Skip to main content

Herbal Immunomodulators and COVID-19

  • Chapter
  • First Online:
  • 476 Accesses

Abstract

Novel Coronavirus (COVID-19) globally affects the people’s health and social life, and it became a challenging task for pharma and research communities. Several medical research or scientific institutions are trying to develop potent antiviral vaccine/drugs against the coronavirus. There are urgent needs to explore all the possibilities against the pandemic disease, and, among that, it is well cited in many literature that Ayurveda has an important role since ancient time against many viral diseases. The Ayurvedic medicinal system is mainly based on herbal formulations, which boost the immune system or work synergistically to protect our body against invading harmfull micro-organisms. The herbal medicinal system has identified several herbs used in various home remedies. It is thought to effectively fight corona and improve health immunity; the current chapter describes the therapeutics of plants Phyllanthus emblica, Azadirachta indica, and Swertia chirata in the current scenario against COVID-19.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ademokun AA, Dunn-Walters D (2001) Immune responses primary and secondary. In: e LS. Wiley, Chichester

    Google Scholar 

  • Adil MD, Kaiser P, Satti NK, Zargar AM, Vishwakarma RA, Tasduq SA (2010) Effect of Emblica officinalis (fruit) against UVB-induced photo-aging in human skin fibroblasts. J Ethnopharmacol 132:109–114

    Article  PubMed  Google Scholar 

  • Akhtar MS, Swamy MK, Sinniah UR (2019) Natural bio-active compounds, 1st edn. XVIII, p 124

    Google Scholar 

  • Andhavarapu S, Roy V (2013) Immunomodulatory drugs in multiple myeloma. Expert Rev Hematol 6:69–82

    Article  CAS  PubMed  Google Scholar 

  • Arora N, Koul A, Bansal MP (2011) Chemopreventive activity of Azadirachta indica on two-stage skin carcinogenesis in murine model. Phytother Res 25:408–416

    CAS  PubMed  Google Scholar 

  • Arumugam A, Agullo P, Boopalan T, Nandy S, Lopez R, Gutierrez C (2014) Neem leaf extract inhibits mammary carcinogenesis by altering cell proliferation, apoptosis, and angiogenesis. Cancer Biol Ther 15:26–34

    Article  PubMed  Google Scholar 

  • Bandyopadhyay U, Biswas K, Sengupta A et al (2004) Clinical studies on the effect of neem (Azadirachta indica) bark extract on gastric secretion and gastroduodenal ulcer. Life Sci 75:2867–2878

    Article  CAS  PubMed  Google Scholar 

  • Banik A, Sajib E, Deb A et al (2020) Identification of potential phytochemical inhibitors as promising therapeutics against SARS-CoV-2 and molecular dynamics simulation. ChemRxiv

    Google Scholar 

  • Barstow M, Deepu S (2018) Neem. IUCN red list of threatened species

    Google Scholar 

  • Bassetti M, Vena A, Giacobbe DR (2020) The novel Chinese coronavirus (2019-nCoV) infections challenges for fighting the storm. Eur J Clin Invest 50:e13209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter D (2007) Active and passive immunity, vaccine types, excipients and licensing. Occup Med (Lond) 57:552–556

    Article  Google Scholar 

  • Ben-Efraim S (2001) Immunomodulating anticancer alkylating drugs: targets and mechanisms of activity. Curr Drug Targets 2:197–212

    Article  CAS  PubMed  Google Scholar 

  • Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 82:1336–1345

    CAS  Google Scholar 

  • Brahmachari G (2004) Neem—an omnipotent plant a retrospection. Chembiochem 5:408–421

    Article  CAS  PubMed  Google Scholar 

  • Calixto JB, Santos AR, Cechinel Filho V, Yunes RA (1998) A review of the plants of the genus Phyllanthus: their chemistry, pharmacology, and therapeutic potential. Med Res Rev 18:225–258

    Article  CAS  PubMed  Google Scholar 

  • Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R (2021) Features, evaluation, and treatment of coronavirus (COVID-19). In: StatPearls. StatPearls Publishing

    Google Scholar 

  • Chakraborty C, Sharma AR, Bhattacharya M, Sharma G, Lee SS (2020) The 2019 novel coronavirus disease (COVID-19) pandemic: a zoonotic prospective. Asian Pac J Trop Med 13:242–246

    Article  CAS  Google Scholar 

  • Chowdhury S, Mukherjee T, Mukhopadhyay R, Mukherjee B, Sengupta S, Chattopadhyay S, Jaisankar P, Roy S, Majumder HK (2012) The lignan niranthin poisons Leishmania donovani topoisomerase IB and favours a Th1 immune response in mice. EMBO Mol Med 4:1126–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke CB (1885) Verbenaceae. In: Hooker JD (ed) The flora of British India, vol IV. L. Reeve and Co., London

    Google Scholar 

  • Compact Oxford English Dictionary (2013) Neem, 679, Third edition 2008 reprinted with corrections. Oxford University Press

    Google Scholar 

  • Cynthia L, Qiongqiong Z, Yingzhu L et al (2020) Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci 6:315–331

    Article  CAS  Google Scholar 

  • Dar A, Faizi S, Naqvi S, Roome T, Zikr-ur-Rehman S, Ali M, Firdous S, Moin ST (2005) Analgesic and anti-oxidant activity of mangiferin and its derivatives: the structure activity relationship. Biol Pharm Bull 28:596–600

    Article  CAS  PubMed  Google Scholar 

  • Deng J-G, Hou X-T, Zhang T-J, Bai G, Hao E-W, Chu JJH, Wattanathorn J, Sirisa-Ard P, Ee C'n S, Low J, Liu C-X (2020) Carry forward advantages of traditional medicines in prevention and control of outbreak of COVID-19 pandemic. Chin Herb Med 12:207–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Dilipkumar P, Nayak AK (2021) Bioactive natural products for pharmaceutical applications, 1st edn. XXVIII, Springer Science and Business Media LLC, pp 341–862

    Google Scholar 

  • Duang XY, Wang Q, Zhou XD, Huang DM (2011) Mangiferin: a possible strategy for periodontal disease to therapy. Med Hypotheses 76:486–488

    Article  CAS  PubMed  Google Scholar 

  • Durrani FR, Chand N, Jan M, Sultan A, Durrani Z, Akhtar S (2008) Immunomodulatory and growth promoting effects of neem leaves infusion in broiler chicks. Sarhad J Agric 24:655–659

    Google Scholar 

  • Ebong P. E., Atangwho I. J., Eyong E. U., Egbung G. E (2008) The antidiabetic efficacy of combined extracts from two continental plants: Azadirachta indica (A. Juss) (Neem) and Vernonia amygdalina (Del.) (African Bitter Leaf). Am J Biochem Biotech 4:239–244

    Google Scholar 

  • Encarta World English Dictionary (1999) Neem 1210. St. Martin’s Press, New York

    Google Scholar 

  • Finlay BB, Hancock RE (2004) Can innate immunity be enhanced to treat microbial infections. Nat Rev Microbiol 2:497–504

    Article  CAS  PubMed  Google Scholar 

  • Gallagher TM, Buchmeier MJ (2001) Coronavirus spike proteins in viral entry and pathogenesis. Virology 279:371–374

    Article  CAS  PubMed  Google Scholar 

  • Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Tissot Dupont H, Honoré S, Colson P, Chabrière E, La Scola B, Rolain JM, Brouqui P, Raoult D (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 56:105949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaisas MM, Shaikh SA, Despande AD (2009) Evaluation of the immunomodulatory activity of ethanolic extract of the stem bark of Bauhinia variegata Linn. Int J Green Pharm 27:70–74

    Article  Google Scholar 

  • Govindachari TR, Suresh G, Gopalakrishnan G, Banumathy B, Masilamani S (1998) Identification of antifungal compounds from the seed oil of Azadirachta indica. Phytoparasitica 26:109–116

    Article  CAS  Google Scholar 

  • Guha S, Ghosal S, Chattopadhyay U (1996) Antitumor, immunomodulatory and anti-HIV effect of mangiferin, a naturally occurring glucosylxanthone. Chemotherapy 42:443–451

    Article  CAS  PubMed  Google Scholar 

  • Guo YR, Cao QD, Hong ZS (2020) The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Mil Med Res 7(11)

    Google Scholar 

  • Gupta RC, Srivastava A, Lall R (2019) Nutraceuticals in veterinary medicine. Springer 120

    Google Scholar 

  • Harikrishnan H, Jantan I, Haque MA, Kumolosasi E (2018a) Phyllanthin from Phyllanthus amarus inhibits LPS-induced proinflammatory responses in U937 macrophages via downregulation of NF-κB/MAPK/PI3K-Akt signaling pathways. Phytother Res 32:2510–2519

    Article  CAS  PubMed  Google Scholar 

  • Harikrishnan H, Jantan I, Haque MA, Kumolosasi E (2018b) Anti-inflammatory effects of Phyllanthus amarus Schum & Thonn. through inhibition of NF-κB, MAPK, and PI3K-Akt signaling pathways in LPS induced human macrophages. BMC Complement Altern Med 18:224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henry Y, Burnell AC (1996) Hobson-Jobson, neem. The Anglo-Indian dictionary, Wordsworth reference

    Google Scholar 

  • Hossain MA, Al-Toubi WAS, Weli AM, Al-Riyami QA, Al-Sabahi JN (2013) Identification and characterization of chemical compounds in different crude extracts from leaves of Omani Neem. J Taibah Univ Sci 7:181–188

    Article  Google Scholar 

  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ifeoma O, Samuel O, Itohan AM, Adeola SO (2013) Isolation, fractionation and evaluation of the antiplasmodial properties of Phyllanthus niruri resident in its chloroform fraction. Asian Pac J Trop Med 6:169–175

    Article  PubMed  Google Scholar 

  • Imran M, Arshad MS, Butt MS, Kwon J-H, Arshad MU, Sultan MT (2017) Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis 16:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jantan I, Ilangkovan M, Mohamad HF (2014) Correlation between the major components of Phyllanthus amarus and Phyllanthus urinaria and their inhibitory effects on phagocytic activity of human neutrophils. BMC Complement Altern Med 14:429

    Article  PubMed Central  Google Scholar 

  • Jantan I, Ahmad W, Bukhari SNA (2015) Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front Plant Sci 6:655

    Article  PubMed  PubMed Central  Google Scholar 

  • Jantan I, Haque MA, Ilangkovan M, Arshad L (2019) An insight into the modulatory effects and mechanisms of action of Phyllanthus species and their bioactive metabolites on the immune system. Front Pharmacol 10:878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi P, Dhawan V (2005) Swertia chirayita—an overview. Curr Sci 89:635–640

    CAS  Google Scholar 

  • Kanika et al (2021) Herbal immune-boosters: substantial warriors of pandemic Covid-19 battle. Phytomedicine: Int J Phytother Phytopharmacol 85:153361. https://doi.org/10.1016/j.phymed.2020.153361

    Article  CAS  Google Scholar 

  • Ketkar AY, Ketkar CM (2004) Various uses of neem products. In: Schmutterer H (ed) The neem tree. Wiley, Weinheim, pp 518–525

    Google Scholar 

  • Khanna K, Kohli SK, Kaur R, Bhardwaj A, Bhardwaj V, Ohri P, Sharma A, Ahmad A, Bhardwaj R, Ahmad P (2021) Herbal immune-boosters: substantial warriors of pandemic Covid-19 battle. Phytomedicine 85:153361

    Article  CAS  PubMed  Google Scholar 

  • Kher A, Chaurasia SC (1997) Antifungal activity of essential oils of three medical plants. Indian Drugs 15:41–42

    Google Scholar 

  • Kirtikar KR, Basu BD (1984) Indian medicinal plants, vol III. LM Basu Publishers, Allahabad

    Google Scholar 

  • Klumperman J, Locker JK, Meijer A, Horzinek MC, Geuze HJ, Rottier PJ (1994) Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J Virol 68:6523–6534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G (1994) Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol 124:55–70

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Van Staden J (2016) A review of Swertia chirayita (Gentianaceae) as a traditional medicinal plant. Front Pharmacol 6:308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumari R, Venaik A, Hasibuzzaman MA, Azure SA, Ojha RP, Sahi AK (2021) Repurposing of the herbals immune-boosters in the prevention and management of COVID-19: a review. J Pure Appl Microbiol 15(1):1–19

    Article  CAS  Google Scholar 

  • Kuttan R, Harikumar KB (2011) Phyllanthus species. In: Scientific evaluation and medicinal applications, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Lai C, Shih TP, Ko WC, Tang HJ, Hsueh PR (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents 55(2020):105924–105924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, De Clercq E (2020) Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 19:149–150

    Article  PubMed  CAS  Google Scholar 

  • Li YD, Chi WY, Su JH, Ferrall L, Hung CF, Wu TC (2020) Coronavirus vaccine development: from SARS and MERS to COVID-19″. J Biomed Sci 27(1):104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo H, Tang QL, Shang YX (2020) Can Chinese medicine be used for prevention of Corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med 26:243–250

    Article  CAS  PubMed  Google Scholar 

  • Mandal SC, Chakraborty R, Sen S (2021) Evidence based validation of traditional medicines, 1st edn. Springer Science and Business Media LLC, XII, p 378

    Google Scholar 

  • Michael P, Cancro HY, Jean L, Scholz RL et al (2009) B cells and aging: molecules and mechanisms. Trends Immunol 30:313–318

    Article  CAS  Google Scholar 

  • Mirazimi A, von Bonsdorff CH, Svensson L (1996) Effect of brefeldin A on rotavirus assembly and oligosaccharide processing. Virology 217(2):554–563

    Article  CAS  PubMed  Google Scholar 

  • Mohamad et al (2020) Public knowledge, attitudes and practices towards COVID-19: a cross-sectional study in Malaysia. PLoS One 15(5):e0233668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moradali MF, Mostafavi H, Ghods S, Hedjaroude GA (2007) Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol 7:701–724

    Article  CAS  PubMed  Google Scholar 

  • Mordue AJ, Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its action against insects. Anais da Soci Entoa do Brasil 29:615–632

    Article  CAS  Google Scholar 

  • Nahar L, Sarker SD, Delazar A (2011) Phytochemistry of the genus Phyllanthus. In: Kuttan R, Harikumar KB (eds) Phyllanthus species: scientific evaluation and medicinal applications. Taylor and Francis Group, CRC Press, London, pp 119–138

    Google Scholar 

  • Nain P, Saini V, Sharma S, Nain J (2012) Antidiabetic and anti-oxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats. J Ethnopharmacol 142:65–71

    Article  CAS  PubMed  Google Scholar 

  • Neem turmeric in treatment of COVID-19 (2020). Retrieved 5 Nov 2020

    Google Scholar 

  • Oberlies NH, Kroll DJ (2004) Camptothecin and taxol: historic achievements in natural products research. J Nat Prod 67:129–135

    Article  CAS  PubMed  Google Scholar 

  • Opstelten DJ, Raamsman MJ, Wolfs K, Horzinek MC, Rottier PJ (1995) Envelope glycoprotein interactions in coronavirus assembly. J Cell Biol 131:339–349

    Article  CAS  PubMed  Google Scholar 

  • Pal N, Mavi AK, Kumar S, Kumar U, Joshi MD, Saluja R (2021) Current updates on adaptive immune response by B cell and T cell stimulation and therapeutic strategies for novel coronavirus disease 2019 (COVID-19) treatment. Heliyon 7(4):e06894. https://doi.org/10.1016/j.heliyon.2021.e06894. Epub 2021 Apr 27. PMID: 33937545; PMCID: PMC8076978

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey DN (2019) Seven shields of Ayurveda between health and diseases. Ann Ayurvedic Med 8:6–10

    Article  Google Scholar 

  • Panyod S, Ho C-T, Sheen L-Y (2020) Dietary therapy and herbal medicine for COVID-19 prevention: a review and perspective. J Tradit Complement Med 10:420–427

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel JR, Tripathi P, Sharma V, Singh N, Vinod C, Dixit K (2011) Phyllanthus amarus: ethnomedicinal uses, phytochemistry and pharmacology: a review. J Ethnopharmacol 138:286–313

    Article  CAS  PubMed  Google Scholar 

  • Patil U, Jaydeokar A, Bandawane D (2012) Immunomodulators: a pharmacological review. Int J Pharm Pharm Sci 4:30–36

    CAS  Google Scholar 

  • Phoboo S, Pinto MDS, Barbosa ACL, Sarkar D, Bhowmik PC, Jha PK et al (2013) Phenolic-linked biochemical rationale for the antidiabetic properties of Swertia chirayita (Roxb. ex Flem.) Karst. Phytother Res 27:227–235

    Article  CAS  PubMed  Google Scholar 

  • Plants of the World Online (2017) Board of trustees of the royal botanic gardens, Kew. Retrieved 19 Nov 2020

    Google Scholar 

  • Pyankov OV, Usachev EV, Pyankova O, Agranovski IE (2012) Inactivation of airborne influenza virus by tea tree and eucalyptus oils. Aerosol Sci Technol 46:1295–1302

    Article  CAS  Google Scholar 

  • Ranjan A, Chauhan A, Gurnani M, Jindal T (2020) Potential phytochemicals as efficient protease inhibitors of 2019-nCoV. Preprints 2020

    Google Scholar 

  • Rastogi S, Pandey DN, Singh RH (2022) COVID-19 pandemic: a pragmatic plan for ayurveda intervention. J Ayurveda Integr Med 13(1):100312

    Article  CAS  PubMed  Google Scholar 

  • Ren L et al (2020) Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J 133(2020):1015–1024

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadekar R. D., Kolte A. Y., Barmase B. S., Desai V. F (1998) Immunopotentiating effects of Azadirachta indica (Neem) dry leaves powder in broilers, naturally infected with IBD virus. Indian J Exp Biol 36:1151–1153

    Google Scholar 

  • Sadlon AE, Lamson DW (2010) Immune-modifying and antimicrobial effects of eucalyptus oil and simple inhalation devices. Alternat Med Rev 15:33–42

    Google Scholar 

  • Saha P, Mandal S, Das A, Das PC, Das S (2004) Evaluation of the anticarcinogenic activity of Swertia chirata Buch. Ham, an Indian medicinal plant, on DMBA-induced mouse skin carcinogenesis model. Phytother Res 18:373–378

    Article  PubMed  Google Scholar 

  • Saha P, Mandal S, Das A, Das S (2006) Amarogentin can reduce hyperproliferation by downregulation of Cox-II and upregulation of apoptosis in mouse skin carcinogenesis model. Cancer Lett 244:252–259

    Article  CAS  PubMed  Google Scholar 

  • Sarin B, Verma N, Martín JP, Mohanty A (2014) An overview of important ethnomedicinal herbs of Phyllanthus species: present status and future prospects. Sci World J 2014:839172

    Article  Google Scholar 

  • Sarmiento W. C., Maramba C. C., Gonzales M. L. M (2011) An in vitro study on the antibacterial effect of Neem (Azadirachta indica) leaf extracts on methicillin-sensitive and methicillin-resistant Staphylococcus aureus. PIDSP J 12:40–45

    Google Scholar 

  • Sastry JLN (2010) Dravyaguna Vigyana, Chaukhamba Orientalia, Varanasi, vol. II, pp 33–49

    Google Scholar 

  • Serafino A, Vallebona PS, Andreola F (2008) Stimulatory effect of eucalyptus essential oil on innate cell-mediated immune response. BMC Immunol 9:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma RK, Bhagwan D (2013a) Caraka Samhita, Chowkhamba Sanskrit Series Office, Varanasi, vol. II, p 140

    Google Scholar 

  • Sharma RK, Bhagwan D (2013b) Caraka Samhita, Chowkhamba Sanskrit Series Office, Varanasi, vol. III, p 8

    Google Scholar 

  • Sharma RK, Bhagwan D (2013c) Caraka Samhita, Chowkhamba Sanskrit Series Office, Varanasi, vol. III, p 46

    Google Scholar 

  • Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R (2020) COVID-19 infection: origin, transmission, and characteristics of human corona viruses. JAdv Res 24:91–98

    CAS  Google Scholar 

  • Singh N, Sastry MS (1997) Antimicrobial activity of neem oil. Indian J Pharmacol 13:102–106

    Google Scholar 

  • Singh K, Verma B (2012) The concept of Vyadhikshamatva in ayurveda. Ayurpharm Int J Ayur Alli Sci 1:99–108

    Google Scholar 

  • Singhal GD (2007) Susruta Samhita, vol I. Chaukhamba Sanskrit Pratishthan, Delhi, p 60

    Google Scholar 

  • Subhash et al (2021) Patterns of complete blood counts (Cbc) in patients with Covid19 infection 10(11)

    Google Scholar 

  • Sultana B, Anwar F, Przybylski R (2007) Anti-oxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem 104:1106–1114

    Article  CAS  Google Scholar 

  • Surphan et al (2020) Dietary therapy and herbal medicine for COVID-19 prevention: a review and perspective. J Tradit Complement Med 10(4):420–427. https://doi.org/10.1016/j.jtcme.2020.05.004. PMID: 32691006; PMCID: PMC7260602

    Article  Google Scholar 

  • Tan BKH, Vanitha J (2004) Immunomodulatory and antimicrobial effects of some traditional Chinese medicinal herbs: a review. Curr Med Chem 11:1423–1430

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C (2020) Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol 11:1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillu G, Chaturvedi S, Chopra A, Patwardhan B (2020) Public health approach of ayurveda and yoga for COVID-19 prophylaxis. J Altern Complement Med 26:360–364

    Article  CAS  PubMed  Google Scholar 

  • Tooze J, Tooze SA (1985) Infection of AtT20 murine pituitary tumour cells by mouse hepatitis virus strain A59: virus budding is restricted to the Golgi region. Eur J Cell Biol 37:203–212

    CAS  PubMed  Google Scholar 

  • Unander DW, Webster GL, Blumberg BS (1995) Usage and bioassays in Phyllanthus (Euphorbiaceae). IV. Clustering of antiviral uses and other effects. J Ethnopharmacol 45:1–18

    Article  CAS  PubMed  Google Scholar 

  • Van Paassen J, Vos JS, Hoekstra EM, Neumann K, Boot PC, Arbous SM (2020) Corticosteroid use in COVID-19 patients: a systematic review and meta-analysis on clinical outcomes. Crit Care 24:696

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma S, Lopez LA, Bednar V, Hogue BG (2007) Importance of the penultimate positive charge in mouse hepatitis coronavirus A59 membrane protein. J Virol 81:5339–5348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2020) Q&A on coronaviruses. https://www.who.int/news-room/q-a-detail/q-acoronaviruses

  • YD et al (2021) SARS-CoV-2-specific T cell immunity to structural proteins in inactivated COVID-19 vaccine recipients. Cell Mol Immunol 18:2040–2041. https://doi.org/10.1038/s41423-021-00730-8

    Article  CAS  Google Scholar 

  • Zheng MS, Lu ZY (1990) Antiviral effect of mangiferin and isomangiferin on herpes simplex virus. Chin Med J 103:160–165

    CAS  PubMed  Google Scholar 

  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W (2020) A pneumonia out break associated with a new coronavirus of probable bat origin. Nature 579:270–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Competing Interest

Nil.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, R., Venaik, A., Singh, J., Kesharwani, R.K. (2022). Herbal Immunomodulators and COVID-19. In: Kesharwani, R.K., Keservani, R.K., Sharma, A.K. (eds) Immunomodulators and Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-16-6379-6_12

Download citation

Publish with us

Policies and ethics