Skip to main content

Transgenic Plants: A Tool to Increase Crop Productivity Under Stress Environment

  • Chapter
  • First Online:
Augmenting Crop Productivity in Stress Environment

Abstract

Being static, the plants are exposed to different kinds of external factors. Many external factors negatively influence the plant metabolism and physiology which cause stress. Stress is such a condition mainly created by external factors in which metabolism of cell is adversely regulated, so that normal functioning of the cell is disrupted. These external factors contributing to stress may be biotic or abiotic and their interaction with plant leads to compromised productivity. The cell machinery that attempts to combat such situation involves genes like reactive oxygen species detoxifying genes, protein producing genes, osmoprotectant enhancer genes, heat shock protein synthesis genes, transcription factors, and so on. These have been isolated from different plants, native to the localities having harsh environmental conditions (like abiotic stresses) and depict adequate potential to impart tolerance to such adverse conditions. Many such genes are effectively transferred to diverse agricultural plant cells, where their fruitful expression enabled the crops to endure/ mitigate/ tolerate abiotic stresses like drought, salinity, etc., including herbicides as well as heavy metals. This chapter provides an overview of transgenic strategies/approaches in the plants for imparting resistance/tolerance to environmental stress conditions and thereby enhancing crop productivity under such environmental limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alia KY, Sakamoto A, Nonaka H, Hayashi H, Pardhasaradhi P, Chen THH, Norio M (1999) Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the coaA gene for a bacterial choline oxidase. Plant Mol Biol 40:279–288

    Article  CAS  PubMed  Google Scholar 

  • Al-Khayri JM, Ansari MI, Singh AK (2021) Nanobiotechnology: mitigation of abiotic stress in plants, 1st edn. Springer, Cham, pp 1–593

    Book  Google Scholar 

  • Bergau J (2019) Verdeca introduces HB4® drought tolerant soybeans to growers at Argentina’s Expoagro. https://www.businesswire.com https://www.businesswire.com/news/home/20190326005300/en/Verdeca-Introduces-HB4%C2%AE-Drought-Tolerant-Soybeans-Growers, Arcadia Biosciences. Accessed 26 Apr 2019

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Zhou Y, Xiao J, Li X, Zhang Q, Lian X (2009) Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep 28:527–537

    Article  CAS  PubMed  Google Scholar 

  • Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198

    Article  PubMed  CAS  Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11(5):e0156362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das A, Basu PS, Kumar M, Ansari J, Shukla A, Thakur S, Singh P, Datta S, Chaturvedi SK, Sheshshayee MS, Bansal KC, Singh NP (2021) Transgenic chickpea (Cicer arietinum L.) harbouring AtDREB1a are physiologically better adapted to water deficit. BMC Plant Biol 21(1):39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Chang R, Aditham AJ, Chio L, Cho MJ, Staskawicz B, Landry MP (2019) High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol 14(5):456–464

    Article  CAS  PubMed  Google Scholar 

  • Donn G, Köcher H (2002) Inhibitors of glutamine synthetase. In: Böger P, Wakabayashi K, Hirai K (eds) Herbicide classes in development. Springer, Berlin, Heidelberg, pp 87–101

    Chapter  Google Scholar 

  • Gill HS, Eisenberg D (2001) The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition. Biochemistry 40:1903–1912

    Article  CAS  PubMed  Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 43(1):103–111

    Article  CAS  PubMed  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Gitschier J (1997) A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet 17(3):292–297

    Article  CAS  PubMed  Google Scholar 

  • Huang QM, Liu WH, Sun H, Deng X, Su J (2005) Agrobacterium tumefaciens mediated transgenic wheat plants with glutamine synthetases confer tolerance to herbicide (in Chinese). J Plant Ecol 29:338–344

    Article  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  PubMed  Google Scholar 

  • Jain SM (2010) Mutagenesis in crop improvement under the climate change. Romanian Biotechnol Lett 15(2):89–106

    Google Scholar 

  • James D, Borphukan B, Fartyal D, Ram B, Singh J, Manna M, Sheri V, Panditi V, Yadav R, Achary VMM, Reddy MK (2018) Concurrent overexpression of OsGS1;1 and OsGS2 genes in transgenic rice (Oryza sativa L.): impact on tolerance to abiotic stresses. Front Plant Sci 21(9):786

    Article  Google Scholar 

  • James VA, Neibaur I, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res 17:93–104

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  CAS  PubMed  Google Scholar 

  • Kausch AP, Nelson-Vasilchik K, Hague J, Mookkan M, Quemada H, Dellaporta S, Fragoso C, Zhang ZJ (2019) Edit at will: genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Sci 281:186–205

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Anwar S, Yu S, Sun M, Yang Z, Gao Z-Q (2019) Development of drought-tolerant transgenic wheat: achievements and limitations. Int J Mol Sci 20(13):3350

    Article  CAS  PubMed Central  Google Scholar 

  • Kovalchuk N, Chew W, Sornaraj P, Borisjuk N, Yang N, Singh R, Bazanova N, Shavrukov Y, Guendel A, Munz E, Borisjuk L, Langridge P, Hrmova M, Lopato S (2016) The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley. New Phytol 211(2):671–687

    Article  CAS  PubMed  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Kuznetsov VV, Shevyakova NI (1999) Proline during stress: biological role, metabolism, and regulation. Fiziol Rastenii 1999:321–336

    Google Scholar 

  • Lee HJ, Abdula SE, Jang DW, Park SH, Yoon UH, Jung YJ, Kang KK, Nou IS, Cho YG (2013) Overexpression of the glutamine synthetase gene modulates oxidative stress response in rice after exposure to cadmium stress. Plant Cell Rep 32(10):1521–1529

    Article  CAS  PubMed  Google Scholar 

  • Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho MJ, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Yiu JC, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer PM, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao ZY, Xu D, Jones T, Kamm WG (2016) Morphogenic regulators baby boom and Wuschel improve monocot transformation. Plant Cell 28(9):1998–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DD, Repetti PP, Adams TT, Creelman RR, Wu J, Warner DD, Anstrom DD, Bensen RR, Castiglioni PP, Donnarummo MG, Hinchey BS, Khumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104(42):16450–16455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noor S, Ali S, Ali GM (2018) Comparative study of transgenic (DREB1A) and non-transgenic wheat lines on relative water content, sugar, proline and chlorophyll under drought and salt stresses. Sarhad J Agric 34:986–993

    Google Scholar 

  • Nuccio ML, Paul M, Bate NJ, Cohn J, Cutler SR (2018) Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. Plant Sci 273:110–119

    Article  CAS  PubMed  Google Scholar 

  • Ortiz R, Iwanaga M, Reynolds M, Huixia W, Crouch JH (2007) Overview on crop genetic engineering for drought-prone environments. J SAT Agric Res 4:1–30

    Google Scholar 

  • Pandey B, Tiwari RK, Kumar A (2018) Expanding the global horizon of engineered crops: miles ahead to go. Sci Res Essays 13(10):105–110

    Article  Google Scholar 

  • Pascual MB, Jing ZP, Kirby EG, Cánovas FM, Gallardo F (2008) Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin. Phytochemistry 69:382–389

    Article  CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  CAS  PubMed  Google Scholar 

  • Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative stress defense in transgenic potato expressing tomato cu, Zn superoxide dismutases. Theor Appl Genet 85:568–576

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Valverde R, Alia CTH, Murata N (2000) Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant J 22:449–453

    Article  CAS  PubMed  Google Scholar 

  • Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR (2016) Stress inducible expression ofAtDREB1A transcription factor in transgenic peanut (Arachis hypogea L.) conferred tolerance to soil-moisture deficit stress. Front Plant Sci 7:935

    Article  PubMed  PubMed Central  Google Scholar 

  • Sen Gupta A, Heinen JL, Holady AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that over-express chloroplastic cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    Article  CAS  Google Scholar 

  • Sun H, Huang Q, Su J (2005) Overexpression of glutamine synthetases confers transgenic rice herbicide resistance high technology letters. ECOJ 11(1):75–79

    Google Scholar 

  • Vasil V, Castillo AA, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol 10(6):667–674

    Article  CAS  Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CC, Molinari HBC, Marur CC, Vieira LGE (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Luang S, Harris J, Riboni M, Li Y, Bazanova N, Hrmova M, Haefele S, Kovalchuk N, Lopato S (2018) Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat. Plant Biotechnol J 16:1227–1240

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu JL, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YX, Chai TY, Zhao WM (2001) Cloning and expression analysis of the heavy-metal responsive gene PvSR2 from bean. Plant Sci 161(4):783–790

    Article  CAS  Google Scholar 

  • Zhu L, Tang GS, Hazen SP, Kim HS, Ward RW (1999) RFLP-based genetic diversity and its development in Shaanxi wheat lines. Acta Bot Boreali Occident Sin 19:13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, P. et al. (2022). Transgenic Plants: A Tool to Increase Crop Productivity Under Stress Environment. In: Ansari, S.A., Ansari, M.I., Husen, A. (eds) Augmenting Crop Productivity in Stress Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-6361-1_4

Download citation

Publish with us

Policies and ethics