Abstract
With the widespread use of mobile social software, QR code plays an important role in acquiring messages from offline to online. However, the plain black and white blocks of QR code cannot attract users in social software, thus some popular software like Wechat beautify the QR code to improve its visual appeal. Inspired by the mentioned fact, this paper proposes a novel 2D image code named FaceCode. FaceCode is a Convolution Neural Network (CNN) based framework to embed information into a picture and beautify it simultaneously. For an input picture, FaceCode firstly uses a style transfer neural network to make the picture artistic, and then an embedding network cascading to the style transfer network embeds the personal information of users into the picture. The information is invisible but can be recognized by a phone camera. With the help of FaceCode, the users can hide their personal information in their profile pictures in social software. Experiments show that FaceCode can generate personalized profile pictures while maintaining the accuracy of recognizing the hidden information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Gao, Z., Zhai, G., Hu, C.: The invisible QR code. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 1047–1050 (2015)
Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: IEEE Conference on Neural Information Processing Systems (NIPS) (2015)
Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40(1), 49–70 (2000)
Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)
Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: HiDDeN: hiding data with deep networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 682–697. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_40
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Tancik, M., Mildenhall, B., Ng, R.: StegaStamp: invisible hyperlinks in physical photographs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2117–2126 (2020)
Jia, J., et al.: Robust invisible hyperlinks in physical photographs based on 3D rendering attacks. arXiv preprint arXiv:1912.01224 (2019)
Rothe, R., Timofte, R., Van Gool, L.: DEX: Deep EXpectation of apparent age from a single image. In: IEEE International Conference on Computer Vision Workshops (ICCVW) (2015)
Acknowledgement
This work is supported by Science and Technology Commission of Shanghai Municipality (STCSM, GrantNos. 19DZ1209303, 18DZ1200102).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Deng, Y., Jia, J., Zhu, D., Yang, H., Zhai, G. (2021). FaceCode: An Artistic Face Image with Invisible Hyperlink. In: Zhai, G., Zhou, J., Yang, H., An, P., Yang, X. (eds) Digital TV and Wireless Multimedia Communication. IFTC 2020. Communications in Computer and Information Science, vol 1390. Springer, Singapore. https://doi.org/10.1007/978-981-16-1194-0_6
Download citation
DOI: https://doi.org/10.1007/978-981-16-1194-0_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-1193-3
Online ISBN: 978-981-16-1194-0
eBook Packages: Computer ScienceComputer Science (R0)