Skip to main content

Identification of Soil Resources Problems in European Russia

  • Chapter
  • First Online:
Global Degradation of Soil and Water Resources

Abstract

The European part of Russia is within several landscape zones beginning from the tundra on the north near the Arctic Ocean up to the sub-tropic in the south on the Black sea coast. The high variability of climatic conditions together with lithological features of parent rocks determine the huge variety of soil types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abakumov EV, Tomashunas VM, Lodygin ED et al (2015) Polycyclic aromatic hydrocarbons in insular and coastal soils of the Russian Arctic. Eurasian Soil Sci 48(12):1300–1305

    Article  CAS  Google Scholar 

  • Agapkina GI, Stolbova VV, Brodskiy ES, et al (2015) Predominant organic contaminants in arboretum soil of the botanical garden of Moscow State University: Report 2. Specific features of vertical distribution pattern of polycyclic aromatic hydrocarbons in the profile of urbo-soddy-podzolic soil. Moscow University Soil Science Bulletin, 70(3):122–129

    Google Scholar 

  • Aleksakhin RM (2009) Radioactive contamination as a type of soil degradation. Eurasian Soil Sci 42(12):1386–1397

    Article  Google Scholar 

  • Aleksakhin RM, Sanzharova NI, Fesenko SV (2006) Chernobyl’, sel’skoye khozyaystvo, okruzhayushchaya sreda Materialy k 20-y godovshchine avarii na Chernobyl’skoy atomnoy elketrostantsii v 1986 g. Chernobyl, agriculture, the environment. Materials for the 20th anniversary of the Chernobyl nuclear power plant accident in 1986. Obninsk: Izd.Vniishrae (In Russian).

    Google Scholar 

  • Alexakhin RM, Fesenko SV, Sanzharova NI (1996) Serious radiation accidents and the radiological impact on agriculture. Radiat Prot Dosim 64(1/2):37–42

    Article  CAS  Google Scholar 

  • Andreeva OV (2002) Kartograficheskaya ocenka opustynivaniya i degradatsii pochvennogo pokrova Rossiiskoy Federatsii. Mapping desertification/land degradation in Russian Federation. (Doctoral dissertation). Lomonosov Moscow State University, Moscow, Russian Federation (In Russian)

    Google Scholar 

  • Andreeva OV, Kust GS (1998) Application of desertification assessment methodology for soil degradation mapping in the Kalmyk Republic of the Russian Federation. Desertification Control Bulletin 32:2–13

    Google Scholar 

  • Andreeva OV, Kust GS (2006) Geograficheskoe rayonirovanie opustynivaniya poluzasushlivoy I zasushlivoq zon Rossii. Geographical zoning of desertification in arid and semi-arid zones of Russia. Doklady po ekologicheskomu pochvovedeniyu. Environ Soil Sci Rep 2(2):21–52 (In Russian)

    Google Scholar 

  • Belinskaya EA, Zykova GV, Yu SS et al (2015) Polycyclic aromatic hydrocarbons in the soils of Moscow. Eurasian Soil Sci 48(6):578–583

    Article  CAS  Google Scholar 

  • Belyaev VR, Golosov VN, Kislenko KS, et al (2008) Combining direct observations, modeling, and Cs tracer for evaluating individual event contribution to long-term sediment budgets. In: Sediment dynamics in changing environments, vol 325. IAHS Press Wallingford, UK, pp 114–122

    Google Scholar 

  • Bogolyubov SA, Minina EL (2002) Comment to the land code of the Russian Federation. NORMA Publ House, Moscow (In Russian)

    Google Scholar 

  • Butakov GP, Zorina EF, Nikol’skaya I I, et al (2000) Tendency of gully erosion development in European Russia. In: Chalov R (ed) Erosion and Fluvial processes, vol 3. Mosk Univ Publ House, Moscow, pp 52–62 (In Russian)

    Google Scholar 

  • Chernova OV, Beketskaya OV (2011) Permissible and background concentrations of pollutants in environmental regulation (heavy metals and other chemical elements). Eurasian Soil Sci 44(9):1008–1018

    Article  CAS  Google Scholar 

  • D’yachenko VV, Matasova I Y (2016) Regional clarkes of chemical elements in soils of Southern European Russia. Eurasian Soil Sci 49(10):1091–1098

    Google Scholar 

  • Dabakh EV, Kondakova LV, Domracheva LI et al (2013) Algological and mycological assessments of the soil state in the impact zone of the Kirovo-Chepetsk chemical plant. Eurasian Soil Sci 46(2):168–176

    Article  Google Scholar 

  • De Cort M, Dubois G, Izrael Y (1998) European Atlas of Caesium Deposition on Europe after the Chernobyl Accident. Brussels, Moscow, Kiev, Minsk: European Commission, EC/IGCE, Roshydromet (RU), Minchernobyl (UA), Belhydromet (BY)

    Google Scholar 

  • Drozdov OA, Vasil’ev VA, Kobysheva NV (1989) Klimatologiya: Uchebnik dlya vuzov. Climatology: a textbook for high schools. Gidrometeoizdat, Leningrad (In Russian)

    Google Scholar 

  • Dymov AA, Kaverin DA, Gabov DN (2013) Properties of soils and soil-like bodies in the Vorkuta area. Eurasian Soil Sci 46(2):217–225

    Article  Google Scholar 

  • Evdokimova GA, Kalabin GV, Mozgova NP (2011) Contents and toxicity of heavy metals in soils of the zone affected by aerial emissions from the Severonikel Enterprise. Eurasian Soil Sci 44(2):237–244

    Article  CAS  Google Scholar 

  • Fesenko SV, Alexakhin RM, Balonov MI (2007) An extended review of twenty years of countermeasures used in agriculture after the Chernobyl accident. Sci Total Environ 383(1–3):24

    Google Scholar 

  • Gennadiev AN, Pikovskii YuI, Smirnova MA et al (2016) Hydrocarbon status of natural soils in taiga landscapes (southern part of Ustyanskoe Plateau). Vestnik Moskovskogo Unviersiteta. Seriya 5. Geografiya 3:90–97 (In Russian)

    Google Scholar 

  • Gerasimenko VA, Rozhkov AG (1976) Extreme rain storm in Central Chernozem region and Erosion Processes. Zacshita Pochv Ot Erozii 4(11):13–18 (In Russian)

    Google Scholar 

  • Golosov VN, Panin AV, Markelov MV (1999) Chernobyl 137Cs redistribution in the small basin of the Lokna river, Central Russia. Physics and Chemistry of the Earth, 24(10): 881–885.

    Google Scholar 

  • GolosovV, Belyaev V (2013) The history and assessment of effectiveness of soil erosion control measures deployed in Russia. Int Soil Water Conserv Res 1(2):26–35

    Google Scholar 

  • Golosov VN, Belyaev VR, Markelov MV, et al (2010) Overbank sedimentation rates on the floodplains of small rivers in central European Russia. In: Sediment dynamics for a changing future, IAHS Publ., Wallingford, UK: Copernicus Publications, 337, pp 129–136

    Google Scholar 

  • Golosov V, Gusarov A, Litvin L, et al (2017) Evaluation of soil erosion rates in the southern half of the Russian Plain: methodology and initial results. In: Collins A, Stone M, Horowitz A, Foster I (eds) Integrating monitoring and modeling for sediment dynamics, Proc. IAHS, vol 375, pp 23–27. Okehampton, UK, Copernicus Publications

    Google Scholar 

  • Gorbov SN, Bezuglova OS, Varduni TV et al (2015) Genotoxicity and contamination of natural and anthropogenically transformed soils of the city of rostov-on-don with heavy metals. Eurasian Soil Sci 48(12):1383–1392

    Article  CAS  Google Scholar 

  • Kasimov NS (1995) Ekogeokhimiya gorodskikh landshaftov. Ecogeochemistry of urban landscapes. Moscow: Izd. Moscow Univ (In Russian)

    Google Scholar 

  • Kasimov NS, Kosheleva NE, Nikiforova EM et al (2017) Benzo[a]pyrene in urban environments of eastern Moscow: Pollution levels and critical loads. Atmos Chem Phys 17:2217–2227

    Article  CAS  Google Scholar 

  • Konoplev AV, Konopleva IV (1999) Parameterisation of Cs-137 soil-plant transfer through key soil characteristics. Radiation Biology. Radioecology 39(4):455–461 (In Russian)

    Google Scholar 

  • Koptsik GN, Koptsik SV, Smirnova IE (2014) Efficiency of remediation of technogenic barrens around the Pechenganikel works in the Kola subarctic. Eurasian Soil Sci 47(5):519–528

    Article  Google Scholar 

  • Kosov BF, Konstantinova GS, Gubanov MN (1970) Construction of gully length and gully density maps for USSR territory. Vestnik Moskovskogo Unviersiteta. Seriya 5. Geografiya 2:100–105 (In Russian)

    Google Scholar 

  • Kovda VA, Kust GS, Rozanov BG (1998) Aridity and soil salinization risks. World map (1∶80000000). In: Kotlyakov V M. Resources and Environment: World Atlas, Vienna-Moscow, pp 101–102

    Google Scholar 

  • Kozmenko AS (1954) Principles of Anti-erosion Land-improvement. Sel’skhozizdat, Moscow (In Russian)

    Google Scholar 

  • Krokhalev FS (1960) On agricultural systems. Sel’skhozizdat, Moscow (In Russian)

    Google Scholar 

  • Kust G, Andreeva O (2013) Assessment and geographical zoning of desertification in Russian Federation. In: Ammann WJ (ed) Economic assessment of desertification, sustainable land management and resilience of arid, semi-arid and dry sub-humid Areas Davos. Switzerland, UNCCD, pp 343–350

    Google Scholar 

  • Kust GS, Andreeva OV, Dobrynin DV (2011) Desertification assessment and mapping in the Russian federation. Arid Ecosyst 1(1):14–28

    Article  Google Scholar 

  • Kust GS, Glazovskii NF, Andreeva OV, et al (2002) Desertification, droughts, and degradation of soils. In: Dobrovolskiy GV (ed) Degradatsiya i okhrana pochv Degradation and Conservation of Soils. Moscow: Mosk Gos Univ., pp 551–600

    Google Scholar 

  • Kuzmenkova NV, Vorobyova TA (2015) Landscape-geochemical mapping of territory in the north-west of Kola peninsula. J Geochem Exploration 154:194–199

    Article  CAS  Google Scholar 

  • Larionov GA (1993) Water and wind erosion: The main principles and quantitative estimates. Mosk Univ Publ House, Moscow (In Russian)

    Google Scholar 

  • Linnik VG, Saveliev AA, Govorun AP (2007) Spatial variability and topographic factors of Cs-137 soil contamination at a field scale. Int J Ecology and Development 8(7):8–25

    Google Scholar 

  • Lipatov DN, Manakhov DV, Vezhlivtseva LA (2003) Migration of radiocesium in lea and plowed soils of agricultural landscapes in Tula region. Moscow Univ Soil Sci Bull 58(3):43–51

    Google Scholar 

  • Litvin LF, Zorina YF, Sidorchuk AY et al (2003) Erosion and sedimentation on the Russian Plain, Part 1: Contemporary processes. Hydrol Process 17(16):3335–3346

    Article  Google Scholar 

  • Litvin LF, Kiryukhina ZP, Krasnov SF et al (2017) Geography of agricultural erosion dynamic on European part of Russia. Eurasian Soil Sciences 50(9):934–946

    Google Scholar 

  • Lyanguzova IV, Goldvirt DK, Fadeeva IK (2016) Spatiotemporal dynamics of the pollution of Al–Fe-Humus podzols in the impact zone of a nonferrous metallurgical plant. Eurasian Soil Sci 49(10):189–1203

    Google Scholar 

  • Makarov OA, Makarov AA (2016) Approaches to assessing the risk of chemical contamination of urban soils. Eurasian Soil Sci 49(9):1075–1084

    Article  CAS  Google Scholar 

  • Masal’sky V (1897) Ovragi chernozemnoy polosy Rossii, ikh rasprostraneniye, razvitiye i deyatel’nost’.Gullies in the Russian Chernozem Belt: their distribution, development, and rate of growth. St. Petersburg: Izd. Kirchbauma (In Russian)

    Google Scholar 

  • Medvedev IF, Shabaev AI (1991) Erosion processes on arable lands of Privolzhskaya upland. Pochvovedenie 11:61–69 (In Russian)

    Google Scholar 

  • Medvedeva RA, Golosov VN, Yermolaev OP (2018) Spatial-temporal assessment of gully erosion in zone of intensive agriculture, European part of Russia. Geogr Nat Resour 39(3):204–211

    Article  Google Scholar 

  • Minkina TM, Motuzova GV, Mandzhieva SS et al (2013) Fractional and group composition of the Mn, Cr, Ni, and Cd compounds in the soils of technogenic landscapes in the impact zone of the Novocherkassk power station. Eurasian Soil Sci 46(4):375–385

    Article  CAS  Google Scholar 

  • Minprirody Rossii (2016a) O sostoyanii i ob okhrane okruzhayushchey sredy Rossiyskoy Federatsii v 2015 godu. Gosudarstvennyy doklad.On the state and on the protection of the environment of the Russian Federation in 2015. State report. http://www.mnr.gov.ru/docs/o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii, http_new_mnr_gov_ru_docs_gosudarstvennye_doklady/ (In Russian). Retrieved on April 8, 2019

  • Minprirody Rossii (2016b) Zagryazneniye pochv Rossiyskoy Federatsii toksikantami promyshlennogo proiskhozhdeniya. Yezhegodnik.Pollution of the Russian Federation soils by toxicants of industrial origin. Yearbook. http://www.rpatyphoon.ru/upload/medialibrary/827/ezheg_tpp_2015.pdf (In Russian)

  • Moryakova LA (1988) Dating of the main periods of gully erosion in the south of sodpodzol soil area of the European USSR. In: Myagkov S (ed) Natural Hazards. VINITI Publ, Moscow, pp 6455-V87 (In Russian)

    Google Scholar 

  • Mosecomonitoring Service (2017) Total pollution. Soil pollution in the city of Moscow with benz(a)pyrene and petroleum products. http://vds6693.ht-test.ru/soil/zagryaz/sum/ and http://vds6693.ht-test.ru/soil/zagryaz/piren/ (In Russian). Retrieved on September 7, 2017.

  • Nikiforova EM, Kosheleva NE (2011) Polycyclic aromatic hydrocarbons in urban soils (Moscow. Eastern District). Eurasian Soil Sci 44(9):1018–1030

    Google Scholar 

  • Pikovskii YI, Gennadiev AN, Kovach RG (2017) Hydrocarbon status of soils in the asphalt deposit area (Samara bend). Eurasian Soil Sci 50(4):412–421

    Article  Google Scholar 

  • Plekhanova IO (2017) Self-purification of agrosoddy-podzolic sandy loamy soils fertilized with sewage sludge. Eurasian Soil Sci 50(4):491–497

    Article  CAS  Google Scholar 

  • Poluektov EV (1984) Soil erosion in Don Region and measures of struggle with it. Rostov University, Rostov-na-Dony (In Russian)

    Google Scholar 

  • Puchkov VA, Bolshov LA (2016) Rossiyskiy natsional’nyy doklad 30 let Chernobyl’skoy avarii: Itogi i perspektivy preodoleniya yeye posledstviy v Rossii. 1986–2016.Russian National Report 30 Years of the Chernobyl Accident: Results and Prospects for Overcoming its Consequences in Russia. 1986–2016 (In Russian)

    Google Scholar 

  • Ratnikov AN, Aleksakhin RM, Zhigareva TL (1992) Effectiveness of a complex of agro-meliorative measures in reducing the accumulation of 137Cs in crop production in the zone of the Chernobyl disaster. Agrochemistry 9:112–116 (In Russian)

    Google Scholar 

  • Rosgidromet (2016) Sostoyaniye zagryazneniya pestitsidami ob“yektov prirodnoy sredy Rossiyskoy Federatsii v 2015 godu. Yezhegodnik. The state of pesticide contamination of the environment of the Russian Federation in 2015. Yearbook. http://www.rpatyphoon.ru/upload/medialibrary/517/ezheg_pest_2015.pdf (In Russian). Retrieved on September 11, 2017

  • Rosgidromet (2017a) Obzor sostoyaniya i zagryazneniya okruzhayushchey sredy v Rossiyskoy Federatsii za 2016 god. Overview of the state and pollution of the environment in the Russian Federation for 2016. http://downloads.igce.ru/publications/reviews/review2016.pdf (In Russian). Retrieved on September 11, 2017

  • Rosgidromet (2017b) Tendentsii i dinamika sostoyaniya i zagryazneniya okruzhayushchey sredy v Rossiyskoy Federatsii po dannym mnogoletnego monitoringa za posledniye desyat’ let. Analiticheskiy obzor.Tendencies and dynamics of the state and pollution of the environment in the Russian Federation according to the data of long-term monitoring over the last ten years. Analytical review. http://www.igce.ru/uploads/tendencies_2017.pdf (In Russian). Retrieved on September 11, 2017

  • Rospotrebnadzor (2006) Predel’no dopustimyye kontsentratsii (PDK) khimicheskikh veshchestvv pochve. Gigiyenicheskiye normativy. GN 2.1.7.2041–06.The maximum permissible concentration (MPC) of chemicals in the soil. Hygienic standards. GN 2.1.7.2041-06. http://files.stroyinf.ru/data2/1/4293850/4293850511.htm (In Russian). Retrieved on July 16, 2017

  • Rospotrebnadzor (2009) Oriyentirovochno dopustimyye kontsentratsii (ODK) khimicheskikh veshchestv v pochve. Gigiyenicheskiye normativy. GN 2.1.7.2511-09.Tentatively permissible concentrations (TPC) of chemicals in soil. Hygienic standards. GN 2.1.7.2511-09. http://base.garant.ru/12167919/ (In Russian). Retrieved on July 16, 2017

  • Rospotrebnadzor (2017) O sostoyanii sanitarno-epidemiol-ogicheskogo blagopoluchiya naseleniya v Rossiyskoy Federatsii v 2016 godu: Gosudarstvennyy doklad. On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2016: State report. http://rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=8345 (In Russian). Retrieved on September 5, 2017

  • Rosreestr (2016) Gosudarstvennyy (natsional’nyy) doklad o sostoyanii i ispol’zovanii zemel’ v Rossiyskoy Federatsii v 2015 godu.State (national) report on the status and use of land in the Russian Federation in 2015. https://rosreestr.ru/site/activity/gosudarstvennoe-upravlenie-v-sfere-ispolzovaniya-i-okhrany-zemel/gosudarstvennyy-monitoring-zemel/sostoyanie-zemel-rossii/gosudarstvennyy-natsionalnyy-doklad-o-sostoyanii-i-ispolzovanii-zemel-v-rossiyskoy-federatsii/ (In Russian). Retrieved on November 28, 2017

  • Rosstat (2016) Regiony Rossii. Sotsial’no-ekonomicheskiye pokazateli: 2016. Statisticheskiy sbornik. Regions of Russia. Socio-economic indicators: 2016. Statistical compilation. http://www.gks.ru/bgd/regl/b16_14p/Main.htm (in Russian). Retrieved on September 14, 2017

  • Rysin I, Grigoriev I, Zaytseva M, et al (2017) Long-term monitoring of gully erosion in Udmurt Republic, Russia. In: Collins A, Stone M, Horowitz A, et al. Integrating monitoring and modeling for sediment dynamics, ICCE Symposium 2016. Okehampton, UK, 11–15 July 2017. Proceeding IAHS, 375:1–4. UK: Copernicus Publications

    Google Scholar 

  • Sanzharova NI, Fesenko SV, Kotik VA et al (1996) Behaviour of radionuclides in meadows and efficiency of countermeasures. Radiat Prot Dosimetry 64(1/2):43–48

    Article  CAS  Google Scholar 

  • Sidorchuk AY, Golosov VN (2003) The history of erosion and sedimentation on the Russian Plain during the period of intensive agriculture. Hydrol Process 17(16):3347–3358

    Article  Google Scholar 

  • Sobolev SS (1948) The Development of Erosion Processes in the European USSR, and the Struggle against Them, 1. Moscow and Leningrad: Izd. AN SSSR (In Russian)

    Google Scholar 

  • Sushkova SN, Minkina TM, Mandzhieva SS et al (2017) Dynamics of benzo[α]pyrene accumulation in soils under the influence of aerotechnogenic emissions. Eurasian Soil Sci 50(1):95–105

    Article  CAS  Google Scholar 

  • Tishkina EV, Paramonova TA, Krasnov SF et al (2010) Estimation of soil pollution by the main ecotoxicants in the Vorob’evy gory nature park. Moscow University Soil Science Bulletin 65(1):39–45

    Article  Google Scholar 

  • Tsibart AS, Gennadiev AN, Koshovskii TS et al (2016) Polycyclic aromatic hydrocarbons in pyrogenic soils of swampy landscapes of the meshchera lowland. Eurasian Soil Sci 49(3):285–304

    Article  CAS  Google Scholar 

  • United Nations Document (1977) Desertification map of the world. FAO; WMO, New York

    Google Scholar 

  • United Nations Document (1994) United Nations Convention to Combat Desertification in those countries experiencing serious drought and/or desertification, particularly in Africa. http://www2.unccd.int/sites/default/files/relevant-links/2017-01/UNCCD_Convention_ENG_0.pdf. Retrieved on November 16, 2018

  • Vasenev VI, Ananyeva ND, Makarov OA (2012) Specific features of the ecological functioning of urban soils in Moscow and Moscow Oblast. Eurasian Soil Sci 45(2):194–205

    Article  CAS  Google Scholar 

  • Vinogradov AP (1962) Srednee soderzhanie himicheskih jelementov v glavnyh tipah izverzhennyh porod zemnoj kory. The average content of chemical elements in the main types of igneous rocks of the Earth’s crust. Geokhimiya 7:555–571 (In Russian)

    Google Scholar 

  • Vlasov DV, Kasimov NS (2016) Geochemical anomalies of metals and metallouds in landscape components of the Eastern Part of Moscow: Parageneses of chemical elements and typology. Vestnik Moskovskogo Unviersiteta. Seriya 5. Geografiya 3:50–57 (In Russian)

    Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting Rainfall Erosion Losses. Agric. Handbook No. 537. Dept. Agric.: Washington D.C., U.S.

    Google Scholar 

  • Yakovleva EV, Beznosikov VA, Kondratenok BM et al (2012) Bioaccumulation of polycyclic aromatic hydrocarbons in the soil-plant systems of the Northern-Taiga Biocenoses. Eurasian Soil Sci 45(3):309–320

    Article  CAS  Google Scholar 

  • Yakovleva EV, Gabov DN, Beznosikov VA et al (2016) Accumulation of polycyclic aromatic hydrocarbons in soils and plants of the tundra zone under the impact of coal-mining industry. Eurasian Soil Sci 49(11):1319–1326

    Article  CAS  Google Scholar 

  • Zamotaev IV, Ivanov IV, Mikheev PV et al (2017) Transformation and contamination of soils in iron ore mining areas (a Review). Eurasian Soil Sci 50(3):359–304

    Article  CAS  Google Scholar 

  • Zhidkin AP, Gennadiev AN, Koshovski TS (2017) Input and behavior of polycyclic aromatic hydrocarbons in arable, fallow, and forest soils of the taiga zone (Tver oblast). Eurasian Soil Sci 50(3):296–304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin N. Golosov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Golosov, V.N., Paramonova, T., Kust, G., Litvin, L., Andreeva, O. (2022). Identification of Soil Resources Problems in European Russia. In: Li, R., Napier, T.L., El-Swaify, S.A., Sabir, M., Rienzi, E. (eds) Global Degradation of Soil and Water Resources. Springer, Singapore. https://doi.org/10.1007/978-981-16-7916-2_29

Download citation

Publish with us

Policies and ethics