Skip to main content

System Reliability and New Measure of Robustness of Truss Structure in Progressive Collapse

  • Conference paper
  • First Online:
Recent Advances in Computational and Experimental Mechanics, Vol II

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1302 Accesses

Abstract

Progressive collapse is an important system failure mode for structures. It may be initiated by local damage due to accidental loads or extreme design loads. It is necessary to find out the robustness of a structure against progressive collapse. The robustness index should (i) give a measure of how well a structure can absorb the initial damage without collapsing, (ii) account for uncertainties in loads, material properties and models, and (iii) help compare different designs and repair strategies. Material and geometric nonlinearities can play an important role in progressive collapse. This paper applies a new measure of robustness for coherent systems on an indeterminate truss structure subject to progressive collapse. Robustness corresponding to different member losses are compared which can in turn be used to select individual members for strengthening and thus improve system reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ASCE Standard 7–16 Minimum Design Loads and Associated criteria for Buildings and Other Structures (2017)

    Google Scholar 

  2. Baker JW, Schubert M, Faber MH (2008) On the assessment of robustness. Struct Saf 30:253–267

    Article  Google Scholar 

  3. Bennett RM (1985) Reliability analysis of frame structure with brittle components. Struct Saf 2:281–290

    Article  Google Scholar 

  4. Brett C, Young L (2013) Assessment of robustness of structures: Current state of research. Front Struct Civ Eng 7(4):356–368

    Google Scholar 

  5. Bhattacharya B (2020) A reliability based measure of structural robustness for coherent systems. Structural Safety 89(2021):102050

    Google Scholar 

  6. Chopra K (2019) Dynamics of structure

    Google Scholar 

  7. Čizmar a D, Kirkegaardb PH, Sørensenb JD, Rajčić V (2011) Reliability based robustness analysis for a Croatian sports hall. Eng Struct 33:3118–3124

    Google Scholar 

  8. Edgar V Leyendecker, Eric FP Burnett (1976) The incidence of abnormal loading in residential buildings. Washington DC, 20234

    Google Scholar 

  9. Ellingwood B, Leyendecker EV, Yao JT (1983) Probability of failure from abnormal load. J Struct Eng 109(4):875–890

    Article  Google Scholar 

  10. Frangopol DM, Curley JP (1987) Effects of damage and redundancy on structural reliability. J Struct Eng 113(7):1533–1549

    Article  Google Scholar 

  11. Fu G, Frangopol DM (1990) Balancing weight, system reliability and redundancy in a multiobjetive optimization framework. Structural Safety 7:165–175

    Google Scholar 

  12. GSA Alternate Path Analysis and Design Guidelines for Progressive Collapse Resistance (2013)

    Google Scholar 

  13. Imai DM Frangopol (2000) Geometrically nonlinear finite element reliability analysis of structural systems. Computers and Structures, pp. 677–691

    Google Scholar 

  14. Joint Committee on Structural Safety, Probabilistic model code (2000)

    Google Scholar 

  15. Karamchandani, Structural system reliability analysis methods, Department of civil and environment engineering Standford University (1987)

    Google Scholar 

  16. Lee YJ, Song J. Risk analysis of fatigue induced sequential failures by branch and bound method employing system reliability bounds. J Eng Mech 137(12):807–821

    Google Scholar 

  17. Maes MA, Fritzsons KE, Glowienka S (2006) Risk-based indicators of structural system robustness. Struct Eng Int 6(2):101–107

    Article  Google Scholar 

  18. Melchers RE, Beck AT (2017) Structural reliability analysis and prediction

    Google Scholar 

  19. Nafday AM (2008) System safety performance metrics for skeletal structures. J Struct Eng 134(3):499–504

    Article  Google Scholar 

  20. Starossek U, Haberland M (2011) Approaches to measure of structural robustness. Struct Infrastruct Eng 7:625–631

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendices

\({C}_{i}\): Strength of the ith member, \({\sigma }_{i}^{j}\): Stress of the i-th member after j-th member failure. Now the sequence

\(F_{{11}}^{{9 - 8}} \; = \;\{ Member\;8\;fails\;2nd\; \cap \;9\;fails\;1st\;|\;Member\;11\;has\;failed\}\)

$$\begin{aligned} & \{ (C_{1} > \sigma _{1}^{{11 - 9}} ,\;C_{2} > \sigma _{2}^{{11 - 9}} ,\;C_{3} > \sigma _{3}^{{11 - 9}} ,\;C_{4} > \sigma _{4}^{{11 - 9}} ,\;C_{5} > \sigma _{5}^{{11 - 9}} ,\; \\ & C_{6} > \sigma _{6}^{{11 - 9}} ,\;C_{7} > \sigma _{7}^{{11 - 9}} ,\;C_{8} > \sigma _{8}^{{11 - 9}} ,\;C_{{10}} > \sigma _{{10}}^{{11 - 9}} ) \\ & \cap \;(C_{1} > \sigma _{1}^{{11}} ,\;C_{2} > \sigma _{2}^{{11}} ,\;C_{3} > \sigma _{3}^{{11}} ,\;C_{4} > \sigma _{4}^{{11}} ,\;C_{5} > \sigma _{5}^{{11}} ,\;C6 > \sigma _{6}^{{11}} ,\; \\ & C_{7} > \sigma _{7}^{{11}} ,\;C_{8} > \sigma _{8}^{{11}} ,\;C_{9} < \sigma _{9}^{{11}} ,\;C_{{10}} > \sigma _{{10}}^{{11}} )\} \\ \end{aligned}$$
$$\begin{aligned} & = \;\{ (C_{1} > \max (\sigma _{1}^{{11 - 9}} ,\;\sigma _{1}^{{11}} )),\;(C_{2} > \max (\sigma _{2}^{{11 - 9}} ,\;\sigma _{2}^{{11}} )),\; \\ & (C_{3} > \max (\sigma _{3}^{{11 - 9}} ,\;\sigma _{3}^{{11}} )), (C_{4} > \max (\sigma _{4}^{{11 - 9}} ,\;\sigma _{4}^{{11}} )),\;\\ & (C_{5} > \max (\sigma _{5}^{{11 - 9}} ,\;\sigma _{5}^{{11}} )),\;(C_{6} > \max (\sigma _{6}^{{11 - 9}} ,\;\sigma _{3}^{{11}} )), \\ & (C_{7} > \max (\sigma _{7}^{{11 - 9}} ,\;\sigma _{7}^{{11}} )),\;(\sigma _{8}^{{11}} < C_{8} < \sigma _{8}^{{11 - 9}} ),\;\\ & (C_{9} < \sigma _{9}^{{11}} ),\;(C_{{10}} > \;\max (\sigma _{{1o}}^{{11 - 9}} ,\;\sigma _{{10}}^{{11}} ))\} \\ \end{aligned} .$$
$$\begin{aligned} & = \;P\{ (C_{1} > \max (\sigma _{1}^{{11 - 9}} ,\;\sigma _{1}^{{11}} )),\;(C_{2} > \max (\sigma _{2}^{{11 - 9}} ,\;\sigma _{2}^{{11}} )),\;\\ & (C_{3} > \max (\sigma _{3}^{{11 - 9}} ,\;\sigma _{3}^{{11}} )), (C_{4} > \max (\sigma _{4}^{{11 - 9}} ,\;\sigma _{4}^{{11}} )),\; \\ & (C_{5} > \max (\sigma _{5}^{{11 - 9}} ,\;\sigma _{5}^{{11}} )),\; (C_{6} > \max (\sigma _{6}^{{11 - 9}} ,\;\sigma _{3}^{{11}} )), \\ & (C_{7} > \max (\sigma _{7}^{{11 - 9}} ,\;\sigma _{7}^{{11}} )),\;(\sigma _{8}^{{11}} < C_{8} < \sigma _{8}^{{11 - 9}} ),\;\\ & (C_{9} < \sigma _{9}^{{11}} ),\;(C_{{10}} > \;\max (\sigma _{{1o}}^{{11 - 9}} ,\;\sigma _{{10}}^{{11}} ))\} \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baidya, M., Bhattacharya, B. (2022). System Reliability and New Measure of Robustness of Truss Structure in Progressive Collapse. In: Maiti, D.K., et al. Recent Advances in Computational and Experimental Mechanics, Vol II. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-6490-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6490-8_50

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6489-2

  • Online ISBN: 978-981-16-6490-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics