholar 

  • Amanullah, Khan N, Khan MI, Khalid S, Iqbal A, Al-Tawaha AM (2019) Wheat biomass and harvest index increases with integrated use of phosphorus, zinc and beneficial microbes under semiarid climates. J Microbiol Biotechnol Food Sci 9(2):242–247

    Article  CAS  Google Scholar 

  • Amanullah, Yar M, Khalid S, Elshikh MS, Akram HM, Imran, Tawaha AM, Ali A (2021) Phenology, growth, productivity, and profitability of mungbean as affected by potassium and organic matter under water stress vs. no water stress conditions. J Plant Nutr:1–22

    Google Scholar 

  • Ananthi T, Amanullah MM, Al-Tawaha ARMS (2017) A review on maize-legume intercropping for enhancing the productivity and soil fertility for sustainable agriculture in India. Adv Environ Biol 11(5):49–64

    CAS  Google Scholar 

  • Arseniuk E (2015) Triticale abiotic stresses—an overview. Plant Breeding and Acclimatization Institute, National Research Institute/Springer International Publishing Switzerland, Radzików/Basel, p 2015

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50:601–639

    Article  CAS  Google Scholar 

  • Ashraf MA (2012) Waterlogging stress in plants. Afr J Agric Res 7(13):1976–1981

    Google Scholar 

  • Ashraf M, Harris JC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Atakm E, Kaya MD, Kaya G, Ikili Y, Üftü CY (2006) Effects of NaCl on the germination, seedling growth and water uptake of triticale. Turk J Agric For 30:39–47

    Google Scholar 

  • Baek KH, Skinner DZ (2003) Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci 165:1221–1227

    Article  CAS  Google Scholar 

  • Balla K, Bencze S, Janda T, Veisz O (2009) Analysis of heat stress tolerance in winter wheat. Acta Agron Hung 57:437–444

    Article  Google Scholar 

  • Barati V, Bijanzadeh E (2020) Triticale forage crop quality as affected by water stress and nitrogen biofertilizer in an arid climate. Iran Agric Res 39(2):69–80

    Google Scholar 

  • Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    CAS  PubMed  Google Scholar 

  • Barrett-Lennard EG (2003) The interaction between waterlogging and salinity in higher plants causes, consequences and implications. Plant Soil 253:35–54

    Article  CAS  Google Scholar 

  • Bezirğanoğlu İ (2017) Response of five triticale genotypes to salt stress in in vitro culture. Turk J Agric For 41:372–380

    Article  CAS  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. https://doi.org/10.3389/fpls.2013.00273

    Article  PubMed  PubMed Central  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Blum A (2014) The abiotic stress response and adaptation of triticale—a review. Cereal Res Commun 42(3):359–375

    Article  Google Scholar 

  • Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production: osmotic adjustment and plant production. Plant Cell Environ 40:4–10. https://doi.org/10.1111/pce.12800

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7(7):1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brestic M, Zivcak M, Olsovska K, Kalaji HM, Shao H, Hakeem KR (2014) Heat signaling and stress responses in photosynthesis. In: Hakeem KR et al (eds) Plant signaling: understanding the molecular crosstalk. Springer, Berlin, pp 241–256

    Chapter  Google Scholar 

  • Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291. https://doi.org/10.1038/nature13809

    Article  CAS  Google Scholar 

  • Demirbas S, Balkan A (2020) The effect of H2O2 pre-treatment on antioxidant enzyme activities of Triticale under salt stress. C R Acad Bulg Sci 73:1169–1178

    CAS  Google Scholar 

  • Deng C, Zhang Z, Yan G, Wang F, Zhao L, Liu N, Abudurezike A, Li Y, Wang W, Shi S (2020) Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress. Sci Rep 10(1):20669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolferus R, Ji XM, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181:331–341

    Article  CAS  PubMed  Google Scholar 

  • Dopp M, Larher F, Weigel P (1985) Osmotic adaption in Australian mangroves. Vegetatio 61(1–3):247–253

    Article  Google Scholar 

  • Eudes F (2006) Canadian triticale biorefinery initiative. In: Botes WC, Boros D, Darvey N, Gustafson R, Jessop R, Marais GF, et al. (Eds) Proceedings of the 6th international triticale symposium, Stellenbosch, South Africa, 3–7 September 2006. ITA & SU-PBL, Stellenbosch, pp 85–88

    Google Scholar 

  • Fageria NK, Balingar VC, Clark RB (2006) Physiology of crop production. The Haworth Press, New York, pp 23–60

    Book  Google Scholar 

  • FAO (2019) Food and Agricultural Organization of the United Nations. http://www.fao.org/faostat/

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333

    Article  CAS  Google Scholar 

  • Farooq MA, Saqib ZA, Akhtar J (2015) Silicon-mediated oxidative stress tolerance and genetic variability in rice (Oryza sativa L.) grown under combined stress of salinity and boron toxicity. Turk J Agric For 39:718–729

    Article  CAS  Google Scholar 

  • Fayaz N, Arzani A (2011) Moisture stress tolerance in reproductive growth stages in triticale (×Triticosecale Wittmack) cultivars under field conditions. Crop Breed J 1(1):1–12

    Google Scholar 

  • Ford CW (1984) Accumulation of low molecular weight solutes in water-stressed tropical legumes. Phytochemistry 23(5):1007–1015

    Article  CAS  Google Scholar 

  • Garifzyanov AR, Zhukov NN, Pantyukhin YO, Ivanishchev VV (2012) Characteristics of NaCl_induced oxidative stress and dynamics of antioxidant enzyme activity in winter triticale organs. Russ Agric Sci 38(2):86–88

    Article  Google Scholar 

  • Giunta F, Motzo R, Deidda M (1993) Effect of drought on yield and yield components of durum wheat and triticale in a Mediterranean environment. Field Crops Res 33:399–409

    Article  Google Scholar 

  • Glamoclija N, Starcevic M, Ćirić J, Sefer D, Glisic M, Baltic M, Markovic R, Spasic M, Glamoclija D (2018) The importance of triticale in animal nutrition. J Repub Srp 18:73–94

    Google Scholar 

  • Gorham J (1990) Salt tolerance in the triticeae: ion discrimination in rye and triticale. J Exp Bot 41(226):609–614

    Article  CAS  Google Scholar 

  • Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR, Rosa EAS, Antonio C, Trindade H (2017) Cowpea (Vigna unguiculata L.Walp.) metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front Plant Sci 8:586. https://doi.org/10.3389/fpls.2017.00586

    Article  PubMed  PubMed Central  Google Scholar 

  • Gould KS, Lister C (2006) Flavonoid functions in plants. In: Andersen OM, Markham KR (eds) Flavonoids: chemistry, biochemistry, and applications. CRC Press, Boca Raton, pp 397–442

    Google Scholar 

  • Grębosz A, Badowiec A, Weidner S (2014) Changes in the root proteome of Triticosecale grains germinating under osmotic stress. Acta Physiol Plant 36:825–835. https://doi.org/10.1007/s11738-013-1461-0

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grzesiak S, Grzesiak MT, Filek W, Hura T, Stabryła J (2002) The impact of different soil moisture and soil compaction on the growth of triticale root system. Acta Physiol Plant 24:331–342

    Article  Google Scholar 

  • Grzesiak TM, Marcińska I, Janowiak F, Rzepka A, Hura T (2012) The relationship between seedling growth and grain yield under drought conditions in maize and triticale genotypes. Acta Physiol Plant 34:1757–1764. https://doi.org/10.1007/s11738-012-0973-3

    Article  Google Scholar 

  • Grzesiak MT, Ostrowska A, Hura K, Rut G, Janowiak F, Rzepka A, Hura T, Grzesiak S (2014) Interspecific differences in root architecture among maize and triticale genotypes grown under drought, waterlogging and soil compaction. Acta Physiol Plant 36:3249–3261

    Article  Google Scholar 

  • Grzesiak MT, Hurab K, Jurczykb B, Huraa T, Rutc G, Szczyreka P, Grzesiaka S (2017) Physiological markers of stress susceptibility in maize and triticale under different soil compactions and/or soil water contents. J Plant Interact 12(1):355–372

    Article  CAS  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56(420):2601–2609

    Article  CAS  PubMed  Google Scholar 

  • He JF, Goyal R, Laroche A, Zhao ML, Lu ZX (2013) Effects of salinity stress on starch morphology, composition and thermal properties during grain development in triticale. Can J Plant Sci 93:765–771

    Article  CAS  Google Scholar 

  • Heidari B, Latifi M, Dadkhodaie A, Shariatipour N (2016) Selection of salt-tolerant Triticale (X triticosecale Wittmack) and genetic variation assay for agronomic and physiological traits. Int J Plant Soil Sci 12(1):1–13

    Article  Google Scholar 

  • Hemantaranjan A, Malik CP, Nishant Bhanu A (2018) Physiology of heat stress and tolerance mechanisms—an overview. Jour Pl Sci Res 33(1):55–68

    Google Scholar 

  • Hoque MA, Banu MNA, Okuma E, Amako K, Nakamura Y, Shimoishi Y, Myrata Y (2007) Exogenous proline and glycinebetaine increase NaCl-induced ascorbate glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. J Plant Physiol 164(11):1457–1468

    Article  CAS  PubMed  Google Scholar 

  • Hsu FC, Chou MY, Peng HP, Chou SJ, Shih MC (2011) Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS One 6:e28888. https://doi.org/10.1371/journal.pone.0028888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hura T, Hura K, Grzesiak S (2009) Possible contribution of cell wall-bound ferulic acid in drought resistance and recovery in triticale seedlings. J Plant Physiol 166:1720–1733

    Article  CAS  PubMed  Google Scholar 

  • Hura K, Ostrowska A, Dziurka K, Hura T (2017) Photosynthetic apparatus activity in relation to high and low contents of cell wall-bound phenolics in triticale under drought stress. Photosynthetica 55(4):698–704

    Article  CAS  Google Scholar 

  • Huraa T, Hurab K, Dziurkaa K, Ostrowskaa A, Bączek-Kwintab R, Grzesiaka M (2012) An increase in the content of cell wall-bound phenolics correlates with the productivity of triticale under soil drought. J Plant Physiol 169(17):1728–1736

    Article  CAS  Google Scholar 

  • Hussain K, Majeed A, Nawaz K, Khizar HB, Nisar MF (2009) Effect of different levels of salinity on growth and ion contents of black seeds (Nigella sativa L.). Curr Res J Biol Sci 1:135–138

    CAS  Google Scholar 

  • Jagadish SVK, Pal M, Sukumaran S, Parani M, Siddique KHM (2020) Heat stress resilient crops for future hotter environments. Plant Physiol Rep 25(4):529–532

    Article  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheatHKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62(8):2939–2947

    Article  CAS  PubMed  Google Scholar 

  • Jones HG (2007) Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J Exp Bot 58:119–130

    Article  CAS  PubMed  Google Scholar 

  • Karim MA, Nawata E, Shigenaga S (1993) Effects of salinity and water stress on the growth, yield and physiological characteristics in hexaploid triticale. Jpn J Trop Agr 37(1):46–53

    CAS  Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40(2):482–487

    Article  CAS  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) Effects of sodium chloride treatments on growth and ion accumulation of the halophyte haloxylon recurvum. Commun Soil Sci Plant Anal 31(17–18):2763–2774

    Article  CAS  Google Scholar 

  • Khan MS, Kanwal B, Nazir S (2015) Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants. Front Plant Sci 6:725. https://doi.org/10.3389/fpls.2015.00725

    Article  PubMed  PubMed Central  Google Scholar 

  • Khlestkina EK (2013) The adaptive role of flavonoids: emphasis on cereals. Cereal Res Commun 41:185–198

    Article  CAS  Google Scholar 

  • Kiani-Pouya A (2015) Changes in activities of antioxidant enzymes and photosynthetic attributes in triticale (3Triticosecale Wittmack) genotypes in response to long-term salt stress at two distinct growth stages. Acta Physiol Plant 37:72

    Article  CAS  Google Scholar 

  • Kocsy G, Simon-Sarkadi L, Kovacs Z, Boldizsar A, Sovany C, Kirsch K, Galiba G (2011) Regulation of free amino acid and polyamine levels during cold acclimation in wheat. Acta Biol Szeged 55:91–93

    Google Scholar 

  • Kolupaev YE, Horielova EI, Yastreb TO, Ryabchun NI (2020) State of antioxidant system in triticale seedlings at cold hardening of varieties of different frost resistance. Cereal Res Commun 48(2):165–171

    Article  CAS  Google Scholar 

  • Kumar A, Sharma KD (2010) Leaf water content—a simple indicator of drought tolerance in crop plants. Indian J Agric Sci 80:1095–1097

    Google Scholar 

  • Kumar S, Mittal RK, Dhiman R, Gupta D (2014) Assessment of triticale (Triticosecale) X bread wheat (Triticum aestivum) genotypes for drought tolerance based on morpho-physiological, grain yield and drought tolerance indices under non-irrigated and irrigated environments. Int J Food Sci Nutr Dietet 3:502

    Google Scholar 

  • Kwinta J, Cal K (2005) Effects of salinity stress on the activity of glutamine synthetase and glutamate dehydrogenase in triticale seedlings. Pol J Environ Stud 14(1):125–130

    CAS  Google Scholar 

  • Lee, S. B.\ and Suh, M.C. (2013). Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. Mol Plant, 6, 246–249. doi: https://doi.org/10.1093/mp/sss159

    Article  CAS  PubMed  Google Scholar 

  • Lee KD, Tawaha ARM, Supanjani. (2005) Antioxidant status, stomatal resistance and mineral composition of hot pepper under salinity and boron stress. Biosci Res 2(3):148–154

    Google Scholar 

  • Li C, Jiang D, Wollenweber B, Li Y, Dai T, Cao W (2011) Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci 180:672–678

    Article  CAS  PubMed  Google Scholar 

  • Lia XH, Dai LY, Zhang JH (1998) Factors related to cold tolerance at booting stage in Oryza sativa L. Chinese J Rice Sci 12:6–10

    Google Scholar 

  • Lonbani M, Arzani A (2011) Morpho-physiological traits associated with terminal drought stress tolerance in triticale and wheat. Agron Res 9(1–2):315–329

    Google Scholar 

  • Mboup M, Fischer I, Lainer H, Stephan W (2012) Trans-species polymorphism and allele-specific expression in the cbf gene family of wild tomatoes. Mol Biol Evol 29:3641–3652

    Article  CAS  PubMed  Google Scholar 

  • McIntyre BL, Chen THH, Mederick MF (1988) Physiological traits associated with winter survival of winter wheats and winter triticales in Alberta. Can J Plant Sci 68:361–366

    Article  Google Scholar 

  • McKenzie RH, Bremer E, Middleton AB, Beres B, Yoder C, Hietamaa C, Pfiffner P, Kereliuk G, Pauly D, Henriquez B (2014) Agronomic practices for bioethanol production from spring triticale in Alberta. Can J Plant Sci 94:15–22

    Article  Google Scholar 

  • Mergoum M, Singh PK, Peña RJ, Lozano-del Río AJ, Cooper KV, Salmon DF, Macpherson GH (2009) Triticale: a "new" crop with old challenges. In: Cereals. Springer, Berlin. https://doi.org/10.1007/978-0-387

    Chapter  Google Scholar 

  • Mergoum M, Sapkota S, ElFatih A, ElDoliefy A, Naraghi SM, Pirseyedi S, Alamri MS, AbuHammad W (2019) Triticale (x Triticosecale Wittmack) breeding. In: Al-Khayri JM et al (eds) Advances in plant breeding strategies: cereals. Springer Nature Switzerland AG, Basel

    Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Minhas PS, Rane J, Pasala R (2017) Abiotic stresses in agriculture; an overview. In: Abiotic stress management for resilient agriculture. Springer, Berlin, pp 3–8

    Chapter  Google Scholar 

  • Mohamed MN (2020) Breeding for improved biomass yield in triticale. Stellenbosch University, Stellenbosch. https://scholar.sun.ac.za

    Google Scholar 

  • Mohammad F, Ahmad I, Khan NU, Maqbool K, Naz A, Shaheen S, Ali K (2011) Comparative study of morphological traits in wheat and triticale. Pak J Bot 43(1):165–170

    Google Scholar 

  • Mommer L, Lenssen JP, Huber H, Visser EJ, De Kroon H (2006) Ecophysiological determinants of plant performance under flooding: a comparative study of seven plant families. J Ecol 94:1117–1129

    Article  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Mustroph A (2018) Improving flooding tolerance of crop plants. Agronomy 8:160. https://doi.org/10.3390/agronomy8090160

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Ahamed KU, Hakeem KR, Ozturk M, Fujita M (2015a) Plant responses and tolerance to high temperature stress: role of exogenous phytoprotectants. In: Hakeem KR (ed) Crop production and global environmental issues. Springer International Publishing, Basel

    Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015b) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44–54

    Article  CAS  Google Scholar 

  • Nawaz MF, Gul S, Tanvir MA, Akhtar J, Chaudary S, Ahmad I (2016) Influence of NaCl-salinity on Pb-uptake behavior and growth of River Red gum tree (Eucalyptus camaldulensis Dehnh.). Turk J Agric For 40:425–432

    Article  CAS  Google Scholar 

  • Naylor RES, Su J (1998) Plant development of triticale cv. Lesko at different sowing date. J Agric Sci 130:297–306

    Article  Google Scholar 

  • Nezami A, Soleimani MR, Ziaee M, Ghodsi M, Aval MB (2010) Evaluation of freezing tolerance of hexaploid triticale genotypes under controlled conditions. Not Sci Biol 2(2):114–120

    Article  Google Scholar 

  • Nuriyeva S, Akparov Z, Hajiyev E, Abbasov M, Sharma RC (2016) Evaluation of wheat genetic resources of Azerbaijan on normal and saline fields. Turk J Agric For 40:186–193

    Article  Google Scholar 

  • Oceanic and Atmospheric Administration website (2015). https://www.ncdc.noaa.gov/billions/events/US/1980-2017

  • Ozkan H, Genc I, Yagbasanlar T, Tok F (1999) Stress tolerance in hexaploid spring triticale under Mediterranean environment. Plant Breed 118:365–367

    Article  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Investigations on the antioxidative defence responses to NaCl stress in a mangrove, Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regul 42(3):213–226

    Article  CAS  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075

    Article  CAS  Google Scholar 

  • Peer LA, Dar ZA, Lone AA, Bhat MY, Ahamad N (2020) High temperature triggered plant responses from whole plant to cellular level: a review. Plant Physiol Rep 25:611–626. https://doi.org/10.1007/s40502-020-00551-3

    Article  CAS  Google Scholar 

  • Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron:1023–1036

    Google Scholar 

  • Prasanna YL, Rao R (2014) Effect of waterlogging on growth and seed yield in greengram genotypes. Int J Food Agric Vet Sci 4:124–128

    Google Scholar 

  • Ramel F, Sulmon C, Bogard M, Couee I, Gouesbet G (2009) Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rasolofo PR (1986) Screening rice cultivars at seedling stage and anthesis for low temperature tolerance in Madagascar. IRRN 11:12–13

    Google Scholar 

  • Ravikiran KT, Krishnan SG, Vinod KK, Dhawana G, Dwivedia P, Kumara P, Bansal VP, Nagarajan M, Bhowmick PK, Ellur RK, Bollinedi H, Pal M, Mithra ACR, Singh AK (2020) A trait specific QTL survey identifies NL44, a NERICA cultivar as a novel source for reproductive stage heat stress tolerance in rice. Plant Physiol Rep 25:664–676

    Article  CAS  Google Scholar 

  • Rehman A, Jingdong L, Du Y, Khatoon R, Wagan SA, Khan S (2015) Flood disaster in Pakistan and its impact on agriculture growth. Glob Adv Res J Agric Sci 4:827–830

    Google Scholar 

  • Richards RA, Dennett CW, Qualest CO, Epstein E, Norlyn JD (1987) Variation in yield of grain and biomass in wheat, barley and triticale in a salt-affected field. Field Crop Res 15(1987):277–287

    Article  Google Scholar 

  • Roohi E, Tahmasebi-Sarvestani Z, Modarres-Sanavy SAM, Siosemardeh A (2013) Comparative study on the effect of soil water stress on photosynthetic function of triticale, bread wheat, and barley. J Agric Sci Technol 15:215–228

    Google Scholar 

  • Royo C, Abaza M, Cantero C, Caldero A, Ramos JM, del Moral GLF (1996) Likening between the effect of drought and terminal water-stress simulated by a senescing agent in triticale. J Agron Crop Sci 176:31–38

    Article  CAS  Google Scholar 

  • Royo C, Abaza M, Blaneo R, del Moral GLF (2000) Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Aust J Plant Physiol 27:1051–1059

    CAS  Google Scholar 

  • Rozema J, Flowers T (2008) Ecology: crops for a salinized world. Science 322(5907):1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Saed-Moucheshi A, Sohrabi F, Fasihfar E, Baniasadi F, Riasat M, Mozafari AA (2021) Superoxide dismutase (SOD) as a selection criterion for triticale grain yield under drought stress: a comprehensive study on genomics and expression profiling, bioinformatics, heritability, and phenotypic variability. BMC Plant Biol 21:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saini JP, Tandon JP (1985) Evaluating rices for cold tolerance. IRRN 10:9–10

    Google Scholar 

  • Sakata T, Higashitani A (2008) Male sterility accompanied with abnormal anther development in plants–genes and environmental stresses with special reference to high temperature injury. Int J Plant Dev Biol 2:42–51

    Google Scholar 

  • Salehi M, Arzani A (2013) Grain quality traits in triticale influenced by field salinity stress. Aust J Crop Sci 7(5):580–587

    CAS  Google Scholar 

  • Semiz GD, Suarez DL (2015) Tomato salt tolerance: impact of grafting and water composition on yield and ion relations. Turk J Agric For 39:876–886

    Article  CAS  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Shabala S (2011) Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol 190:289–298

    Article  CAS  PubMed  Google Scholar 

  • Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, de Groot S, Soole K, Langridge P (2017) Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Front Plant Sci 8:1–8

    Article  Google Scholar 

  • Shi Y, Ding Y, Yang S (2018) Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci 23:623–637

    Article  CAS  PubMed  Google Scholar 

  • Sicher RC, Timlin D, Bailey B (2012) Responses of growth and primary metabolism of water-stressed barley roots to rehydration. J Plant Physiol 169:686–695. https://doi.org/10.1016/j.jplph.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  • Siebert S, Ewert F, Rezaei EE, Kage H, Graß R (2014) Impact of heat stress on crop yield—on the importance of considering canopy temperature. Environ Res Lett 9(4):044012

    Article  Google Scholar 

  • Silvaa AN, Ramosa MLG, Júniorb WQR, de Alencara ER, da Silvaa PC, de Limaa CA, Vinsona CC, Silvac MAV (2020) Water stress alters physical and chemical quality in grains of common bean, triticale and wheat. Agric Water Manag 231:106023

    Article  Google Scholar 

  • Singh BD (2000) Plant breeding. Kalyani Publishers, Kochi, pp 443–460

    Google Scholar 

  • Supanjani A, Yang MS, Tawaha ARM, Yang MS, Kim PJ, Lee KD (2005a) Effect of magnesium application on yield, mineral contents and active components of Chrysanthemum coronarium L. under hydroponics conditions. Biosci Res 2(2):73–79

    Google Scholar 

  • Supanjani A, Tawaha AM, Min Yang MS, Lee KD (2005b) Role of calcium in yield and medicinal quality of Chrysanthemum coronarium L. J Agron 4(3):188–192

    Google Scholar 

  • Suresh S, Bishnoi O, Behl RK (2018) Use of heat susceptibility index and heat response index as a measure of heat tolerance in wheat and triticale. J Crop Breed Genet 4(2):39–44

    Google Scholar 

  • Tardieu F, Simonneau T, Muller B (2008) The physiological basis of drought tolerance in 275 crop plants: a scenario-dependent probabilistic approach. Annu Rev Plant Biol 69:733–759 . Published online EpubApr 29. https://doi.org/10.1146/annurev-arplant-042817-040218

    Article  CAS  Google Scholar 

  • Tawaha AM, Turk MA (2002) Lentil (Lens culinaris Medic.) productivity as influenced by rate and method of phosphate placement in a Mediterranean environment. Acta Agron Hung 50(2):197–201

    Article  Google Scholar 

  • Tawaha AM, Turk MA (2004) Field pea seeding management for semi-arid mediterranean conditions. J Agron Crop Sci 190:86–92

    Article  Google Scholar 

  • Tawaha AM, Singh VP, Turk MA, Zheng W (2003) A review on growth, yield components and yield of barley as influenced by genotypes, herbicides and fertilizer application. Res Crop 4(1):1–9

    Google Scholar 

  • Tian L, Bi W, Liu X, Sun L, Li J (2019) Effects of waterlogging stress on the physiological response and grain-filling characteristics of spring maize (Zea mays L.) under field conditions. Acta Physiol Plant 41:63

    Article  CAS  Google Scholar 

  • Tshewang S, Birchall C, Jessop R (2010) Evaluation of the frost tolerance of triticale varieties and other winter cereals at flowering. In: Dove H, Culvenor RA (Eds), Food security from sustainable agriculture. Proceedings of the 15th agronomy conference 2010, Lincoln, New Zealand

    Google Scholar 

  • Turk MA, Tawaha AM (2001) Common vetch (Vicia sativa L.) productivity as influenced by rate and method of phosphate fertilization in a Mediterranean environment. Agric Mediterr 131:108–111

    Google Scholar 

  • Turk MA, Tawaha AM (2002a) Inhibitory effects of aqueous extracts of black mustard on germination and growth of lentil. Pak J Agron 1(1):28–30

    Article  Google Scholar 

  • Turk MA, Tawaha AM (2002b) Onion (Allium cepa L.) as influenced by rate and method of phosphorus placement. Crop Res 23(1):105–107

    Google Scholar 

  • Turk MA, Tawaha AM (2002c) Impact of seeding rate, seeding date and method of phosphorous application in faba bean (Viciafaba L. minor) in the absence of moisture stress. Biotechnol Agron Soc Environ 6(3):171–178

    Google Scholar 

  • Turk MA, Tawaha AM, Shatnawi M (2003a) Lentil (Lens culinaris Medik) response to plant density, sowing date, phosphorus fertilization and Ethephon application in the absence of moisture stress. J Agron Crop Sci 189(1):1–6

    Article  Google Scholar 

  • Turk MA, Tawaha AM, Samara N (2003b) Effects of seeding rate and date, and phosphorus application on growth and yield of narbon vetch (Vicia narbonensis). Agronomie 23:1–4

    Article  Google Scholar 

  • Turk MA, Shatnawi MK, Tawaha AM (2003c) Inhibitory effects of aqueous extracts of black mustard on germination and growth of alfalfa. Weed Biol Manag 3(1):37–40

    Article  Google Scholar 

  • Turk MA, Tawaha AM, Lee KD (2004) Seed germination and seedling growth of three lentil cultivars under moisture stress. Asian J Plant Sci 3(3):394–397

    Article  Google Scholar 

  • Ugarte C, Calderini DF, Slafer GA (2007) Grain weight and grain number responsiveness to pre-anthesis temperature in wheat, barley and triticale. Field Crop Res 100:240–248

    Article  Google Scholar 

  • Wang Y, Nii N (2000) Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J Hortic Sci Biotechnol 75(6):623–627

    Article  CAS  Google Scholar 

  • Wheaton E, Kulshreshtha S, Wittrock V, Koshida G (2008) Dry times: hard lessons from the Canadian drought of 2001 and 2002. Can Geograph 52:241–262. https://doi.org/10.1111/j.1541-0064.2008.00211.x

    Article  Google Scholar 

  • Wyatt J (2016) Grain and plant morphology of cereals and how characters can be used to identify varieties, reference module in food science

    Google Scholar 

  • Yamauchi A (1993) Significance of root system structure in relation to stress tolerance in cereal crop. In: Low-input sustainable crop production system in Asia. Korean Society of Crop Science, Korea, pp 347–360

    Google Scholar 

  • Yazicilar B, Karaman S, Bezirganoglu I, Ilhan D (2020) Antioxidant and physiological analysis of triticale under cold acclimation conditions in vitro and ex vitro. Commun Fac Sci Univ Ank Ser C Biol 29(2):338–350

    Google Scholar 

  • Yu LX, Ray JD, O’Toole JC, Nguyen HT (1995) Use of wax-petrolatum layer for screening rice root penetration. Crop Sci 35:684–687

    Article  Google Scholar 

  • Zhang W, Li C, Qian C, Cao L (2009) Studies on the responses of root, shoot and drought resistance in the seedlings of forage triticale to water stress. J Agric Sci 1(2):50–57

    CAS  Google Scholar 

  • Zhang F, Jiang Y, Bai LP, Zhang L, Chen LJ, Li HG, Yin Y, Yan WW, Yi Y, Guo ZF (2011) The ICE-CBF-COR pathway in cold acclimation and AFPs in plants. Middle-East J Sci Res 8:493–498

    Google Scholar 

  • Zhang B, Jia D, Gao Z, Dong Q, He L (2016) Physiological responses to low temperature in spring and winter wheat varieties. J Sci Food Agric 96:1967–1973

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Tan HJ, Liu YB, Li XR, Chen GX (2009) Effect of salt stress on growth and osmotic regulation in Thellungiella and Arabidopsis callus. Plant Cell Tissue Organ Cult 98:97–103

    Article  CAS  Google Scholar 

  • Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand J, Elliott J, Ewert F, Janssens IA, Li T, Lin E, Liu Q, Martre P, Muller C, Peng S, Penuwlas J, Ruane AC, Wallach D, Wang T, Wu D, Liu Z, Zhu Y, Zhu Z, Asseng S (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A 114:9326–9331. https://doi.org/10.1073/pnas.1701762114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu F (2018) Triticale; nutritional composition and food uses. Food Chem 15(241):468–479

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alatrash, H. et al. (2022). Abiotic Stress Response and Adoption of Triticale. In: Roychoudhury, A., Aftab, T., Acharya, K. (eds) Omics Approach to Manage Abiotic Stress in Cereals. Springer, Singapore. https://doi.org/10.1007/978-981-19-0140-9_25

Download citation

Publish with us

Policies and ethics