Skip to main content

FaceCode: An Artistic Face Image with Invisible Hyperlink

  • Conference paper
  • First Online:
Digital TV and Wireless Multimedia Communication (IFTC 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1390))

  • 1282 Accesses

Abstract

With the widespread use of mobile social software, QR code plays an important role in acquiring messages from offline to online. However, the plain black and white blocks of QR code cannot attract users in social software, thus some popular software like Wechat beautify the QR code to improve its visual appeal. Inspired by the mentioned fact, this paper proposes a novel 2D image code named FaceCode. FaceCode is a Convolution Neural Network (CNN) based framework to embed information into a picture and beautify it simultaneously. For an input picture, FaceCode firstly uses a style transfer neural network to make the picture artistic, and then an embedding network cascading to the style transfer network embeds the personal information of users into the picture. The information is invisible but can be recognized by a phone camera. With the help of FaceCode, the users can hide their personal information in their profile pictures in social software. Experiments show that FaceCode can generate personalized profile pictures while maintaining the accuracy of recognizing the hidden information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  2. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  3. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  4. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  5. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  6. Gao, Z., Zhai, G., Hu, C.: The invisible QR code. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 1047–1050 (2015)

    Google Scholar 

  7. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: IEEE Conference on Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  8. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40(1), 49–70 (2000)

    Article  Google Scholar 

  9. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  10. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: HiDDeN: hiding data with deep networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 682–697. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_40

    Chapter  Google Scholar 

  11. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Tancik, M., Mildenhall, B., Ng, R.: StegaStamp: invisible hyperlinks in physical photographs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2117–2126 (2020)

    Google Scholar 

  14. Jia, J., et al.: Robust invisible hyperlinks in physical photographs based on 3D rendering attacks. arXiv preprint arXiv:1912.01224 (2019)

  15. Rothe, R., Timofte, R., Van Gool, L.: DEX: Deep EXpectation of apparent age from a single image. In: IEEE International Conference on Computer Vision Workshops (ICCVW) (2015)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Science and Technology Commission of Shanghai Municipality (STCSM, GrantNos. 19DZ1209303, 18DZ1200102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangtao Zhai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, Y., Jia, J., Zhu, D., Yang, H., Zhai, G. (2021). FaceCode: An Artistic Face Image with Invisible Hyperlink. In: Zhai, G., Zhou, J., Yang, H., An, P., Yang, X. (eds) Digital TV and Wireless Multimedia Communication. IFTC 2020. Communications in Computer and Information Science, vol 1390. Springer, Singapore. https://doi.org/10.1007/978-981-16-1194-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1194-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1193-3

  • Online ISBN: 978-981-16-1194-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics