Skip to main content

The Polysite Pharmacology of TREK K2P Channels

  • Chapter
  • First Online:
Ion Channels in Biophysics and Physiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1349))

Abstract

K2P (KCNK) potassium channels form “background” or “leak” currents that have critical roles in cell excitability control in the brain, cardiovascular system, and somatosensory neurons. Similar to many ion channel families, studies of K2Ps have been limited by poor pharmacology. Of six K2P subfamilies, the thermo- and mechanosensitive TREK subfamily comprising K2P2.1 (TREK-1), K2P4.1 (TRAAK), and K2P10.1 (TREK-2) are the first to have structures determined for each subfamily member. These structural studies have revealed key architectural features that underlie K2P function and have uncovered sites residing at every level of the channel structure with respect to the membrane where small molecules or lipids can control channel function. This polysite pharmacology within a relatively small (~70 kDa) ion channel comprises four structurally defined modulator binding sites that occur above (Keystone inhibitor site), at the level of (K2P modulator pocket), and below (Fenestration and Modulatory lipid sites) the C-type selectivity filter gate that is at the heart of K2P function. Uncovering this rich structural landscape provides the framework for understanding and developing subtype-selective modulators to probe K2P function that may provide leads for drugs for anesthesia, pain, arrhythmia, ischemia, and migraine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  2. Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA (2005) Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev 57:387–395

    Article  CAS  PubMed  Google Scholar 

  3. Enyedi P, Czirjak G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    Article  CAS  PubMed  Google Scholar 

  4. Feliciangeli S, Chatelain FC, Bichet D, Lesage F (2014) The family of K2P channels: salient structural and functional properties. J Physiol. https://doi.org/10.1113/jphysiol.2014.287268

  5. Renigunta V, Schlichthorl G, Daut J (2015) Much more than a leak: structure and function of K(2)p-channels. Pflugers Arch 467:867–894

    Article  CAS  PubMed  Google Scholar 

  6. Goldstein SA et al (2005) International Union of Pharmacology. LV Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 57:527–540

    Article  CAS  PubMed  Google Scholar 

  7. Douguet D, Honore E (2019) Mammalian mechanoelectrical transduction: structure and function of force-gated ion channels. Cell 179:340–354

    Article  CAS  PubMed  Google Scholar 

  8. Sepulveda FV, Pablo Cid L, Teulon J, Niemeyer MI (2015) Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Physiol Rev 95:179–217

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sterbuleac D (2019) Molecular determinants of chemical modulation of two-pore domain potassium channels. Chem Biol Drug Des 94:1596–1614

    Article  CAS  PubMed  Google Scholar 

  10. Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Science 335:432–436

    Article  CAS  PubMed  Google Scholar 

  11. Lolicato M et al (2017) K2P2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site. Nature 547:364–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rödström KEJ et al (2020) A lower X-gate in TASK channels traps inhibitors within the vestibule. Nature 582:443–447

    Article  PubMed  Google Scholar 

  13. Brohawn SG, del Marmol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dong YY et al (2015) K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 347:1256–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Payandeh J, Minor DL Jr (2014) Bacterial Voltage-Gated Sodium Channels (BacNas) from the soil, sea, and salt lakes enlighten molecular mechanisms of electrical signaling and pharmacology in the brain and heart. J Mol Biol. https://doi.org/10.1016/j.jmb.2014.08.010

  16. Catterall WA, Wisedchaisri G, Zheng N (2017) The chemical basis for electrical signaling. Nat Chem Biol 13:455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bagriantsev SN, Clark KA, Minor DL Jr (2012) Metabolic and thermal stimuli control K(2P)2.1 (TREK-1) through modular sensory and gating domains. EMBO J 31:3297–3308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bagriantsev SN, Peyronnet R, Clark KA, Honore E, Minor DL Jr (2011) Multiple modalities converge on a common gate to control K2P channel function. EMBO J 30:3594–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cohen A, Ben-Abu Y, Hen S, Zilberberg N (2008) A novel mechanism for human K2P2.1 channel gating. Facilitation of C-type gating by protonation of extracellular histidine residues. J Biol Chem 283:19448–19455

    Article  CAS  PubMed  Google Scholar 

  20. Piechotta PL et al (2011) The pore structure and gating mechanism of K2P channels. EMBO J 30:3607–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schewe M et al (2016) A non-canonical voltage-sensing mechanism controls gating in K2P K(+) channels. Cell 164:937–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lolicato M et al (2020) K2P channel C-type gating involves asymmetric selectivity filter order-disorder transitions. bioRxiv. https://doi.org/10.1101/2020.03.20.000893

  23. Brohawn SG, Campbell EB, MacKinnon R (2013) Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K+ channel. Proc Natl Acad Sci U S A 110:2129–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brohawn SG, Campbell EB, MacKinnon R (2014) Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516:126–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lolicato M, Riegelhaupt PM, Arrigoni C, Clark KA, Minor DL Jr (2014) Transmembrane helix straightening and buckling underlies activation of mechanosensitive and thermosensitive K(2P) channels. Neuron 84:1198–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McClenaghan C et al (2016) Polymodal activation of the TREK-2 K2P channel produces structurally distinct open states. J Gen Physiol 147:497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aryal P et al (2017) Bilayer-mediated structural transitions control mechanosensitivity of the TREK-2 K2P channel. Structure 25:708–718. e702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kanda H et al (2019) TREK-1 and TRAAK are principal K(+) channels at the nodes of ranvier for rapid action potential conduction on mammalian myelinated afferent nerves. Neuron. https://doi.org/10.1016/j.neuron.2019.08.042

  29. Brohawn SG et al (2019) The mechanosensitive ion channel TRAAK is localized to the mammalian node of Ranvier. eLife 8

    Google Scholar 

  30. Heurteaux C et al (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23:2684–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lazarenko RM et al (2010) Anesthetic activation of central respiratory chemoreceptor neurons involves inhibition of a THIK-1-like background K(+) current. J Neurosci 30:9324–9334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Madry C et al (2018) Microglial ramification, surveillance, and interleukin-1beta release are regulated by the two-pore domain K(+) channel THIK-1. Neuron 97:299–312. e296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoshida K et al (2018) Leak potassium channels regulate sleep duration. Proc Natl Acad Sci U S A 115:E9459–E9468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alloui A et al (2006) TREK-1, a K+ channel involved in polymodal pain perception. EMBO J 25:2368–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Devilliers M et al (2013) Activation of TREK-1 by morphine results in analgesia without adverse side effects. Nat Commun 4:2941

    Article  PubMed  Google Scholar 

  36. Vivier D et al (2017) Development of the first two-pore domain potassium channel TREK-1 (TWIK-Related K+ Channel 1)-selective agonist possessing in vivo anti-nociceptive activity. J Med Chem. https://doi.org/10.1021/acs.jmedchem.6b01285

  37. Decher N et al (2017) Sodium permeable and “hypersensitive” TREK-1 channels cause ventricular tachycardia. EMBO Mol Med 9:403–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laigle C, Confort-Gouny S, Le Fur Y, Cozzone PJ, Viola A (2012) Deletion of TRAAK potassium channel affects brain metabolism and protects against ischemia. PLoS One 7:e53266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu X et al (2013) Involvement of TREK-1 activity in astrocyte function and neuroprotection under simulated ischemia conditions. J Mol Neurosci 49:499–506

    Article  CAS  PubMed  Google Scholar 

  40. Abraham DM et al (2018) The two-pore domain potassium channel TREK-1 mediates cardiac fibrosis and diastolic dysfunction. J Clin Invest 128:4843–4855

    Article  PubMed  PubMed Central  Google Scholar 

  41. Heurteaux C et al (2006) Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat Neurosci 9:1134–1141

    Article  CAS  PubMed  Google Scholar 

  42. Royal P et al (2019) Migraine-associated TRESK mutations increase neuronal excitability through alternative translation initiation and inhibition of TREK. Neuron 101:232–245. e236

    Article  CAS  PubMed  Google Scholar 

  43. Yarishkin O et al (2018) TREK-1 channels regulate pressure sensitivity and calcium signaling in trabecular meshwork cells. J Gen Physiol 150:1660–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lambert M et al (2018) Loss of KCNK3 is a hallmark of RV hypertrophy/dysfunction associated with pulmonary hypertension. Cardiovasc Res 114:880–893

    Article  CAS  PubMed  Google Scholar 

  45. Schwingshackl A (2016) The role of stretch-activated ion channels in acute respiratory distress syndrome: finally a new target? Am J Physiol Lung Cell Mol Physiol 311:L639–L652

    Article  PubMed  PubMed Central  Google Scholar 

  46. Petho Z, Najder K, Bulk E, Schwab A (2019) Mechanosensitive ion channels push cancer progression. Cell Calcium 80:79–90

    Article  CAS  PubMed  Google Scholar 

  47. Mathie A, Veale EL, Cunningham KP, Holden RG, Wright PD (2020) Two-pore domain potassium channels as drug targets: anesthesia and beyond. Annu Rev Pharmacol Toxicol. https://doi.org/10.1146/annurev-pharmtox-030920-111536

  48. Bagriantsev SN et al (2013) A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels. ACS Chem Biol 8:1841–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tian F et al (2019) A small-molecule compound selectively activates K2P Channel TASK-3 by acting at two distant clusters of residues. Mol Pharmacol 96:26–35

    Article  CAS  PubMed  Google Scholar 

  50. Wright PD et al (2019) Pranlukast is a novel small molecule activator of the two-pore domain potassium channel TREK2. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2019.09.093

  51. Su ZW, Brown EC, Wang WW, MacKinnon R (2016) Novel cell-free high-throughput screening method for pharmacological tools targeting K+ channels. Proc Natl Acad Sci USA 113:5748–5753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pope L et al (2018) Protein and chemical determinants of BL-1249 action and selectivity for K2P channels. ACS Chem Neurosci 9:3153–3165

    Article  CAS  PubMed  Google Scholar 

  53. Schewe M et al (2019) A pharmacological master key mechanism that unlocks the selectivity filter gate in K(+) channels. Science 363:875–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pope L, Lolicato M, Minor DL Jr (2020) Polynuclear ruthenium amines inhibit K2P channels via a “Finger in the Dam” mechanism. Cell Chem Biol. https://doi.org/10.1016/j.chembiol.2020.01.011

  55. Gada K, Plant LD (2019) Two-pore domain potassium channels: emerging targets for novel analgesic drugs: IUPHAR Review 26. Br J Pharmacol 176:256–266

    Article  CAS  PubMed  Google Scholar 

  56. Vivier D, Bennis K, Lesage F, Ducki S (2016) Perspectives on the two-pore domain potassium channel TREK-1 (TWIK-Related K(+) Channel 1). A novel therapeutic target? J Med Chem 59:5149–5157

    Article  CAS  PubMed  Google Scholar 

  57. Hancox JC, James AF, Marrion NV, Zhang H, Thomas D (2016) Novel ion channel targets in atrial fibrillation. Expert Opin Ther Targets 20:947–958

    Article  CAS  PubMed  Google Scholar 

  58. Decher N, Kiper AK, Rinne S (2017) Stretch-activated potassium currents in the heart: focus on TREK-1 and arrhythmias. Prog Biophys Mol Biol 130:223–232

    Article  CAS  PubMed  Google Scholar 

  59. Bagal SK et al (2013) Ion channels as therapeutic targets: a drug discovery perspective. J Med Chem 56:593–624

    Article  CAS  PubMed  Google Scholar 

  60. Borsotto M et al (2015) Targeting two-pore domain K(+) channels TREK-1 and TASK-3 for the treatment of depression: a new therapeutic concept. Br J Pharmacol 172:771–784

    Article  CAS  PubMed  Google Scholar 

  61. Enyedi P, Czirjak G (2015) Properties, regulation, pharmacology, and functions of the K(2)p channel, TRESK. Pflugers Arch 467:945–958

    Article  CAS  PubMed  Google Scholar 

  62. Dadi PK et al (2016) Selective small molecule activators of TREK-2 channels stimulate DRG c-fiber nociceptor K2P currents and limit calcium influx. ACS Chem Neurosci. https://doi.org/10.1021/acschemneuro.6b00301

  63. Rodrigues N et al (2014) Synthesis and structure-activity relationship study of substituted caffeate esters as antinociceptive agents modulating the TREK-1 channel. Eur J Med Chem 75:391–402

    Article  CAS  PubMed  Google Scholar 

  64. Liao P et al (2019) Selective activation of TWIK-related acid-sensitive K(+) 3 subunit-containing channels is analgesic in rodent models. Sci Transl Med 11

    Google Scholar 

  65. Honore E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8:251–261

    Article  CAS  PubMed  Google Scholar 

  66. Maingret F et al (2000) TREK-1 is a heat-activated background K(+) channel. EMBO J 19:2483–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kang D, Choe C, Kim D (2005) Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J Physiol 564:103–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chemin J et al (2005) A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO J 24:44–53

    Article  CAS  PubMed  Google Scholar 

  69. Maingret F, Fosset M, Lesage F, Lazdunski M, Honoré E (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274:1381–1387

    Article  CAS  PubMed  Google Scholar 

  70. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696

    Article  CAS  PubMed  Google Scholar 

  71. Honore E, Maingret F, Lazdunski M, Patel AJ (2002) An intracellular proton sensor commands lipid- and mechano-gating of the K(+) channel TREK-1. EMBO J 21:2968–2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chemin J et al (2007) Up- and down-regulation of the mechano-gated K(2P) channel TREK-1 by PIP (2) and other membrane phospholipids. Pflugers Arch 455:97–103

    Article  CAS  PubMed  Google Scholar 

  73. Lopes CM et al (2005) PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels. J Physiol 564:117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Murbartian J, Lei Q, Sando JJ, Bayliss DA (2005) Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels. J Biol Chem 280:30175–30184

    Article  CAS  PubMed  Google Scholar 

  75. Patel AJ et al (1998) A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 17:4283–4290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sandoz G, Douguet D, Chatelain F, Lazdunski M, Lesage F (2009) Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Proc Natl Acad Sci U S A 106:14628–14633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Acosta C et al (2014) TREK2 expressed selectively in IB4-binding C-fiber nociceptors hyperpolarizes their membrane potentials and limits spontaneous pain. J Neurosci 34:1494–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Waxman SG, Zamponi GW (2014) Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci 17:153–163

    Article  CAS  PubMed  Google Scholar 

  79. Bang H, Kim Y, Kim D (2000) TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. J Biol Chem 275:17412–17419

    Article  CAS  PubMed  Google Scholar 

  80. Fink M et al (1996) Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J 15:6854–6862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lesage F, Maingret F, Lazdunski M (2000) Cloning and expression of human TRAAK, a polyunsaturated fatty acids-activated and mechano-sensitive K(+) channel. FEBS Lett 471:137–140

    Article  CAS  PubMed  Google Scholar 

  82. Lengyel M, Czirjak G, Enyedi P (2016) Formation of functional heterodimers by TREK-1 and TREK-2 two-pore domain potassium channel subunits. J Biol Chem 291:13649–13661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Levitz J et al (2016) Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels. Proc Natl Acad Sci U S A 113:4194–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Blin S et al (2016) Mixing and matching TREK/TRAAK subunits generate heterodimeric K2P channels with unique properties. Proc Natl Acad Sci U S A 113:4200–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Qiu Y et al (2020) TREK Channel family activator with a well-defined structure-activation relationship for pain and neurogenic inflammation. J Med Chem 63:3665–3677

    Article  CAS  PubMed  Google Scholar 

  86. Thummler S, Duprat F, Lazdunski M (2007) Antipsychotics inhibit TREK but not TRAAK channels. Biochem Biophys Res Commun 354:284–289

    Article  PubMed  Google Scholar 

  87. Maati HMO et al (2012) Spadin as a new antidepressant: absence of TREK-1-related side effects. Neuropharmacology 62:278–288

    Article  Google Scholar 

  88. Mazella J et al (2010) Spadin, a sortilin-derived peptide, targeting rodent TREK-1 channels: a new concept in the antidepressant drug design. PLoS Biol 8:e1000355

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lesage F, Terrenoire C, Romey G, Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275:28398–28405

    Article  CAS  PubMed  Google Scholar 

  90. Brohawn SG, Su Z, MacKinnon R (2014) Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci U S A 111:3614–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fletcher JM, Greenfield BF, Hardy CJ, Scargill D, Woodhead JL (1961) Ruthenium red. J Chem Soc:2000–2006

    Google Scholar 

  92. Clarke MJ (2002) Ruthenium metallopharmaceuticals. Coordin Chem Rev 232:69–93

    Article  CAS  Google Scholar 

  93. Braun G, Lengyel M, Enyedi P, Czirjak G (2015) Differential sensitivity of TREK-1, TREK-2 and TRAAK background potassium channels to the polycationic dye ruthenium red. Br J Pharmacol 172:1728–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Czirjak G, Enyedi P (2002) Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J Biol Chem 277:5426–5432

    Article  CAS  PubMed  Google Scholar 

  95. Musset B et al (2006) Effects of divalent cations and spermine on the K+ channel TASK-3 and on the outward current in thalamic neurons. J Physiol 572:639–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Czirjak G, Enyedi P (2003) Ruthenium red inhibits TASK-3 potassium channel by interconnecting glutamate 70 of the two subunits. Mol Pharmacol 63:646–652

    Article  CAS  PubMed  Google Scholar 

  97. Gonzalez W et al (2013) An extracellular ion pathway plays a central role in the cooperative gating of a K(2P) K+ channel by extracellular pH. J Biol Chem 288:5984–5991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Caterina MJ et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  99. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  CAS  PubMed  Google Scholar 

  100. Guler AD et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    Article  CAS  PubMed  Google Scholar 

  102. Voets T et al (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277:33704–33710

    Article  CAS  PubMed  Google Scholar 

  103. Arif Pavel M et al (2016) Function and regulation of TRPP2 ion channel revealed by a gain-of-function mutant. Proc Natl Acad Sci U S A 113:E2363–E2372

    Article  PubMed  PubMed Central  Google Scholar 

  104. Voets T et al (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19–25

    Article  CAS  PubMed  Google Scholar 

  105. Story GM et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  CAS  PubMed  Google Scholar 

  106. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  CAS  PubMed  Google Scholar 

  107. Chaudhuri D, Sancak Y, Mootha VK, Clapham DE (2013) MCU encodes the pore conducting mitochondrial calcium currents. elife 2:e00704

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rahamimoff R, Alnaes E (1973) Inhibitory action of Ruthenium red on neuromuscular transmission. Proc Natl Acad Sci U S A 70:3613–3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moore CL (1971) Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun 42:298–305

    Article  CAS  PubMed  Google Scholar 

  110. Ma Z et al (2012) Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability. Proc Natl Acad Sci U S A 109:E1963–E1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dreses-Werringloer U et al (2013) CALHM1 controls the Ca(2)(+)-dependent MEK, ERK, RSK and MSK signaling cascade in neurons. J Cell Sci 126:1199–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Choi W, Clemente N, Sun W, Du J, Lu W (2019) The structures and gating mechanism of human calcium homeostasis modulator 2. Nature. https://doi.org/10.1038/s41586-019-1781-3

  113. Ma J (1993) Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle. J Gen Physiol 102:1031–1056

    Article  CAS  PubMed  Google Scholar 

  114. Smith JS et al (1988) Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J Gen Physiol 92:1–26

    Article  CAS  PubMed  Google Scholar 

  115. Coste B et al (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhao QC et al (2016) Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. Neuron 89:1248–1263

    Article  CAS  PubMed  Google Scholar 

  117. Ying WL, Emerson J, Clarke MJ, Sanadi DR (1991) Inhibition of mitochondrial calcium ion transport by an oxo-bridged dinuclear ruthenium ammine complex. Biochemistry 30:4949–4952

    Article  CAS  PubMed  Google Scholar 

  118. Baughman JM et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Oxenoid K et al (2016) Architecture of the mitochondrial calcium uniporter. Nature 533:269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Woods JJ, Wilson JJ (2019) Inhibitors of the mitochondrial calcium uniporter for the treatment of disease. Curr Opin Chem Biol 55:9–18

    Article  PubMed  Google Scholar 

  121. Hardy JA, Wells JA (2004) Searching for new allosteric sites in enzymes. Curr Opin Struct Biol 14:706–715

    Article  CAS  PubMed  Google Scholar 

  122. Soussia IB et al (2018) Antagonistic effect of a cytoplasmic domain on the basal activity of polymodal potassium channels. Front Mol Neurosci 11:301

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chemin J et al (2005) Lysophosphatidic acid-operated K+ channels. J Biol Chem 280:4415–4421

    Article  CAS  PubMed  Google Scholar 

  124. Duprat F et al (2000) The neuroprotective agent riluzole activates the two P domain K(+) channels TREK-1 and TRAAK. Mol Pharmacol 57:906–912

    CAS  PubMed  Google Scholar 

  125. Zhuo RG et al (2016) Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel. Sci Rep 6:21248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Beltran L, Beltran M, Aguado A, Gisselmann G, Hatt H (2013) 2-Aminoethoxydiphenyl borate activates the mechanically gated human KCNK channels KCNK 2 (TREK-1), KCNK 4 (TRAAK), and KCNK 10 (TREK-2). Front Pharmacol 4:63

    Article  PubMed  PubMed Central  Google Scholar 

  127. Loucif AJC et al (2017) GI-530159, a novel, selective, mechanosensitive two-pore-domain potassium (K2P ) channel opener, reduces rat dorsal root ganglion neuron excitability. Br J Pharmacol. https://doi.org/10.1111/bph.14098

  128. Veale EL, Mathie A (2016) Aristolochic acid, a plant extract used in the treatment of pain and linked to Balkan endemic nephropathy, is a regulator of K2P channels. Br J Pharmacol 173:1639–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Luo Q et al (2017) An allosteric ligand-binding site in the extracellular cap of K2P channels. Nat Commun 8:378

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kennard LE et al (2005) Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. Br J Pharmacol 144:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fink M et al (1998) A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J 17:3297–3308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank F. C. Chatelain for comments on the manuscript and P. Deal for help with figure preparation. This work was supported by grant NIH-R01-MH093603 to D.L.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Minor Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pope, L., Minor, D.L. (2021). The Polysite Pharmacology of TREK K2P Channels. In: Zhou, L. (eds) Ion Channels in Biophysics and Physiology. Advances in Experimental Medicine and Biology, vol 1349. Springer, Singapore. https://doi.org/10.1007/978-981-16-4254-8_4

Download citation

Publish with us

Policies and ethics