Skip to main content

Structural and Functional Rhizospheric Microbial Diversity Analysis by Cutting-Edge Biotechnological Tools

  • Chapter
  • First Online:
Omics Science for Rhizosphere Biology

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

The rhizosphere is a composite ecosystem which supports multiple bacterial populations that nourishes the terrestrial biosphere and plays a crucial role in the continuous recycling of minerals, nutrients, and organic matter through the soil. Diverse varieties of molecular tools based on immediate isolation and analysis of various compounds from environmental samples such as lipids, nucleic acids, and peptides have been discovered which have provided structural and functional data about microbial communities present in rhizospheric soil. With the advent of next-generation sequencing technologies (NGS), it has become possible to delve deeper into the rhizosphere microbiome to understand the unknown aspects of it. This has resulted in a shift from traditional approaches to the modern omics-based approach based on NGS sequencing technologies for discovering and distinguishing the vast microbial diversity to understand their interactions with different environmental factors. The major objective of this chapter is to provide insights on structural and functional rhizospheric microbial diversity analysis by the application of cutting-edge biotechnological tools. We have first glanced through the basic concepts of rhizosphere and its importance in plant system, the common rhizospheric microbial population, and looked at the plant–microbe interactions which are of prime importance in the rhizosphere ecosystem. Next, we come to the molecular tools used for rhizospheric microscopic diversity analysis—a detailed view into a few of the traditional approaches used for diversity approaches before proceeding to the rapidly emerging and more popular omics-based approaches used for rhizosphere microbial diversity analysis. We have also identified the merits and demerits, future opportunities of omics-based approaches in rhizosphere microbiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou-Shanab RA, Van Berkum P, Angle JS, Delorme TA, Chaney RL, Ghozlan HA, Ghanem K, Moawad H (2010) Characterization of Ni-resistant bacteria in the rhizosphere of the hyperaccumulator Alyssum murale by 16S rRNA gene sequence analysis. World J Microbiol Biotechnol 26(1):101–108

    Google Scholar 

  • Ali A, Mustofa M, Asmara W, Rante H, Widada J (2018) Diversity and functional characterization of antifungal-producing Streptomyces-like microbes isolated from the rhizosphere of cajuput plants (Melaleuca leucodendron L.). Malaysian J Microbiol 14(7):663–673

    Google Scholar 

  • Alzubaidy H, Essack M, Malas TB, Bokhari A, Motwalli O, Kamanu FK, Jamhor SA, Mokhtar NA, Antunes A, Simões MF, Alam I (2016) Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea. Gene 576(2):626–636

    Google Scholar 

  • Andreote FD, JimĂ©nez DJ, Chaves D, Dias ACF, Luvizotto DM, Dini-Andreote F, Fasanella CC, Lopez MV, Baena S, Taketani RG, de Melo IS (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS One 7(6):e38600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198(1):264–273

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Liang J, Liu R, Hu C, Qu J (2014) Metagenomic analysis reveals microbial diversity and function in the rhizosphere soil of a constructed wetland. Environ Technol 35(20):2521–2527

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Huo Y, Liao K, Qu J (2017) Influence of microbial community diversity and function on pollutant removal in ecological wastewater treatment. Appl Microbiol Biotechnol 101(19):7293–7302

    Article  CAS  PubMed  Google Scholar 

  • Bao Z, Okubo T, Kubota K, Kasahara Y, Tsurumaru H, Anda M, Ikeda S, Minamisawa K (2014) Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 80(16):5043–5052

    Article  PubMed  PubMed Central  Google Scholar 

  • Benidire L, Pereira SI, Naylo A, Castro PM, Boularbah A (2020) Do metal contamination and plant species affect microbial abundance and bacterial diversity in the rhizosphere of metallophytes growing in mining areas in a semiarid climate? J Soils Sediments 20(2):1003–1017

    Article  Google Scholar 

  • Bhattacharyya P, Roy KS, Das M, Ray S, Balachandar D, Karthikeyan S, Nayak AK, Mohapatra T (2016) Elucidation of rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated carbon dioxide and temperature using whole genome metagenomic approach. Sci Total Environ 542:886–898

    Article  CAS  PubMed  Google Scholar 

  • Bona E, Massa N, Novello G, Boatti L, Cesaro P, Todeschini V, Magnelli V, Manfredi M, Marengo E, Mignone F, Berta G (2019) Metaproteomic characterization of the Vitis vinifera rhizosphere. FEMS Microbiol Ecol 95(1):204

    Google Scholar 

  • Bressan M, Roncato MA, Bellvert F, Comte G, el Zahar HF, Achouak W, Berge O (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3(11):1243–1257

    Google Scholar 

  • Bressan M, Achouak W, Berge O (2013) Exogenous glucosinolate produced by transgenic Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. Mol Microb Ecol Rhizosphere 1:1173–1179

    Google Scholar 

  • Cao HX, Schmutzer T, Scholz U, Pecinka A, Schubert I, Vu GT (2015) Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species. Front Microbiol 6:526

    PubMed  PubMed Central  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803

    CAS  PubMed  Google Scholar 

  • Chen J, Arafat Y, Din IU, Yang B, Zhou L, Wang J, Letuma P, Wu H, Qin X, Wu L, Lin S (2019) Nitrogen fertilizer amendment alter the bacterial community structure in the rhizosphere of rice (Oryza sativa L.) and improve crop yield. Front Microbiol 10:2623

    Google Scholar 

  • Da Silva AC, da Costa Rachid CT, de Jesus HE, Rosado AS, Peixoto RS (2017) Predicting the biotechnological potential of bacteria isolated from Antarctic soils, including the rhizosphere of vascular plants. Polar Biol 40(7):1393–1407

    Article  Google Scholar 

  • de los Reyes AM, Ocampo ET, Manuel MC, Mendoza BC (2020) Analysis of the bacterial and fungal community profiles in bulk soil and rhizospheres of three mungbean [Vigna radiata (L.) R. Wilczek] genotypes through PCR-DGGE. Int Lett Nat Sci 77:1–26

    Google Scholar 

  • Ghosh UD, Singh PK, Ganguli S, Saha C, Chandra A, Seal A, Ghosh MM (2019) Rhizospheric soil of Typha angustifolia L. from heavy metal contaminated and free sites: comparative profiling reveals selective abundance of Îł-proteobacteria and β-proteobacteria. IJEB 57(10):733–740

    Google Scholar 

  • Hayden HL, Savin KW, Wadeson J, Gupta VV, Mele PM (2018) Comparative metatranscriptomics of wheat rhizosphere microbiomes in disease suppressive and non-suppressive soils for Rhizoctonia solani AG8. Front Microbiol 9:859

    Google Scholar 

  • Ibekwe AM, Poss JA, Grattan SR, Grieve CM, Suarez D (2010) Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biol Biochem 42(4):567–575

    Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6(7):1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Kothari V, Kothari C, Rank J, Joshi A, Singh RP, Kothari R (2017) Metatranscriptomic studies of the plant rhizosphere for finding biological agents. In: Understanding host-microbiome interactions-an omics approach. Springer, Singapore, pp 267–275

    Google Scholar 

  • Kröber M, Wibberg D, Grosch R, Eikmeyer F, Verwaaijen B, Chowdhury SP, Hartmann A, PĂĽhler A, SchlĂĽter A (2014) Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front Microbiol 5:252

    Google Scholar 

  • Kumar V, AlMomin S, Al-Aqeel H, Al-Salameen F, Nair S, Shajan A (2018) Metagenomic analysis of rhizosphere microflora of oil-contaminated soil planted with barley and alfalfa. PLoS One 13(8):e0202127

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagos L, Maruyama F, Nannipieri P, Mora ML, Ogram A, Jorquera MA (2015) Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: a mini-review. J Soil Sci Plant Nutr 15(2):504–523

    Google Scholar 

  • Lopez-Fuentes E, Ruiz-Valdiviezo VM, Martinez-Romero E, Gutierrez-Miceli FA, Dendooven L, Rincon-Rosales R (2012) Bacterial community in the roots and rhizosphere of Hypericum silenoides Juss. 1804. Afr J Microbiol Res 6(11):2704–2711

    Google Scholar 

  • Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MD, Velazquez-Sepulveda I, Santoyo G (2010) Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol Res 9(4):2372–2380

    Google Scholar 

  • Mattarozzi M, Manfredi M, Montanini B, Gosetti F, Sanangelantoni AM, Marengo E, Careri M, Visioli G (2017) A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Anal Bioanal Chem 409(9):2327–2339

    Article  CAS  PubMed  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA, Van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8(8):1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirete S, Mora-Ruiz MR, Lamprecht-GrandĂ­o M, de Figueras CG, RossellĂł-MĂłra R, González-Pastor JE (2015) Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment. Front Microbiol 6:1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittal D, Shukla R, Verma S, Sagar A, Verma KS, Pandey A, Negi YS, Saini RV, Saini AK (2019) Fire in pine grown regions of Himalayas depletes cultivable plant growth promoting beneficial microbes in the soil. Appl Soil Ecol 139:117–124

    Article  Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2011) Actinobacterial community and diversity in rhizosphere soils of Aquilaria crassna Pierre ex Lec assessed by RT-PCR and PCR-DGGE. Biochem Syst Ecol 39(4–6):509–519

    Google Scholar 

  • Pal S, Roy A, Kazy SK (2019) Exploring microbial diversity and function in petroleum hydrocarbon associated environments through omics approaches. In: Microbial diversity in the genomic era. Academic, Cambridge, pp 171–194

    Chapter  Google Scholar 

  • PĂ©triacq P, Williams A, Cotton A, McFarlane AE, Rolfe SA, Ton J (2017) Metabolite profiling of non-sterile rhizosphere soil. Plant J 92(1):147–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA (2009) Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ Microbiol 11(6):1358–1375

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Pal RR, More RP, Purohit HJ (2016) Metagenomic approach to characterize soil microbial diversity of Phumdi at Loktak Lake. Water Sci Technol 74(9):2075–2086

    Article  PubMed  Google Scholar 

  • Rampadarath S, Bandhoa K, Puchooa D, Jeewon R, Bal S (2018) Metatranscriptomics analysis of mangroves habitats around Mauritius. World J Microbiol Biotechnol 34(4):59

    Article  PubMed  Google Scholar 

  • Reddy GC, Goyal RK, Puranik S, Waghmar V, Vikram KV, Sruthy KS (2020) Biofertilizers toward sustainable agricultural development. In: Plant microbe symbiosis. Springer, Cham, pp 115–128

    Chapter  Google Scholar 

  • Ridl J, Kolar M, Strejcek M, Strnad H, Stursa P, Paces J, Macek T, Uhlik O (2016) Plants rather than mineral fertilization shape microbial community structure and functional potential in legacy contaminated soil. Front Microbiol 7:995

    Article  PubMed  PubMed Central  Google Scholar 

  • SaccĂ  ML, Manici LM, Caputo F, Frisullo S (2019) Changes in rhizosphere bacterial communities associated with tree decline: grapevine esca syndrome case study. Can J Microbiol 65(12):930–943

    Article  PubMed  Google Scholar 

  • Sánchez-PĂ©rez BN, Zenteno-Rojas A, RincĂłn-Molina CI, RuĂ­z-Valdiviezo VM, GutiĂ©rrez-Miceli FA, Vences-Guzmán MA, Villalobos-Maldonado JJ, RincĂłn-Rosales R (2020) Rhizosphere and endophytic bacteria associated to Ocimum basilicum L. with decaclorobiphenyl removal potential. Water Air Soil Pollut 231(3):1–15

    Google Scholar 

  • Shu W, Pablo GP, Jun Y, Danfeng H (2012) Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management. World J Microbiol Biotechnol 28(2):493–503

    Article  PubMed  Google Scholar 

  • Singh A, Kumar M, Verma S, Choudhary P, Chakdar H (2020) Plant microbiome: trends and prospects for sustainable agriculture. In: Plant microbe symbiosis. Springer, Cham, pp 129–151

    Chapter  Google Scholar 

  • Srivastava M, Kaushik MS, Mishra AK (2016) Linking the physicochemical properties with the abundance and diversity of rhizospheric bacterial population inhabiting paddy soil based on a concerted multivariate analysis of PCR-DGGE and RISA. Geomicrobiol J 33(10):894–905

    Article  CAS  Google Scholar 

  • Tanim MT, Chowdhury MM, Bari L, Rahaman MM, Rahman SR, Rahman MM (2019) Genetic diversity of Rhizobiums: isolated from soil samples of Bangladesh. Bangladesh J Microbiol 36(1):7–10

    Article  Google Scholar 

  • Tian L, Shi S, Ma L, Zhou X, Luo S, Zhang J, Lu B, Tian C (2019) The effect of Glomus intraradices on the physiological properties of Panax ginseng and on rhizospheric microbial diversity. J Ginseng Res 43(1):77–85

    Google Scholar 

  • Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7(12):2248–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unno Y, Shinano T (2012) Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization. In: Microbes and environments, p ME12181

    Google Scholar 

  • Uroz S, BuĂ©e M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2(2):281–288

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26(7):1882–1895

    Article  PubMed  Google Scholar 

  • Wang HB, Zhang ZX, Li H, He HB, Fang CX, Zhang AJ, Li QS, Chen RS, Guo XK, Lin HF, Wu LK (2011) Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res 10(3):932–940

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wu L, Tantai H, Khan MU, Letuma P, Wu H, Zhang S, Chen T, Lin S, Lin W (2019) Properties of bacterial community in the rhizosphere soils of Achyranthes bidentata tolerant to consecutive monoculture. Plant Growth Regul 89(2):167–178

    Google Scholar 

  • Wei Z, Hu X, Li X, Zhang Y, Jiang L, Li J, Guan Z, Cai Y, Liao X (2017) The rhizospheric microbial community structure and diversity of deciduous and evergreen forests in Taihu Lake area, China. PLoS One 12(4):e0174411

    Article  PubMed  PubMed Central  Google Scholar 

  • White RA, Borkum MI, Rivas-Ubach A, Bilbao A, Wendler JP, Colby SM, Köberl M, Jansson C (2017) From data to knowledge: the future of multi-omics data analysis for the rhizosphere. Rhizosphere 3:222–229

    Article  Google Scholar 

  • Willms IM, Kamran A, AĂźmann NF, Krone D, Bolz SH, Fiedler F, Nacke H (2019) Discovery of novel antibiotic resistance determinants in forest and grassland soil metagenomes. Front Microbiol 10:460

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Kuramae EE, de Hollander M, Klinkhamer PG, van Veen JA (2017) Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J 11(1):56–66

    Article  PubMed  Google Scholar 

  • Yergeau E, Tremblay J, Joly S, Labrecque M, Maynard C, Pitre FE, St-Arnaud M, Greer CW (2018) Soil contamination alters the willow root and rhizosphere metatranscriptome and the root–rhizosphere interactome. ISME J 12(3):869–884

    Article  PubMed  PubMed Central  Google Scholar 

  • Ying YX, Ding WL, Li Y (2012) Characterization of soil bacterial communities in rhizospheric and nonrhizospheric soil of Panax ginseng. Biochem Genet 50(11–12):848–859

    Google Scholar 

  • Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, LoquĂ© D, Bowen BP, Firestone MK (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3(4):470–480

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angana Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, T., Chakraborty, D., Sarkar, A. (2021). Structural and Functional Rhizospheric Microbial Diversity Analysis by Cutting-Edge Biotechnological Tools. In: Pudake, R.N., Sahu, B.B., Kumari, M., Sharma, A.K. (eds) Omics Science for Rhizosphere Biology. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0889-6_9

Download citation

Publish with us

Policies and ethics