Skip to main content

THz Image Processing and Its Applications

  • Chapter
  • First Online:
Generation, Detection and Processing of Terahertz Signals

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 794))

Abstract

This chapter labels the recent advances of terahertz (THz or 1012 Hz) technology-based image processing and its applications. In short, the sandwiched regime between infrared and microwaves, bridging the gap amid optics and electronics is renowned as the THz. THz image processing deals with the interaction of matters in the sub-millimetre wavelength band (ca. 300 GHz to 3 THz) of a distinct electromagnetic spectrum indistinguishable from the other spectroscopic techniques. The THz regime also known as the “THz gap” for a long time as neither microwave nor optical devices could entirely subjugator this mysterious realm with its countless unseen scientific assets. Thus, the discovery of THz imaging techniques becomes successful to fill the gap. In general, the traditional THz technology can simultaneously acquire both image and spectral information to address various fields such as security, aerospace industries, medicine, materials science, biomedical imaging and others. The development and commercialization of THz imaging systems are now broadly accepted as the accessible alternative roots, such as electron lasers, Smith-Pur-cell emitters, backward wave oscillators, synchrotrons, are relatively expensive components. Therefore, THz image processing tries to find the solution through its generation, manipulation and detection of THz radiation to expand its usability as check-up tool for various imaging applications. For example, higher sensitivity of THz wave is convenient to investigate the specific behaviour of bio-molecules. In addition, advanced digital image processing algorithms in association with THz pulsed imaging (TPI) are effective for screening, diagnosis and treatment to examine the 3D structures of biological samples like cancer tumours. Apart from that, THz spectrum might not only impact wireless network architectures (e.g. WLAN/WPAN/D2D) or security screening but also in aerospace industries using diode detectors through non-ionizing radiation. In contrast to X-rays, THz wave is completely harmless that can pass through clothing, objects and packages to recognize the inside materials and substances. At a glance, THz imaging along with detection technology contributes to identify opaque objects with clear borders, shaping this book a must-read for anybody in the arena of digital imaging and biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Safian R, Ghazi G, Mohammadian N (2019) Review of photomixing continuous-wave terahertz systems and current application trends in terahertz domain. Opt Eng 58:110901

    Google Scholar 

  2. Castro-Camus E, Alfaro M (2016) Photoconductive devices for terahertz pulsed spectroscopy: a review. Photonics Res 4:A36–A42

    Article  Google Scholar 

  3. Ghasempour Y, Shrestha R, Charous A, Knightly E, Mittleman DM (2020) Single-shot link discovery for terahertz wireless networks. Nat Commun 11:1–6

    Article  Google Scholar 

  4. Huang S, Wang Y, Yeung D, Ahuja A, Zhang Y, Pickwell-MacPherson E (2008) Tissue characterization using terahertz pulsed imaging in reflection geometry. Phys Med Biol 54:149

    Article  Google Scholar 

  5. Spies JA, Neu J, Tayvah UT, Capobianco MD, Pattengale B, Ostresh S, Schmuttenmaer CA (2020) Terahertz spectroscopy of emerging materials. J Phys Chem C 124:22335–22346

    Article  Google Scholar 

  6. Afsah-Hejri L, Hajeb P, Ara P, Ehsani RJ (2019) A comprehensive review on food applications of terahertz spectroscopy and imaging. Compr Rev Food Sci Food Saf 18:1563–1621

    Article  Google Scholar 

  7. Kiang Y-H, Huq A, Stephens PW, Xu W (2003) Structure determination of enalapril maleate form II from high-resolution X-ray powder diffraction data. J Pharm Sci 92:1844–1853

    Article  Google Scholar 

  8. Baxter JB, Guglietta GW (2011) Terahertz Spectroscopy. Anal Chem 83:4342–4368

    Article  Google Scholar 

  9. Shi M, Yu M, Li G, Wang M (2020) A THz fourth-harmonic conversion system expanding microwave to THz band. Infrared Phys Technol 107:103217

    Google Scholar 

  10. Pistore V, Nong H, Vigneron P-B, Garrasi K, Houver S, Li L, Davies AG, Linfield EH, Tignon J, Mangeney J (2021) Millimeter wave photonics with terahertz semiconductor lasers. Nat Commun 12:1–7

    Article  Google Scholar 

  11. Khabibullin RA, Morozov OG, Sakhabutdinov AJ, Nureev II, Kuznetsov AA (2018) Two-frequency radiation forming on chirped FBG for tuning terahertz carriers generation. In: 2018 Systems of signals generating and processing in the field of on board communications, IEEE, pp 1–4

    Google Scholar 

  12. Oda N, Kurashina S, Miyoshi M, Doi K, Ishi T, Sudou T, Morimoto T, Goto H, Sasaki T (2015) Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region. J Infrared Millim Terahertz Waves 36:947–960

    Article  Google Scholar 

  13. Guerboukha H, Nallappan K, Skorobogatiy M (2018) Toward real-time terahertz imaging. Adv Opt Photonics 10:843–938

    Article  Google Scholar 

  14. Yakasai IK, Abas PE, Begum F (2021) Review of porous core photonic crystal fibers for terahertz waveguiding. Optik 229:166284

    Google Scholar 

  15. Huang F, Schulkin B, Altan H, Federici JF, Gary D, Barat R, Zimdars D, Chen M, Tanner D (2004) Terahertz study of 1, 3, 5-trinitro-s-triazine by time-domain and Fourier transform infrared spectroscopy. Appl Phys Lett 85:5535–5537

    Article  Google Scholar 

  16. Upadhya P, Shen Y, Davies A, Linfield E (2003) Terahertz time-domain spectroscopy of glucose and uric acid. J Biol Phys 29:117–121

    Article  Google Scholar 

  17. Chen Y, Liu H, Deng Y, Schauki D, Fitch MJ, Osiander R, Dodson C, Spicer JB, Shur M, Zhang X-C (2004) THz spectroscopic investigation of 2, 4-dinitrotoluene. Chem Phys Lett 400:357–361

    Article  Google Scholar 

  18. Yu B, Zeng F, Yang Y, Xing Q, Chechin A, Xin X, Zeylikovich I, Alfano R (2004) Torsional vibrational modes of tryptophan studied by terahertz time-domain spectroscopy. Biophys J 86:1649–1654

    Article  Google Scholar 

  19. Kutteruf M, Brown C, Iwaki L, Campbell M, Korter T, Heilweil E (2003) Terahertz spectroscopy of short-chain polypeptides. Chem Phys Lett 375:337–343

    Article  Google Scholar 

  20. Kundu BK, Pragti, Mobin SM, Mukhopadhyay S (2020) Studies on the influence of the nuclearity of zinc(ii) hemi-salen complexes on some pivotal biological applications. Dalton Trans 49:15481–15503

    Google Scholar 

  21. Rutz F, Koch M, Khare S, Moneke M, Richter H, Ewert U, Waves M (2006) Terahertz quality control of polymeric products. Int J Infrared 27:547–556

    Article  Google Scholar 

  22. Banerjee D, Von Spiegel W, Thomson M, Schabel S, Roskos H (2008) Diagnosing water content in paper by terahertz radiation. Opt Express 16:9060–9066

    Article  Google Scholar 

  23. Hernandez-Serrano A, Corzo-Garcia S, Garcia-Sanchez E, Alfaro M, Castro-Camus E (2014) Quality control of leather by terahertz time-domain spectroscopy. Appl Opt 53:7872–7876

    Article  Google Scholar 

  24. Gowen AA, O’Sullivan C, O’Donnell C (2012) Technology, Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control. Trends Food Sci 25:40–46

    Article  Google Scholar 

  25. Ghann W, Rahman A, Rahman A, Uddin J (2016) Interaction of sensitizing dyes with nanostructured TiO 2 film in Dye-Sensitized solar cells using terahertz spectroscopy. Sci Rep 6:1–11

    Article  Google Scholar 

  26. Uddin J (2017) Terahertz (THz) spectroscopy: a cutting‐edge technology. Wiley, Hoboken, NJ, USA, 2006

    Google Scholar 

  27. Taday PF (2004) Applications of terahertz spectroscopy to pharmaceutical sciences. Philos Trans R Soc London. Ser: Math Phys Eng Sci 362:351–364

    Google Scholar 

  28. Shen Y-C (2011) Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int J Pharm 417:48–60

    Article  Google Scholar 

  29. McIntosh AI, Yang B, Goldup SM, Watkinson M, Donnan RS (2012) Terahertz spectroscopy: a powerful new tool for the chemical sciences? Chem Soc Rev 41:2072–2082

    Article  Google Scholar 

  30. Rahman A, Frenchek S, Kilfoyle B, Patterkine L, Rahman A, Michniak-Kohn B (2012) Diffusion kinetics permeation concentration of human stratum corneum characterization by terahertz scanning reflectometry. Drug Dev Delivery

    Google Scholar 

  31. Pickwell E, Cole BE, Fitzgerald AJ, Pepper M, Wallace VPJPiM (2004) Biology, In vivo study of human skin using pulsed terahertz radiation. Phys Med 49, 1595

    Google Scholar 

  32. Woodward RM, Wallace VP, Pye RJ, Cole BE, Arnone DD, Linfield EH, Pepper M (2003) Terahertz pulse imaging of ex vivo basal cell carcinoma. J Investig Dermatol 120:72–78

    Article  Google Scholar 

  33. Woodward RM, Cole BE, Wallace VP, Pye RJ, Arnone DD, Linfield EH, Pepper M (2002) Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys Med Biol 47:3853

    Article  Google Scholar 

  34. Ashworth PC, Pickwell-MacPherson E, Provenzano E, Pinder SE, Purushotham AD, Pepper M, Wallace VP (2009) Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt Express 17:12444–12454

    Article  Google Scholar 

  35. Plusquellic DF, Siegrist K, Heilweil EJ, Esenturk O (2007) Applications of terahertz spectroscopy in biosystems. Chem Phys Chem 8:2412–2431

    Article  Google Scholar 

  36. Globus T, Woolard D, Khromova T, Crowe T, Bykhovskaia M, Gelmont B, Hesler J, Samuels A (2003) THz-spectroscopy of biological molecules. J Biol Phys 29:89–100

    Article  Google Scholar 

  37. Crawley DA, Longbottom C, Cole BE, Ciesla CM, Arnone D, Wallace VP, Pepper M (2003) Terahertz pulse imaging: a pilot study of potential applications in dentistry. Caries Res 37:352–359

    Article  Google Scholar 

  38. Crawley DA, Longbottom C, Wallace VP, Cole BE, Arnone DD, Pepper M (2003) Three-dimensional terahertz pulse imaging of dental tissue. J Biomed Opt 8:303–307

    Article  Google Scholar 

  39. Sim YC, Park JY, Ahn K-M, Park C, Son J-H (2013) Terahertz imaging of excised oral cancer at frozen temperature. Biomed Opt Express 4:1413–1421

    Article  Google Scholar 

  40. Kamburoğlu K, Yetimoĝlu N (2014) Applications of terahertz imaging in medicine. OMICS J Radiol 3, e127

    Google Scholar 

  41. Yang X, Zhao X, Yang K, Liu Y, Liu Y, Fu W, Luo Y (2016) Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol 34:810–824

    Article  Google Scholar 

  42. Shen Y, Lo AT, Taday P, Cole B, Tribe W, Kemp M (2005) Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl Phys Lett 86, 241116

    Google Scholar 

  43. Davies AG, Burnett AD, Fan W, Linfield EH, Cunningham JE (2008) Terahertz spectroscopy of explosives and drugs. Mater Today 11:18–26

    Article  Google Scholar 

  44. Liu J, Dai J, Chin SL, Zhang X-C (2010) Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat Photonics 4:627

    Article  Google Scholar 

  45. Gorenflo S, Tauer U, Hinkov I, Lambrecht A, Buchner R, Helm H (2006) Dielectric properties of oil–water complexes using terahertz transmission spectroscopy. Chem Phys Lett 421:494–498

    Article  Google Scholar 

  46. Cunnell R, Luce T, Collins J, Rungsawang R, Freeman J, Beere H, Ritchie D, Gladden L, Johns M, Zeitler J (2009) Quantification of emulsified water content in oil using a terahertz quantum cascade laser. In: 2009 34th international conference on infrared, millimeter, and terahertz waves. IEEE, pp 1–2

    Google Scholar 

Download references

Acknowledgements

The first author gladly thanks his mother, Mrs. Champa Kundu for her constant moral support and encouragement to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidyut Kumar Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kundu, B.K., Pragti (2022). THz Image Processing and Its Applications. In: Acharyya, A., Biswas, A., Das, P. (eds) Generation, Detection and Processing of Terahertz Signals. Lecture Notes in Electrical Engineering, vol 794. Springer, Singapore. https://doi.org/10.1007/978-981-16-4947-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4947-9_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4946-2

  • Online ISBN: 978-981-16-4947-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics