Skip to main content

Historical Developments on Computer Applications in Pharmaceutics

  • Chapter
  • First Online:
Computer Aided Pharmaceutics and Drug Delivery

Abstract

A lot of mathematical and statistical calculations are involved in optimization of pharmaceutical formulations. Computations involving correlating variables with responses, regression analysis, predictions, and simulations are now better handled with computers equipped with specially designed softwares. These softwares have been developed from simple programs to artificial intelligence (AI) integrated packages. In addition to these, computers are playing a larger role in designing internal architecture and outer appearance of dosage forms with the advancements in computer-aided designing and 3D printing technologies. Initial robots were made to automate pick and place operations but significant developments of programming softwares and AI have gradually advanced robots with more flexibility, adaptability, and intelligence. Soft robots with greater degrees of freedom and locomotion abilities have a potential role in delivering drugs to targeted locations. Software packages for pharmacokinetics perform tedious calculations, data analysis, and modeling to enhance the speed of drug discovery and formulation development programs. This chapter focuses on some significant historical developments on different applications of computers in the field of formulation optimization, robotics, artificial intelligence, 3D printing, and pharmacokinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekins S (2006) Computer applications in pharmaceutical research and development. Wiley, USA, pp 1–442

    Book  Google Scholar 

  2. Boyd DB, Marsh MM (2006) History of computers in pharmaceutical research and development: a narrative. In: Ekins S (ed) Computer applications in pharmaceutical research and development. Wiley, USA, pp 1–50. https://doi.org/10.1002/0470037237.ch1

    Chapter  Google Scholar 

  3. Prinderre P, Piccerelle P, Cauture E, Kalantzis G, Reynier JP, Joachim J (1998) Formulation and evaluation of o/w emulsions using experimental design. Int J Pharm 163:73–79. https://doi.org/10.1016/S0378-5173(97)00368-2

    Article  CAS  Google Scholar 

  4. Simovic S, Milic-Askrabic J, Vuleta G, Ibric S, Stupar M (1999) The influence of processing variables on performance of O/W emulsion gels based on polymeric emulsifier (Pemulen®TR-2NF). Int J Cosmet Sci 21:119–125. https://doi.org/10.1046/j.1467-2494.1999.183572.x

    Article  CAS  PubMed  Google Scholar 

  5. Rowe RC, Colbourn EA (2003) Neural computing in product formulation. Chem Educ 8:1–8

    Google Scholar 

  6. Niedz RP, Evens TJ (2016) Design of experiments (DOE)—history, concepts, and relevance to in vitro culture. Vitr Cell Dev Biol Plant 52:547–562. https://doi.org/10.1007/s11627-016-9786-1

    Article  CAS  Google Scholar 

  7. Durakovic B, Basic H (2013) Textile cutting process optimization model based on six sigma methodology in a medium-sized company. Period Eng Nat Sci 1:39–46. https://doi.org/10.21533/pen.v1i1.15

    Article  Google Scholar 

  8. Paulo F, Santos L (2017) Design of experiments for microencapsulation applications: a review. Mater Sci Eng C 77:1327–1340. https://doi.org/10.1016/j.msec.2017.03.219

    Article  CAS  Google Scholar 

  9. Yu P, Low MY, Zhou W (2018) Design of experiments and regression modelling in food flavour and sensory analysis: a review. Trends Food Sci Technol 71:202–215. https://doi.org/10.1016/j.tifs.2017.11.013

    Article  CAS  Google Scholar 

  10. Schlueter A, Geyer P (2018) Linking BIM and Design of Experiments to balance architectural and technical design factors for energy performance. Autom Constr 86:33–43. https://doi.org/10.1016/j.autcon.2017.10.021

    Article  Google Scholar 

  11. Durakovic B, Torlak M (2017) Simulation and experimental validation of phase change material and water used as heat storage medium in window applications. J Mater Environ Sci 8:1837–1846

    Google Scholar 

  12. Hibbert DB (2012) Experimental design in chromatography: a tutorial review. J Chromatogr B Anal Technol Biomed Life Sci 910:2–13. https://doi.org/10.1016/j.jchromb.2012.01.020

    Article  CAS  Google Scholar 

  13. Garud SS, Karimi IA, Kraft M (2017) Design of computer experiments: a review. Comput Chem Eng 106:71–95. https://doi.org/10.1016/j.compchemeng.2017.05.010

    Article  CAS  Google Scholar 

  14. Fisher RA (1921) Studies in crop variation: I. An examination of the yield of dressed grain from broadbalk. J Agric Sci 11:107–135. https://doi.org/10.1017/S0021859600003750

    Article  Google Scholar 

  15. Fisher RA (1925) Statistical methods for research workers. Oliver and Boyd, Edinburgh, pp 152–293. https://doi.org/10.1111/j.1744-7348.1926.tb04258.x

    Book  Google Scholar 

  16. Fisher RA (1926) The arrangement of field experiments. J Minist Agric Gt Britain 33:503–513

    Google Scholar 

  17. Fisher RA (1937) The design of experiments. Oliver and Boyd, Edinburgh, pp 26–54

    Google Scholar 

  18. Fisher RA (1947) Development of the theory of experimental design. Proc Int Stat Conf 3:434–439

    Google Scholar 

  19. The Pennsylvania State University (2021) A quick history of the design of experiments (DOE). https://online.stat.psu.edu/stat503/lesson/1/1.1. Accessed 27 Apr 2021

  20. Gaither CC, Cavazos-Gaither AE (2012) In: Gaither CC, Cavazos-Gaither AE (eds) Gaither’s dictionary of scientific quotations. Springer, New York, pp 489–838. https://doi.org/10.1007/978-1-4614-1114-7

    Chapter  Google Scholar 

  21. Durakovic B (2017) Design of experiments application, concepts, examples: state of the art. Period Eng Nat Sci 5:421–439. https://doi.org/10.21533/pen.v5i3.145

    Article  Google Scholar 

  22. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B 13:1–38. https://doi.org/10.1111/j.2517-6161.1951.tb00067.x

    Article  Google Scholar 

  23. Mead R, Pike DJ (1975) A review of response surface methodology from a biometric viewpoint. Biometrics 31:803–851

    Article  CAS  Google Scholar 

  24. Myers RH, Montgomery DC, Geoffrey Vining G, Borror CM, Kowalski SM (2004) Response surface methodology: a retrospective and literature survey. J Qual Technol 36:53–78. https://doi.org/10.1080/00224065.2004.11980252

    Article  Google Scholar 

  25. Box GEP, Draper NR (2007) Response surfaces, mixtures, and ridge analyses. Wiley-Interscience, pp 152–289

    Book  Google Scholar 

  26. Marlowe E, Shangraw RF (1967) Dissolution of sodium salicylate from tablet matrices prepared by wet granulation and direct compression. J Pharm Sci 56:498–504. https://doi.org/10.1002/jps.2600560415

    Article  CAS  PubMed  Google Scholar 

  27. Taguchi G, Chowdhury S, Wu Y (2005) Taguchi’s quality engineering handbook. Wiley Blackwell, pp 3–58. https://doi.org/10.1002/9780470258354

    Book  Google Scholar 

  28. Andersson R, Eriksson H, Torstensson H (2006) Similarities and differences between TQM, six sigma and lean. TQM Mag 18:282–296. https://doi.org/10.1108/09544780610660004

    Article  Google Scholar 

  29. Politis SN, Colombo P, Colombo G, Rekkas DM (2017) Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm 43:889–901. https://doi.org/10.1080/03639045.2017.1291672

    Article  CAS  Google Scholar 

  30. Fukuda IM, Pinto CFF, Moreira CDS, Saviano AM, Lourenço FR (2018) Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Braz J Pharm Sci 54:e01006. https://doi.org/10.1590/s2175-97902018000001006

    Article  CAS  Google Scholar 

  31. Leo Kumar SP (2019) Knowledge-based expert system in manufacturing planning: state-of-the-art review. Int J Prod Res 57:4766–4790. https://doi.org/10.1080/00207543.2018.1424372

    Article  Google Scholar 

  32. Al-Khattat IM, Al-Hassani STS (1987) Towards a computer-aided analysis and design of tablet compaction. Chem Eng Sci 42:707–712. https://doi.org/10.1016/0009-2509(87)80030-1

    Article  CAS  Google Scholar 

  33. Batanov D, Nagarur N, Nitikhunkasem P (1993) EXPERT-MM: a knowledge-based system for maintenance management. Artif Intell Eng 8:283–291. https://doi.org/10.1016/0954-1810(93)90012-5

    Article  Google Scholar 

  34. Frank J, Rupprecht B, Schmelmer V (1997) Knowledge-based assistance for the development of drugs. IEEE Expert Syst Their Appl 12:40–48. https://doi.org/10.1109/64.577412

    Article  Google Scholar 

  35. Dai S, Xu B, Shi G, Liu J, Zhang Z, Shi X et al (2019) SeDeM expert system for directly compressed tablet formulation: a review and new perspectives. Powder Technol 342:517–527. https://doi.org/10.1016/j.powtec.2018.10.027

    Article  CAS  Google Scholar 

  36. Ramani KV, Patel MR, Patel SK (1992) An expert system for drug preformulation in a pharmaceutical company. Interfaces (Providence) 22:101–108. https://doi.org/10.1287/inte.22.2.101

    Article  Google Scholar 

  37. Khan A, Iqbal Z, Rehman Z, Nasir F, Khan A, Ismail M et al (2014) Application of SeDeM Expert system in formulation development of effervescent tablets by direct compression. Saudi Pharm J 22:433–444. https://doi.org/10.1016/j.jsps.2013.07.002

    Article  PubMed  Google Scholar 

  38. Puchkov M, Tschirky D, Leuenberger H (2013) 3-D cellular automata in computer-aided design of pharmaceutical formulations: mathematical concept and F-CAD software. In: Aguilar JE (ed) Formulation tools for pharmaceutical development. Elsevier Ltd, pp 155–201. https://doi.org/10.1533/9781908818508.155

    Chapter  Google Scholar 

  39. Zhang GGZ, Law D, Schmitt EA, Qiu Y (2004) Phase transformation considerations during process development and manufacture of solid oral dosage forms. Adv Drug Deliv Rev 56:371–390. https://doi.org/10.1016/j.addr.2003.10.009

    Article  CAS  PubMed  Google Scholar 

  40. Rowe RC, Wakerly MG, Roberts RJ, Grundy RU, Upjohn NG (1995) Expert systems for parenteral development. PDA J Pharm Sci Technol 49:257–261

    CAS  PubMed  Google Scholar 

  41. Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NAE, Arshad H (2018) State-of-the-art in artificial neural network applications: a survey. Heliyon 4:e00938. https://doi.org/10.1016/j.heliyon.2018.e00938

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sbirrazzuoli N, Brunel D (1997) Computational neural networks for mapping calorimetric data: application of feed-forward neural networks to kinetic parameters determination and signals filtering. Neural Comput Appl 5:20–32. https://doi.org/10.1007/BF01414100

    Article  Google Scholar 

  43. Zadeh LA (1968) Fuzzy algorithms. Inf Control 12:94–102. https://doi.org/10.1016/S0019-9958(68)90211-8

    Article  Google Scholar 

  44. Kesavan JG, Peck GE (1996) Pharmaceutical granulation and tablet formulation using neural networks. Pharm Dev Technol 1(4):391–404. https://doi.org/10.3109/10837459609031434

    Article  CAS  PubMed  Google Scholar 

  45. Turkoğlu M, Özarslan R, Sakr A (1995) Artificial neural network analysis of a direct compression tabletting study. Eur J Pharm Biopharm 41:315–322

    Google Scholar 

  46. Bourquin J, Schmidli H, Van Hoogevest P, Leuenberger H (1997) Application of Artificial Neural Networks (ANN) in the development of solid dosage forms. Pharm Dev Technol 2:111–121. https://doi.org/10.3109/10837459709022616

    Article  CAS  PubMed  Google Scholar 

  47. Rocksloh K, Rapp FR, Abu Abed S, Müller W, Reher M, Gauglitz G et al (1999) Optimization of crushing strength and disintegration time of a high-dose plant extract tablet by neural networks. Drug Dev Ind Pharm 25:1015–1025. https://doi.org/10.1081/DDC-100102264

    Article  CAS  PubMed  Google Scholar 

  48. Chen Y, Thosar SS, Forbess RA, Kemper MS, Rubinovitz RL, Shukla AJ (2001) Prediction of drug content and hardness of intact tablets using artificial neural network and near-infrared spectroscopy. Drug Dev Ind Pharm 27:623–631. https://doi.org/10.1081/DDC-100107318

    Article  CAS  PubMed  Google Scholar 

  49. Sathe PM, Venitz J (2003) Comparison of neural network and multiple linear regression as dissolution predictors. Drug Dev Ind Pharm 29:349–355. https://doi.org/10.1081/DDC-120018209

    Article  CAS  PubMed  Google Scholar 

  50. Ibric S, Djuric Z, Parojcic J, Petrovic J (2009) Artificial intelligence in pharmaceutical product formulation: neural computing. Chem Ind Chem Eng Q 15:227–236. https://doi.org/10.2298/CICEQ0904227I

    Article  CAS  Google Scholar 

  51. Hussain AS, Yu X, Johnson RD (1991) Application of neural computing in pharmaceutical product development. Pharm Res 8:1248–1252. https://doi.org/10.1023/A:1015843527138

    Article  CAS  PubMed  Google Scholar 

  52. Hussain AS, Shivanand P, Johnson RD (1994) Application of neural computing in pharmaceutical product development: computer aided formulation design. Drug Dev Ind Pharm 20:1739–1752. https://doi.org/10.3109/03639049409038390

    Article  CAS  Google Scholar 

  53. Wu PC, Obata Y, Fujikawa M, Li CJ, Higashiyama K, Takayama K (2001) Simultaneous optimization based on artificial neural networks in ketoprofen hydrogel formula containing O-ethyl-3-butylcyclohexanol as percutaneous absorption enhancer. J Pharm Sci 90:1004–1014. https://doi.org/10.1002/jps.1053

    Article  CAS  PubMed  Google Scholar 

  54. Takahara J, Takayama K, Nagai T (1997) Multi-objective simultaneous optimization technique based on an artificial neural network in sustained release formulations. J Control Release 49:11–20. https://doi.org/10.1016/S0168-3659(97)00030-8

    Article  CAS  Google Scholar 

  55. Peh KK, Lim CP, Quek SS, Khoh KH (2000) Use of artificial neural networks to predict drug dissolution profiles and evaluation of network performance using similarity factor. Pharm Res 17:1384–1388. https://doi.org/10.1023/A:1007578321803

    Article  CAS  PubMed  Google Scholar 

  56. Türkoǧlu M, Varol H, Çelikok M (2004) Tableting and stability evaluation of enteric-coated omeprazole pellets. Eur J Pharm Biopharm 57:279–286. https://doi.org/10.1016/j.ejpb.2003.10.008

    Article  CAS  PubMed  Google Scholar 

  57. Yuksel N, Turkoglu M, Baykara T (2000) Modelling of the solvent evaporation method for the preparation of controlled release acrylic microspheres using neural networks. J Microencapsul 17:541–551. https://doi.org/10.1080/026520400417603

    Article  CAS  PubMed  Google Scholar 

  58. Surini S, Akiyama H, Morishita M, Nagai T, Takayama K (2003) Release phenomena of insulin from an implantable device composed of a polyion complex of chitosan and sodium hyaluronate. J Control Release 90:291–301. https://doi.org/10.1016/S0168-3659(03)00196-2

    Article  CAS  PubMed  Google Scholar 

  59. Reis MAA, Sinisterra RD, Belchior JC (2004) An alternative approach based on artificial neural networks to study controlled drug release. J Pharm Sci 93:418–430. https://doi.org/10.1002/jps.10569

    Article  CAS  PubMed  Google Scholar 

  60. Michrafy A, Ringenbacher D, Tchoreloff P (2002) Modelling the compaction behaviour of powders: application to pharmaceutical powders. Powder Technol 127:257–266. https://doi.org/10.1016/S0032-5910(02)00119-5

    Article  CAS  Google Scholar 

  61. Lewis RW, Gethin DT, Yang XS, Rowe RC (2005) A combined finite-discrete element method for simulating pharmaceutical powder tableting. Int J Numer Methods Eng 62:853–869. https://doi.org/10.1002/nme.1287

    Article  Google Scholar 

  62. Rowe RC, Roberts RJ (1992) Simulation of crack propagation in tablet film coatings containing pigments. Int J Pharm 78:49–57. https://doi.org/10.1016/0378-5173(92)90354-5

    Article  CAS  Google Scholar 

  63. Jamróz W, Szafraniec J, Kurek M, Jachowicz R (2018) 3D printing in pharmaceutical and medical applications—recent achievements and challenges. Pharm Res 35:176. https://doi.org/10.1007/s11095-018-2454-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. ISO (2015) ISO/ASTM 52900:2015(en). Additive manufacturing—general principles—terminology. https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-1:v1:en. Accessed 28 Apr 2021

  65. Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B (2016) Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res 33:1817–1832. https://doi.org/10.1007/s11095-016-1933-1

    Article  CAS  PubMed  Google Scholar 

  66. Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A (2017) A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev 108:39–50. https://doi.org/10.1016/j.addr.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  67. Sachs EM, Haggerty JS, Cima MJ, Williams PA (1989) Three-dimensional printing techniques. US5340656A. https://patents.google.com/patent/US5340656A/en. Accesssed 27 Apr 2021

  68. Sculpteo (2021) The history of 3D printing: from the 80s to today. https://www.sculpteo.com/en/3d-learning-hub/basics-of-3d-printing/the-history-of-3d-printing/. Accessed 28 Apr 2021

  69. Wang J, Goyanes A, Gaisford S, Basit AW (2016) Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm 503:207–212. https://doi.org/10.1016/j.ijpharm.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  70. Serrano-Aroca Á, Vera-Donoso CD, Moreno-Manzano V (2018) Bioengineering approaches for bladder regeneration. Int J Mol Sci 19:1–26. https://doi.org/10.3390/ijms19061796

    Article  CAS  Google Scholar 

  71. Whitaker M (2014) The history of 3D printing in healthcare. Bull R Coll Surg Engl 96:228–229. https://doi.org/10.1308/147363514x13990346756481

    Article  Google Scholar 

  72. Lee Ventola C (2014) Medical applications for 3D printing: current and projected uses. P T 39:704–711

    PubMed  PubMed Central  Google Scholar 

  73. Jassim-Jaboori AH, Oyewumi MO (2015) 3D printing technology in pharmaceutical drug delivery: prospects and challenges. J Biomol Res Ther 4:4–7. https://doi.org/10.4172/2167-7956.1000e141

    Article  Google Scholar 

  74. Clark EA, Alexander MR, Irvine DJ, Roberts CJ, Wallace MJ, Sharpe S et al (2017) 3D printing of tablets using inkjet with UV photoinitiation. Int J Pharm 529:523–530. https://doi.org/10.1016/j.ijpharm.2017.06.085

    Article  CAS  PubMed  Google Scholar 

  75. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34:312–319. https://doi.org/10.1038/nbt.3413

    Article  CAS  PubMed  Google Scholar 

  76. Jakus AE (2019) An introduction to 3D printing—past, present, and future promise. In: 3D print. orthop. surg. Elsevier, pp 1–15. https://doi.org/10.1016/b978-0-323-58118-9.00001-4

  77. Prasad LK, Smyth H (2016) 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm 42:1019–1031. https://doi.org/10.3109/03639045.2015.1120743

    Article  CAS  PubMed  Google Scholar 

  78. Provaggi E, Kalaskar DM (2017) 3D printing families: laser, powder, nozzle based techniques. In: 3D printing in medicine. Elsevier Inc., pp 21–42. https://doi.org/10.1016/B978-0-08-100717-4.00003-X

  79. Jelliffe RW, Jelliffe SM (1972) A computer program for estimation of creatinine clearance from unstable serum creatinine levels, age, sex, and weight. Math Biosci 14:17–24. https://doi.org/10.1016/0025-5564(72)90003-X

    Article  Google Scholar 

  80. Schentag JJ, Adelman MH (1983) A microcomputer program for tobramycin consult services, based on the two-compartment pharmacokinetic model. Drug Intell Clin Pharm 17:528–531. https://doi.org/10.1177/106002808301700706

    Article  CAS  PubMed  Google Scholar 

  81. Fuchs A, Csajka C, Thoma Y, Buclin T, Widmer N (2013) Benchmarking therapeutic drug monitoring software: a review of available computer tools. Clin Pharmacokinet 52:9–22. https://doi.org/10.1007/s40262-012-0020-y

    Article  CAS  PubMed  Google Scholar 

  82. Mannan A, Mubeen H (2018) Digitalization and automation in pharmaceuticals from drug discovery to drug administration. Int J Pharm Pharm Sci 10:1. https://doi.org/10.22159/ijpps.2018v10i6.24757

    Article  CAS  Google Scholar 

  83. Robotic Industries Association (2021) Unimate—the first industrial robot. https://www.robotics.org/joseph-engelberger/unimate.cfm. Accessed 7 Apr 2021

  84. Devol JGC (1954) Programmed article transfer. US2988237A. https://patents.google.com/patent/US2988237. Accessed 7 Apr 2021

  85. FANUC (2021) FANUC Company history. https://www.fanuc.eu/dk/en/who-we-are/fanuc-history. Accessed 7 Apr 2021

  86. Kazutoshi K, Shukushi S, Suzumori K, Shuichi W (2017) Mckibben artificial muscle. WO2017047208A1. https://patents.google.com/patent/WO2017047208A1/en. Accessed 14 Apr 2021

  87. Krishna S, Nagarajan T, Rani AMA (2011) Review of current development of pneumatic artificial muscle. J Appl Sci 11:1749–1755. https://doi.org/10.3923/jas.2011.1749.1755

    Article  Google Scholar 

  88. RobotWorx (2021) Industrial robot history. https://www.robots.com/articles/industrial-robot-history. Accessed 7 Apr 2021

  89. Cyberneticzoo.com (2021) “VERSATRAN” industrial robot. http://cyberneticzoo.com/early-industrial-robots/1958-62-versatran-industrial-robot-harry-johnson-veljko-milenkovic/. Accessed 7 Apr 2021

  90. Futura Automation (2021) A history timeline of industrial robotics. https://futura-automation.com/2019/05/15/a-history-timeline-of-industrial-robotics/. Accessed 7 Apr 2021

  91. Robotics Online (2011) Automate 2011 honors 50 years of robotics. https://roboticsonline.wordpress.com/tag/vicarm/. Accessed 7 Apr 2021

  92. Baer JI (1967) Material handling apparatus and the like. US3343864A. https://patents.google.com/patent/US3343864. Accessed 8 Apr 2021

  93. International Federation of Robotics (2020) Robot history. https://ifr.org/robot-history. Accessed 7 Apr 2021

  94. Nam H, Choi W, Ryu D, Lee Y, Lee SH, Ryu B (2007) Design of a bolting robot for constructing steel structure. In: ICCAS 2007—int. conf. control. autom. syst., pp 1946–1949. https://doi.org/10.1109/ICCAS.2007.4406667

  95. Mo YH, Woo BW, Choe YG, Park JM, Lim MT (2010) Bolting robot assistance system using image processing. In: ICCAS 2010—int. conf. control. autom. syst., pp 2342–2345. https://doi.org/10.1109/iccas.2010.5669922

  96. Groover MP (2012) Industrial robotics: technology, programming and application. McGraw-Hill Higher Education, New Delhi, pp 1–8. https://doi.org/10.1145/3284557.3284723

    Book  Google Scholar 

  97. Rich SR (1971) Fluid operable motor. US3561330A. https://patents.google.com/patent/US3561330. Accessed 8 Apr 2021

  98. Par Systems (2021) About PaR Systems. https://www.par.com/company/about-par-systems/. Accessed 7 Apr 2021

  99. Newman WS, Patel JJ (1991) Experiments in torque control of the AdeptOne robot. Proc IEEE Int Conf Robot Autom 2:1867–1872. https://doi.org/10.1109/robot.1991.131897

    Article  Google Scholar 

  100. Kuo YL (2016) Mathematical modeling and analysis of the Delta robot with flexible links. Comput Math Appl 71:1973–1989. https://doi.org/10.1016/j.camwa.2016.03.018

    Article  Google Scholar 

  101. Palagi S, Fischer P (2018) Bioinspired microrobots. Nat Rev Mater 3:113–124. https://doi.org/10.1038/s41578-018-0016-9

    Article  CAS  Google Scholar 

  102. Martel S (2016) Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: a perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks. Biomicrofluidics 10:021301. https://doi.org/10.1063/1.4945734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lai R, Lin W, Wu Y (2018) Review of research on the key technologies, application fields and development trends of intelligent robots. In: Chen Z, Mendes A, Yan Y, Chen S (eds) Lecture notes in computer science. Springer Nature, Switzerland, pp 449–458. https://doi.org/10.1007/978-3-319-97589-4_38

    Chapter  Google Scholar 

  104. KUKA (2021) KUKA Service for Reis systems and robots. https://www.kuka.com/en-us/services/service-roboter-und-maschinen/servicing-of-kuka-industries-products. Accessed 7 Apr 2021

  105. Colgate JE, Peshkin MA (1999) Cobots. US5952796A. https://patents.google.com/patent/US5952796A/en?q=cobot&oq=cobot. Accessed 14 Apr 2021

  106. Akella P, Siegwart R, Cutkosky M (1991) Manipulation with soft fingers: contact force control. Proc IEEE Int Conf Robot Autom 1:652–657. https://doi.org/10.1109/robot.1991.131657

    Article  Google Scholar 

  107. Suzumori K (1996) Elastic materials producing compliant robots. Rob Auton Syst 18:135–140. https://doi.org/10.1016/0921-8890(95)00078-X

    Article  Google Scholar 

  108. BellowsTech (2021) Actuators. https://bellowstech.com/products/applications/actuators/. Accessed 8 Apr 2021

  109. Kornbluh R, Pelrine R, Eckerle J, Joseph J (1998) Electrostrictive polymer artificial muscle actuators. Proc IEEE Int Conf Robot Autom 3:2147–2154. https://doi.org/10.1109/ROBOT.1998.680638

    Article  Google Scholar 

  110. Ozkan M, Inoue K, Negishi K, Yamanaka T (2000) Defining a neural network controller structure for a rubbertuator robot. Neural Netw 13:533–544. https://doi.org/10.1016/S0893-6080(00)00020-4

    Article  CAS  PubMed  Google Scholar 

  111. Honda (2021) Robot development history. https://global.honda/innovation/robotics/robot-development-history.html. Accessed 12 Apr 2021

  112. Honda (2021) Honda robotics. https://global.honda/innovation/robotics/ASIMO.html. Accessed 12 Apr 2021

  113. NASA (2021) Mars exploration rovers. https://mars.nasa.gov/mer/. Accessed 7 Apr 2021

  114. Robots U (2017) Press kit. https://www.universal-robots.com/media/1800138/ur_press_kit_en.pdf. Accessed 11 Apr 2021

  115. Institute of Robotics and Mechatronics (2021) DLR—Institute of Robotics and Mechatronics—history of the DLR LWR. https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-12464/21732_read-44586/. Accessed 11 Apr 2021

  116. Noritsugu T, Kubota M, Yoshimatsu S (2001) Development of pneumatic rotary soft actuator. Trans Jpn Soc Mech Eng C 66:2280–2285. https://doi.org/10.1299/kikaic.66.2280

    Article  Google Scholar 

  117. Hannan MW, Walker ID (2001) The “elephant trunk” manipulator, design and implementation. IEEE/ASME Int Conf Adv Intell Mechatronics, AIM 1:14–19. https://doi.org/10.1109/aim.2001.936423

    Article  Google Scholar 

  118. Trimmer BA, Takesian AE, Sweet BM, Rogers CB, Hake DC, Rogers DJ (2006) Caterpillar locomotion: a new model for soft-bodied climbing and burrowing robots. In: 7th international symposium on technology and the mine problem, California

    Google Scholar 

  119. Chen G, Pham MT, Redarce T (2009) Sensor-based guidance control of a continuum robot for a semi-autonomous colonoscopy. Rob Auton Syst 57:712–722. https://doi.org/10.1016/j.robot.2008.11.001

    Article  Google Scholar 

  120. ABB (2021) YuMi®—IRB 14000 | Collaborative Robots. https://new.abb.com/products/robotics/collaborative-robots/irb-14000-yumi. Accessed 12 Apr 2021

  121. ABB (2021) ABB launches next generation cobots to unlock automation for new sectors and first-time users. https://new.abb.com/news/detail/74784/abb-launches-next-generation-cobots-to-unlock-automation-for-new-sectors-and-first-time-users. Accessed 12 Apr 2021

  122. KUKA AG (2021) KMR iiwa. https://www.kuka.com/en-gb/products/mobility/mobile-robots/kmr-iiwa. Accessed 12 Apr 2021

  123. KUKA AG (2021) Maintenance mode. https://static.kuka.com/?status=#/en-gb/products/mobility/mobile-robots/kmr-iiwa; https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-12464/21732_read-44586/. Accessed 12 Apr 2021

  124. Stäubli International AG (2021) HelMo the mobile robot system. https://www.staubli.com/en-in/robotics/product-range/helmo-mobile-robot-system/. Accessed 12 Apr 2021

  125. Robots U (2017) Press kit. https://www.universal-robots.com/media/downloads/. Accessed 12 Apr 2021

  126. Faraj Z, Selamet M, Morales C, Torres P, Hossain M, Chen B et al (2021) Facially expressive humanoid robotic face. HardwareX 9:e00117. https://doi.org/10.1016/j.ohx.2020.e00117

    Article  PubMed  Google Scholar 

  127. Prescott TJ, Robillard JM (2021) Are friends electric? The benefits and risks of human-robot relationships. IScience 24:101993. https://doi.org/10.1016/j.isci.2020.101993

    Article  PubMed  Google Scholar 

  128. Menezes B (2015) Meet Manav, India’s first 3D-printed humanoid robot. Mint. https://www.livemint.com/Industry/rc86Iu7h3rb44087oDts1H/Meet-Manav-Indias-first-3Dprinted-humanoid-robot.html. Accessed 8 Apr 2021

  129. Alemzadeh K, Jones SB, Davies M, West N (2021) Development of a chewing robot with built-in humanoid jaws to simulate mastication to quantify robotic agents release from chewing gums compared to human participants. IEEE Trans Biomed Eng 68:492–504. https://doi.org/10.1109/TBME.2020.3005863

    Article  PubMed  Google Scholar 

  130. Miyashita S, Guitron S, Yoshida K, Li S, Damian DD, Rus D (2016) Ingestible, controllable, and degradable origami robot for patching stomach wounds. In: Proc.—IEEE int. conf. robot. autom., pp 909–916. https://doi.org/10.1109/ICRA.2016.7487222

  131. Xu H, Medina-Sánchez M, Magdanz V, Schwarz L, Hebenstreit F, Schmidt OG (2018) Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 12:327–337. https://doi.org/10.1021/acsnano.7b06398

    Article  CAS  PubMed  Google Scholar 

  132. Lu H, Zhang M, Yang Y, Huang Q, Fukuda T, Wang Z et al (2018) A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat Commun 9:3944–3951. https://doi.org/10.1038/s41467-018-06491-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Beccani M, Di Natali C, Aiello G, Benjamin C, Susilo E, Valdastri P (2015) A Magnetic drug delivery Capsule based on a coil actuation mechanism. Proc Eng 120:53–56. https://doi.org/10.1016/j.proeng.2015.08.564

    Article  Google Scholar 

  134. Cianchetti M, Calisti M, Margheri L, Kuba M, Laschi C (2015) Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot. Bioinspir Biomim 10:035003. https://doi.org/10.1088/1748-3190/10/3/035003

    Article  CAS  PubMed  Google Scholar 

  135. Tech Briefs TV (2021) Octobot: first autonomous, untethered, entirely soft robot—tech briefs. https://www.techbriefs.com/component/content/article/tb/tv/31492. Accessed 14 Apr 2021

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nainwal, N., Bahuguna, R., Banerjee, S., Saharan, V.A. (2022). Historical Developments on Computer Applications in Pharmaceutics. In: Saharan, V.A. (eds) Computer Aided Pharmaceutics and Drug Delivery. Springer, Singapore. https://doi.org/10.1007/978-981-16-5180-9_2

Download citation

Publish with us

Policies and ethics