Skip to main content

Applications of AI and ML Techniques to Predict Backbreak and Flyrock Distance Resulting from Blasting

  • Chapter
  • First Online:
Environmental Issues of Blasting

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Flyrock due to blasting has always remained risk and adverse environmental impact due to the past history of accidents with serious bodily injuries, fatalities, and damage to the properties. Backbreak is likely one of the causes for future flyrock during blasting. Hence, prediction of flyrock and backbreak is crucial. Various factors causing flyrock have been identified such as geology, rock mass properties, drill and blast design, impact of previous blast, failure to identify uncontrollable factors, personal and task factors, environmental factors, blast management practices, and lack technological tools. Input parameters based on blast design, rock mass properties, and explosives related factors such as powder factor, maximum charge per delay, charge per meter play crucial role in prediction of flyrock and backbreak. Empirical equations were initially developed based on blast design parameters for prediction of flyrock and backbreak. Statistical models as well as empirical equations do not have required accuracy for prediction of flyrock and backbreak. Various artificial intelligence (AI) techniques for prediction of flyrock and backbreak developed during last decade were reviewed. Artificial neural network, fuzzy interface system, and support vector machine were found common and useful. In addition, hybrid AI techniques showed better accuracy in prediction of flyrock and backbreak. Practical applications of AI techniques and need for future research are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Bhandari, Flyrock during blasting operations—controllable environmental hazard, in 2nd National Seminar on Minerals and Ecology (1994), pp. 279–308

    Google Scholar 

  2. S. Bhandari, Engineering Rock Blasting Operations (A.A. Balkema, 1997), p. 388

    Google Scholar 

  3. T.S. Bajpayee, T.R. Rehak, G.L. Mowrey, D.K. Ingram, A summary of fatal accidents due to flyrock and lack of blast area security in surface mining, 1989 to 1999, in Proceeding of the 28th Annual Conference Explosive and Blasting Technique, January 2001 (2002), pp. 105–118

    Google Scholar 

  4. T.R. Rehak, T.S. Bajpayee, G.L. Mowrey, D.K. Ingram, Flyrock issues in blasting (2001)

    Google Scholar 

  5. T. Singh, V. Singh, An intelligent approach to prediction and control ground vibration in mines. Geotech. Geol. Eng. 23, 249–262 (2005)

    Google Scholar 

  6. M. Monjezi, H. Amiri, A. Farrokhi, K. Goshtasbi, Prediction of rock fragmentation due to blasting in Sarcheshmeh copper mine using artificial neural networks. Geotech. Geol. Eng. 28(4), 423–430 (2010)

    Google Scholar 

  7. C. Jimeno, E. Jimeno, F. Carcedo, Drilling and Blasting of Rocks (A.A. Balkema, Rotterdam, 1995)

    Google Scholar 

  8. P.A. Davies, Risk-based approach to setting of flyrock danger zones for blast sites. Trans. Inst. Min. Metall., 96–100 (1995)

    Google Scholar 

  9. V. Kecojevic, M. Radomsky, Flyrock phenomena and area security in blasting-related accidents. Saf. Sci. 43(9), 739–750 (2005)

    Google Scholar 

  10. E.T. Mohamad, D.J. Armaghani, M. Hajihassani, K. Faizi, A. Marto, A simulation approach to predict blasting-induced flyrock and size of thrown rocks. Electron. J. Geotech. Eng. 18(B), 365–374 (2013)

    Google Scholar 

  11. E.T. Mohamad, B.R. Murlidhar, D.J. Armaghani, R. Saad, C.S. Yi, Effect of geological structure and blasting practice in fly rock accident at Johor, Malaysia. J. Teknol. 78(8–6) (2016)

    Google Scholar 

  12. E.T. Mohamad, C.S. Yi, B.R. Murlidhar, R. Saad, Effect of geological structure on flyrock prediction in construction blasting. Geotech. Geol. Eng. 36(4), 2217–2235 (2018)

    Google Scholar 

  13. G.R. Adhikari, Studies on flyrock at limestone quarries. Rock Mech. Rock Eng. 32(4), 291–301 (1999)

    Google Scholar 

  14. P.P. Roy, Rock Blasting: Effects and Operations (A.A. Balkema Publishers, Leiden, Netherlands, 2005)

    Google Scholar 

  15. H.S. Venkatesh, R.M. Bhatawdekar, G.R. Adhikari, A.I. Theresraj, Assessment and mitigation of ground vibrations and flyrock at a limestone quarry, in Proceedings of the Annual Conference on Explosives and Blasting Technique (1999), pp. 145–152

    Google Scholar 

  16. B.R. Murlidhar, D. Kumar, D. Jahed Armaghani, E.T. Mohamad, B. Roy, B.T. Pham, A novel intelligent ELM-BBO technique for predicting distance of mine blasting-induced flyrock. Nat. Resour. Res. (2020). https://doi.org/10.1007/s11053-020-09676-6

  17. D. Li, M. Koopialipoor, D.J. Armaghani, A combination of fuzzy Delphi method and ANN-based models to investigate factors of flyrock induced by mine blasting. Nat. Resour. Res. (2021). https://doi.org/10.1007/s11053-020-09794-1

  18. S. Nazeer, R.K. Dutta, Application of machine learning techniques in predicting the bearing capacity of E-shaped footing on layered sand. J. Soft Comput. Civ. Eng. 5(4), 74–89 (2021). https://doi.org/10.22115/SCCE.2021.303113.1360

    Google Scholar 

  19. R. Saisubramanian, V. Murugaiyan, Prediction of compression index of marine clay using artificial neural network and multilinear regression models. J. Soft Comput. Civ. Eng. 5(4), 114–124 (2021). https://doi.org/10.22115/SCCE.2021.287537.1324

  20. A. Saber, Effects of window-to-wall ratio on energy consumption: application of numerical and ANN approaches. J. Soft Comput. Civ. Eng. 5(4), 41–56 (2021). https://doi.org/10.22115/SCCE.2021.281977.1299

    Article  Google Scholar 

  21. E. Tonnizam Mohamad, D. Jahed Armaghani, M. Hasanipanah, B.R. Murlidhar, M.N.A. Alel, Estimation of air-overpressure produced by blasting operation through a neuro-genetic technique. Environ. Earth Sci. 75(2), 1–15 (2016)

    Google Scholar 

  22. Q. Fang, B.Y. Bejarbaneh, M. Vatandoust, D.J. Armaghani, B.R. Murlidhar, E.T. Mohamad, Strength evaluation of granite block samples with different predictive models. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00872-4

  23. D.J. Armaghani, E.T. Mohamad, M.S. Narayanasamy, N. Narita, S. Yagiz, Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn. Undergr. Sp. Technol. 63, 29–43 (2017)

    Google Scholar 

  24. H. Naderpour, A.H. Rafiean, P. Fakharian, Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng. 16, 213–219 (2018). https://doi.org/10.1016/j.jobe.2018.01.007

  25. E.T. Mohamad, M. Koopialipoor, B.R. Murlidhar, A. Rashiddel, A. Hedayat, D.J. Armaghani, A new hybrid method for predicting ripping production in different weathering zones through in-situ tests. Measurement (2019). https://doi.org/10.1016/j.measurement.2019.07.054

  26. R.M. Bhatawdekar, E. Tonnizam Mohamad, T.N. Singh, P. Pathak, D.J. Armaghani, Rock mass classification for the assessment of blastability in tropically weathered limestones, in International Conference on Innovations for Sustainable and Responsible Mining, vol. 109 (2021), pp. 13–44

    Google Scholar 

  27. E.T. Mohamad, D. Li, B.R. Murlidhar, D.J. Armaghani, K.A. Kassim, I. Komoo, The effects of ABC, ICA, and PSO optimization techniques on prediction of ripping production. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00770-9

  28. B.R. Murlidhar, B.Y. Bejarbaneh, D.J. Armaghani, A.S. Mohammed, E.T. Mohamad, Application of tree-based predictive models to forecast air overpressure induced by mine blasting. Nat. Resour. Res. (2020). https://doi.org/10.1007/s11053-020-09770-9

  29. D. Jahed Armaghani, A. Azizi, A comparative study of artificial intelligence techniques to estimate TBM performance in various weathering zones, in Applications of Artificial Intelligence in Tunnelling and Underground Space Technology. SpringerBriefs in Applied Sciences and Technology (Springer, Singapore, 2021), pp. 55–70. https://doi.org/10.1007/978-981-16-1034-9_4

  30. D. Jahed Armaghani, A. Azizi, Empirical, statistical, and intelligent techniques for TBM performance prediction, in Applications of Artificial Intelligence in Tunnelling and Underground Space Technology. SpringerBriefs in Applied Sciences and Technology (Springer, Singapore, 2021), pp. 17–32. https://doi.org/10.1007/978-981-16-1034-9_2

  31. B.R. Murlidhar, D.J. Armaghani, E.T. Mohamad, Intelligence prediction of some selected environmental issues of blasting: a review. Open Constr. Build. Technol. J. 14(1), 298–308 (2020)

    Google Scholar 

  32. E. Ford, K. Maneparambil, N. Neithalath, Machine learning on microstructural chemical maps to classify component phases in cement pastes. J. Soft Comput. Civ. Eng. 5(4), 1–20 (2021). https://doi.org/10.22115/SCCE.2021.302400.1357

    Google Scholar 

  33. D.J. Armaghani, A. Mahdiyar, M. Hasanipanah, R.S. Faradonbeh, M. Khandelwal, H.B. Amnieh, Risk assessment and prediction of flyrock distance by combined multiple regression analysis and Monte Carlo simulation of quarry blasting. Rock Mech. Rock Eng. 49(9), 1–11 (2016)

    Google Scholar 

  34. R. Trivedi, T.N. Singh, N. Gupta, Prediction of blast-induced flyrock in opencast mines using ANN and ANFIS. Geotech. Geol. Eng. 33(4), 875–891 (2015)

    Google Scholar 

  35. M. Monjezi, H. Dehghani, Evaluation of effect of blasting pattern parameters on back break using neural networks. Int. J. Rock Mech. Min. Sci. 45(8), 1446–1453 (2008)

    Google Scholar 

  36. M. Monjezi, H. Khoshalan, A. Varjani, Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach. Arab. J. Geosci. (2012)

    Google Scholar 

  37. F. Faramarzi, M. Ebrahimi Farsangi, H. Mansouri, An RES-based model for risk assessment and prediction of backbreak in bench blasting. Rock Mech. Rock Eng. 46(4), 877–887 (2012)

    Google Scholar 

  38. M. Sari, E. Ghasemi, M. Ataei, Stochastic modeling approach for the evaluation of backbreak due to blasting operations in open pit mines. Rock Mech. rock Eng. 47(2), 771–783 (2014)

    Google Scholar 

  39. A. Abraham, Meta learning evolutionary artificial neural networks. Neurocomputing 56(1–4), 1–38 (2004)

    Google Scholar 

  40. M. Monjezi, M. Ahmadi, M. Sheikhan, A. Bahrami, A.R. Salimi, Predicting blast-induced ground vibration using various types of neural networks. Soil Dyn. Earthq. Eng. 30(11), 1233–1236 (2010)

    Google Scholar 

  41. M. Khandelwal, T. Singh, Prediction of blast induced ground vibrations and frequency in opencast mine: a neural network approach. J. Sound Vib. 289(4–5), 711–725 (2006)

    Google Scholar 

  42. M. Khandelwal, T. Singh, S. Kumar, Prediction of blast induced ground vibration in opencast mine by artificial neural network. Indian Min. Eng. J. 44, 9–23 (2005)

    Google Scholar 

  43. M. Khandelwal, T. Singh, Prediction of blast-induced ground vibration using artificial neural network. Int. J. Rock Mech. Min. Sci. 46(7), 1214–1222 (2009)

    Google Scholar 

  44. M. Khandelwal, D.L. Kumar, M. Yellishetty, Application of soft computing to predict blast-induced ground vibration. Eng. Comput. 27(2), 117–125 (2011)

    Google Scholar 

  45. F. Meulenkamp, M. Grima, Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness. Int. J. Rock Mech. Min. Sci. 36(1), 29–39 (1999)

    Google Scholar 

  46. A. Bahrami, M. Monjezi, K. Goshtasbi, A. Ghazvinian, Prediction of rock fragmentation due to blasting using artificial neural network. Eng. Comput. 27(2), 177–181 (2011)

    Google Scholar 

  47. K. Neaupane, N. Adhikari, Prediction of tunneling-induced ground movement with the multi-layer perceptron. Int. J. Tunn. Undergr. Sp. Technol. 21, 151–159 (2006)

    Google Scholar 

  48. G.-B. Huang, L. Chen, C.K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Google Scholar 

  49. D. Cui, G.-B. Huang, T. Liu, ELM based smile detection using distance vector. Pattern Recognit. 79, 356–369 (2018)

    Google Scholar 

  50. H. Zhu, E.C.C. Tsang, J. Zhu, Training an extreme learning machine by localized generalization error model. Soft Comput. 22(11), 3477–3485 (2018)

    Google Scholar 

  51. P. Mohapatra, S. Chakravarty, P. Dash, An improved cuckoo search based extreme learning machine for medical data classification. Swarm Evol. Comput. 24, 25–49 (2015)

    Google Scholar 

  52. P. Satapathy, S. Dhar, P.K. Dash, An evolutionary online sequential extreme learning machine for maximum power point tracking and control in multi-photovoltaic microgrid system. Renew. Energy Focus 21, 33–53 (2017)

    Google Scholar 

  53. L.-L. Li, J. Sun, M.-L. Tseng, Z.-G. Li, Extreme learning machine optimized by whale optimization algorithm using insulated gate bipolar transistor module aging degree evaluation. Expert Syst. Appl. 127, 58–67 (2019)

    Google Scholar 

  54. J. Cao, Z. Lin, G.-B. Huang, Self-adaptive evolutionary extreme learning machine. Neural Process. Lett. 36(3), 285–305 (2012)

    Google Scholar 

  55. M. Hasanipanah, D.J. Armaghani, H.B. Amnieh, M.Z.A. Majid, M.M.D. Tahir, Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural Comput. Appl. 28(1), 1043–1050 (2017)

    Google Scholar 

  56. H. Eskandar, E. Heydari, M. Hasanipanah, M. Jalil Masir, A. Mahmodi Derakhsh, Feasibility of particle swarm optimization and multiple regression for the prediction of an environmental issue of mine blasting. Eng. Comput. (Swansea, Wales) 35(1) (2018)

    Google Scholar 

  57. E. Ghasemi, Particle swarm optimization approach for forecasting backbreak induced by bench blasting. Neural Comput. Appl. 28(7), 1855–1862 (2017)

    Google Scholar 

  58. A.A. Bazzazi, M. Esmaeili, Prediction of backbreak in open pit blasting by adaptive neuro-fuzzy inference system. Arch. Min. Sci. 57(4), 933–943 (2012)

    Google Scholar 

  59. M. Esmaeili, A. Salimi, C. Drebenstedt, M. Abbaszadeh, A.A. Bazzazi, Application of PCA, SVR, and ANFIS for modeling of rock fragmentation. Arab. J. Geosci. 8(9), 6881–6893 (2015)

    Google Scholar 

  60. E. Ghasemi, H.B. Amnieh, R. Bagherpour, Assessment of backbreak due to blasting operation in open pit mines: a case study. Environ. Earth Sci. 75(7), 1–11 (2016)

    Google Scholar 

  61. M. Khandelwal, M. Monjezi, Prediction of backbreak in open-pit blasting operations using the machine learning method. Rock Mech. rock Eng. 46(2), 389–396 (2013)

    Google Scholar 

  62. A. Sayadi, M. Monjezi, N. Talebi, M. Khandelwal, A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak. J. Rock Mech. Geotech. Eng. 5(4) (2013)

    Google Scholar 

  63. E. Ebrahimi, M. Monjezi, M.R. Khalesi, D.J. Armaghani, Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm. Bull. Eng. Geol. Environ. 75(1), 27–36 (2016)

    Google Scholar 

  64. R.S. Faradonbeh, D.J. Armaghani, M. Monjezi, E.T. Mohamad, Genetic programming and gene expression programming for flyrock assessment due to mine blasting. Int. J. Rock Mech. Min. Sci. 88, 254–264 (2016)

    Google Scholar 

  65. M. Hasanipanah, A. Shahnazar, H. Arab, S.B. Golzar, M. Amiri, Developing a new hybrid-AI model to predict blast-induced backbreak. Eng. Comput. 33(3) (2017)

    Google Scholar 

  66. M. Hasanipanah, H.B. Amnieh, Developing a new uncertain rule-based fuzzy approach for evaluating the blast-induced backbreak. Eng. Comput. (2020)

    Google Scholar 

  67. S. Kumar, A. Mishra, B. Choudhary, Prediction of back break in blasting using random decision trees. Eng. Comput. 1, 1–7 (2021)

    Google Scholar 

  68. J. Zhou, Y. Dai, M. Khandelwal, M. Monjezi, Z. Yu, Y. Qiu, Performance of hybrid SCA-RF and HHO-RF models for predicting backbreak in open-pit mine blasting operations. Nat. Resour. Res., 1–19 (2021)

    Google Scholar 

  69. A. Marto, M. Hajihassani, D. Jahed Armaghani, E. Tonnizam Mohamad, A.M. Makhtar, A novel approach for blast-induced flyrock prediction based on imperialist competitive algorithm and artificial neural network. Sci. World J. 2014 (2014)

    Google Scholar 

  70. H. Rad, M. Hasanipanah, M. Rezaei, A. Eghlim, Developing a least squares support vector machine for estimating the blast-induced flyrock. Eng. Comput. 34(4), 709–717 (2018)

    Google Scholar 

  71. H. Fattahi, M. Hasanipanah, An integrated approach of ANFIS-grasshopper optimization algorithm to approximate flyrock distance in mine blasting. Eng. Comput. 1, 1–13 (2021)

    Google Scholar 

  72. E.T. Mohamad, D.J. Armaghani, S.A. Noorani, R. Saad, S.V. Alvi, N.K. Abad, Prediction of flyrock in boulder blasting using artificial neural network. Electron. J. Geotech. Eng. 17, 2585–2595 (2012)

    Google Scholar 

  73. H. Amini, R. Gholami, M. Monjezi, S. Torabi, Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Comput. Appl. 21(8), 2077–2085 (2012)

    Google Scholar 

  74. P. Kalaivaani, T. Akila, M. Tahir, M. Ahmed, A. Surendar, A novel intelligent approach to simulate the blast-induced flyrock based on RFNN combined with PSO. Eng. Comput. 36(2), 435–442 (2019)

    Google Scholar 

  75. H. Guo, H. Nguyen, X.-N. Bui, D.J. Armaghani, A new technique to predict fly-rock in bench blasting based on an ensemble of support vector regression and GLMNET. Eng. Comput. 37, 421–435 (2021)

    Google Scholar 

  76. M. Monjezi, A. Bahrami, A. Varjani, Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks. Int. J. Rock Mech. Min. Sci. 47(3), 476–480 (2010)

    Google Scholar 

  77. M. Monjezi, A. Bahrami, A.Y. Varjani, A.R. Sayadi, Prediction and controlling of flyrock in blasting operation using artificial neural network. Arab. J. Geosci. 4(3–4), 421–425 (2011)

    Google Scholar 

  78. H. Amini, R. Gholami, M. Monjezi, S.R. Torabi, J. Zadhesh, Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Comput. Appl. 21(8), 2077–2085 (2011)

    Google Scholar 

  79. M. Monjezi, A. Mehrdanesh, A. Malek, M. Khandelwal, Evaluation of effect of blast design parameters on flyrock using artificial neural networks. Neural Comput. Appl. 23(2), 349–356 (2013)

    Google Scholar 

  80. E. Ghasemi, H. Amini, M. Ataei, R. Khalokakaei, Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation. Arab. J. Geosci. 7(1), 193–202 (2014)

    Google Scholar 

  81. D. Armaghani, E. Mohamad, M. Hajihassani, S. Abad, A. Marto, M. Moghaddam, Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods. Eng. Comput. 32(1), 109–121 (2016)

    Google Scholar 

  82. R.S. Faradonbeh, D.J. Armaghani, M. Monjezi, Development of a new model for predicting flyrock distance in quarry blasting: a genetic programming technique. Bull. Eng. Geol. Environ. 75(3), 993–1006 (2016)

    Google Scholar 

  83. R.S. Faradonbeh, D.J. Armaghani, H.B. Amnieh, E.T. Mohamad, Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm. Neural Comput. Appl., 1–13 (2016)

    Google Scholar 

  84. M. Koopialipoor, A. Fallah, D.J. Armaghani, A. Azizi, E.T. Mohamad, Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Eng. Comput. 35(1), 243–256 (2019)

    Google Scholar 

  85. H. Nguyen, X.-N. Bui, T. Nguyen-Thoi, P. Ragam, H. Moayedi, Toward a state-of-the-art of fly-rock prediction technology in open-pit mines using EANNs model. Appl. Sci. 9(21), 4554 (2019)

    Google Scholar 

  86. M. Wu, Q. Cai, T. Shang, Assessing the suitability of imperialist competitive algorithm for the predicting aims: an engineering case. Eng. Comput. 35(2), 627–636 (2019)

    Google Scholar 

  87. M. Hasanipanah, B. Keshtegar, D.-K. Thai, N.-T. Troung, An ANN-adaptive dynamical harmony search algorithm to approximate the flyrock resulting from blasting. Eng. Comput. (2020)

    Google Scholar 

  88. X. Lu, M. Hasanipanah, K. Brindhadevi, H.B. Amnieh, S. Khalafi, ORELM: a novel machine learning approach for prediction of flyrock in mine blasting. Nat. Resour. Res. 29(2), 641–654 (2020)

    Google Scholar 

  89. H. Rad, I. Bakhshayeshi, W. Jusoh, M. Tahir, L. Foong, Prediction of flyrock in mine blasting: a new computational intelligence approach. Nat. Resour. Res. 29(2), 609–623 (2019)

    Google Scholar 

  90. J. Zhou et al., Use of intelligent methods to design effective pattern parameters of mine blasting to minimize flyrock distance. Nat. Resour. Res. 29(2), 625–639 (2020)

    Google Scholar 

  91. H. Guo, H. Nguyen, X.-N. Bui, D.J. Armaghani, A new technique to predict fly-rock in bench blasting based on an ensemble of support vector regression and GLMNET. Eng. Comput. 37(1), 421–435 (2019)

    Google Scholar 

  92. M. Monjezi, H. Dehghani, J. Shakeri, A. Mehrdanesh, Optimization of prediction of flyrock using linear multivariate regression (LMR) and gene expression programming (GEP)—Topal Novin mine, Iran. Arab. J. Geosci. 14(15), 1–12 (2021)

    Google Scholar 

  93. H. Nguyen, X.N. Bui, Y. Choi, C.W. Lee, D.J. Armaghani, A novel combination of whale optimization algorithm and support vector machine with different kernel functions for prediction of blasting-induced fly-rock in quarry mines. Nat. Resour. Res. (2020)

    Google Scholar 

  94. J. Ye, M. Koopialipoor, J. Zhou, D.J. Armaghani, X. He, A novel combination of tree-based modeling and Monte Carlo simulation for assessing risk levels of flyrock induced by mine blasting. Nat. Resour. Res. 30(1), 225–243 (2021)

    Google Scholar 

  95. H. Dehghani, M. Pourzafar, M. Zadeh, Prediction and minimization of blast-induced flyrock using gene expression programming and cuckoo optimization algorithm. Environ. Earth Sci. 80(1), 1–17 (2021)

    Google Scholar 

  96. A. Richards, A. Moore, Flyrock control-by chance or design, in Proceedings of the Annual Conference on Explosives and Blasting Technique, vol. 1 (2004), pp. 335–348

    Google Scholar 

  97. T. Little, Flyrock risk, in Proceedings of EXPLO Conference, 3–4 September 2007 (2007), pp. 35–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Azizi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatawdekar, R.M., Armaghani, D.J., Azizi, A. (2021). Applications of AI and ML Techniques to Predict Backbreak and Flyrock Distance Resulting from Blasting. In: Environmental Issues of Blasting. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8237-7_3

Download citation

Publish with us

Policies and ethics