Skip to main content

MIP as Drug Delivery Systems of Ophthalmic Drugs

  • Chapter
  • First Online:
Molecularly Imprinted Polymers as Advanced Drug Delivery Systems
  • 352 Accesses

Abstract

Since the contact lenses (CLs) have been widely used in refractive correction and other aspects, the application in DDS has been developed gradually. To increase the drug loading and drug release time of lenses and bioavailability, molecularly imprinted polymer (MIP)-based CLs have been introduced as a drug delivery platform. This chapter highlights the current state of the application of MIP in ophthalmic drugs from the perspective of MIP-CLs and focuses on the manufacturing method, physical parameters, drug loading performance, and drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hornof M, Toropainen E, Urtti A (2005) Cell culture models of the ocular barriers. Eur J Pharm Biopharm 60:207–225

    Article  CAS  PubMed  Google Scholar 

  2. Cunha-Vaz JG (1997) The blood-ocular barriers: past, present, and future. Doc Ophthalmol 93:149–157

    Article  CAS  PubMed  Google Scholar 

  3. Duvvuri S, Majumdar S, Mitra AK (2003) Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther 3:45–56

    Article  CAS  PubMed  Google Scholar 

  4. del Amo EM, Urtti A (2008) Current and future ophthalmic drug delivery systems: a shift to the posterior segment. Drug Discov Today 13:135–143

    Article  PubMed  CAS  Google Scholar 

  5. Zhang WS, Prausnitz MR, Edwards A (2004) Model of transient drug diffusion across cornea. J Control Release 99:241–258

    Article  CAS  PubMed  Google Scholar 

  6. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  PubMed  Google Scholar 

  7. Papas EB (2017) Contact lens technology to 2020 and beyond: a review of recent patent literature. Clin Exp Optom 100:529–536

    Article  PubMed  Google Scholar 

  8. Gonzalez-Chomon C, Concheiro A, Alvarez-Lorenzo C (2013) Soft contact lenses for controlled ocular delivery: 50 years in the making. Ther Deliv 4:1141–1161

    Article  CAS  PubMed  Google Scholar 

  9. Peng CC, Kim J, Chauhan A (2010) Extended delivery of hydrophilic drugs from silicone-hydrogel contact lenses containing vitamin e diffusion barriers. Biomaterials 31:4032–4047

    Article  CAS  PubMed  Google Scholar 

  10. Uchida R, Sato T, Tanigawa H, Uno K (2003) Azulene incorporation and release by hydrogel containing methacrylamide propyltrimenthylammonium chloride, and its application to soft contact lens. J Control Release 92:259–264

    Article  CAS  PubMed  Google Scholar 

  11. dos Santos JFR, Alvarez-Lorenzo C, Silva M, Balsa L, Couceiro J, Torres-Labandeira JJ, Concheiro A (2009) Soft contact lenses functionalized with pendant cyclodextrins for controlled drug delivery. Biomaterials 30:1348–1355

    Article  PubMed  CAS  Google Scholar 

  12. Yokozaki Y, Sakabe J, Ng B, Shimoyama Y (2015) Effect of temperature, pressure and depressurization rate on release profile of salicylic acid from contact lenses prepared by supercritical carbon dioxide impregnation. Chem Eng Res Des 100:89–94

    Article  CAS  Google Scholar 

  13. Janagam DR, Wu LF, Lowe TL (2017) Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev 122:31–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Venkatesh S, Sizemore SP, Byrne ME (2007) Biomimetic hydrogels for enhanced loading and extended release of ocular therapeutics. Biomaterials 28:717–724

    Article  CAS  PubMed  Google Scholar 

  15. Kompella UB, Kadam RS, Lee VHL (2010) Recent advances in ophthalmic drug delivery. Ther Deliv 1:435–456

    Article  CAS  PubMed  Google Scholar 

  16. Wilson CG (2004) Topical drug delivery in the eye. Exp Eye Res 78:737–743

    Article  CAS  PubMed  Google Scholar 

  17. Holmes B, Brogden RN, Richards DM (1985) Norfloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 30:482–513

    Article  CAS  PubMed  Google Scholar 

  18. Alvarez-Lorenzo C, Yanez F, Barreiro-Iglesias R, Concheiro A (2006) Imprinted soft contact lenses as norfloxacin delivery systems. J Control Release 113:236–244

    Article  CAS  PubMed  Google Scholar 

  19. Bedard J, Bryan LE (1989) Interaction of the fluoroquinolone antimicrobial agents ciprofloxacin and enoxacin with liposomes. Antimicrob Agents Chemother 33:1379–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marchese AL, Slana VS, Holmes EW, Jay WM (1993) Toxicity and pharmacokinetics of ciprofloxacin. J Ocular Pharmacol 9:69–76

    Article  CAS  Google Scholar 

  21. Smith A, Pennefather PM, Kaye SB, Hart CA (2001) Fluoroquinolones: place in ocular therapy. Drugs 61:747–761

    Article  CAS  PubMed  Google Scholar 

  22. Hui A, Sheardown H, Jones L (2012) Acetic and acrylic acid molecular imprinted model silicone hydrogel materials for ciprofloxacin-HCl delivery. Materials 5:85–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levin LA, Avery R, Shore JW, Woog JJ, Baker AS (1996) The spectrum of orbital aspergillosis: a clinicopathological review. Surv Ophthalmol 41:142–154

    Article  CAS  PubMed  Google Scholar 

  24. Thomas PA (2003) Current perspectives on ophthalmic mycoses. Clin Microbiol Rev 16:730–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Craig JP, Nelson JD, Azar DT, Belmonte C, Bron AJ, Chauhan SK, de Paiva CS, Gomes JAP, Hammitt KM, Jones L, Nichols JJ, Nichols KK, Novack GD, Stapleton FJ, Willcox MDP, Wolffsohn JS, Sullivan DA (2017) TFOS DEWS II report executive summary. Ocul Surf 15:802–812

    Article  PubMed  Google Scholar 

  26. Clayton JA (2018) Dry eye. N Engl J Med 378:2212–2223

    Article  CAS  PubMed  Google Scholar 

  27. Bayer IS (2020) Hyaluronic acid and controlled release: a review. Molecules 25:2649

    Article  CAS  PubMed Central  Google Scholar 

  28. Aragona P, Papa V, Micali A, Santocono M, Milazzo G (2002) Long term treatment with sodium hyaluronate-containing artificial tears reduces ocular surface damage in patients with dry eye. Br J Ophthalmol 86:181–184

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ali M, Byrne ME (2009) Controlled release of high molecular weight hyaluronic acid from molecularly imprinted hydrogel contact lenses. Pharm Res 26:714–726

    Article  CAS  PubMed  Google Scholar 

  30. Buhler N, Haerri HP, Hofmann M, Irrgang C, Muhlebach A, Muller B, Stockinger F (1999) Nelfilcon A, a new material for contact lenses. Chimia 53:269–274

    CAS  Google Scholar 

  31. Maharana PK, Raghuwanshi S, Chauhan AK, Rai VG, Pattebahadur R (2017) Comparison of the efficacy of carboxymethylcellulose 0.5%, hydroxypropyl-guar containing polyethylene glycol 400/propylene glycol, and hydroxypropyl methyl cellulose 0.3% tear substitutes in improving ocular surface disease index in cases of dry eye. Middle East Afr J Ophthalmol 24:202–206

    Article  PubMed  PubMed Central  Google Scholar 

  32. White CJ, McBride MK, Pate KM, Tieppo A, Byrne ME (2011) Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses. Biomaterials 32:5698–5705

    Article  CAS  PubMed  Google Scholar 

  33. Bourne RR, Taylor HR, Flaxman SR, Keeffe J, Leasher J, Naidoo K, Pesudovs K, White RA, Wong TY, Resnikoff S, Jonas JB (2016) Number of people blind or visually impaired by glaucoma worldwide and in world regions 1990-2010: a meta-analysis. PLoS One 11:e0162229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO (2002) The ocular hypertension treatment study - a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713

    Article  PubMed  Google Scholar 

  35. Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F, Anand N, Azuara-Blanco A, Bourne RR, Broadway DC, Cunliffe IA, Diamond JP, Fraser SG, Ho TA, Martin KR, McNaught AI, Negi A, Patel K, Russell RA, Shah A, Spry PG, Suzuki K, White ET, Wormald RP, Xing W, Zeyen TG (2015) Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet 385:1295–1304

    Article  CAS  PubMed  Google Scholar 

  36. Yan F, Liu YX, Han SL, Zhao QS, Liu NN (2020) Bimatoprost imprinted silicone contact lens to treat glaucoma. AAPS PharmSciTech 21:63

    Article  CAS  PubMed  Google Scholar 

  37. Alvarez-Lorenzo C, Hiratani H, Gomez-Amoza JL, Martinez-Pacheco R, Souto C, Concheiro A (2002) Soft contact lenses capable of sustained delivery of timolol. J Pharm Sci 91:2182–2192

    Article  CAS  PubMed  Google Scholar 

  38. Hiratani H, Alvarez-Lorenzo C (2002) Timolol uptake and release by imprinted soft contact lenses made of N,N-diethylacrylamide and methacrylic acid. J Control Release 83:223–230

    Article  CAS  PubMed  Google Scholar 

  39. Hiratani H, Alvarez-Lorenzo C (2004) The nature of backbone monomers determines the performance of imprinted soft contact lenses as timolol drug delivery systems. Biomaterials 25:1105–1113

    Article  CAS  PubMed  Google Scholar 

  40. Ribeiro A, Veiga F, Santos D, Torres-Labandeira JJ, Concheiro A, Alvarez-Lorenzo C (2011) Bioinspired imprinted phema-hydrogels for ocular delivery of carbonic anhydrase inhibitor drugs. Biomacromolecules 12:701–709

    Article  CAS  PubMed  Google Scholar 

  41. Malaekeh-Nikouei B, Vahabzadeh SA, Mohajeri SA (2013) Preparation of a molecularly imprinted soft contact lens as a new ocular drug delivery system for dorzolamide. Curr Drug Deliv 10:279–285

    Article  CAS  PubMed  Google Scholar 

  42. Malaekeh-Nikouei B, Ghaeni FA, Motamedshariaty VS, Mohajeri SA (2012) Controlled release of prednisolone acetate from molecularly imprinted hydrogel contact lenses. J Appl Polym Sci 126:387–394

    Article  CAS  Google Scholar 

  43. Moser P, Sallmann A, Wiesenberg I (1990) Synthesis and quantitative structure-activity relationships of diclofenac analogues. J Med Chem 33:2358–2368

    Article  CAS  PubMed  Google Scholar 

  44. Tieppo A, Pate KM, Byrne ME (2012) In vitro controlled release of an anti-inflammatory from daily disposable therapeutic contact lenses under physiological ocular tear flow. Eur J Pharm Biopharm 81:170–177

    Article  CAS  PubMed  Google Scholar 

  45. Smith DA, Wallwork ML, Zhang J, Kirkham J, Robinson C, Marsh A, Wong M (2000) The effect of electrolyte concentration on the chemical force titration behavior of omega-functionalized SAMs: evidence for the formation of strong ionic hydrogen bonds. J Phys Chem B 104:8862–8870

    Article  CAS  Google Scholar 

  46. McGill JI (2004) A review of the use of olopatadine in allergic conjunctivitis. Int Ophthalmol 25:171–179

    Article  PubMed  Google Scholar 

  47. Kaliner MA, Oppenheimer J, Farrar JR (2010) Comprehensive review of olopatadine: the molecule and its clinical entities. Allergy Asthma Proc 31:112–119

    CAS  PubMed  Google Scholar 

  48. Bilkhu PS, Wolffsohn JS, Naroo SA (2012) A review of non-pharmacological and pharmacological management of seasonal and perennial allergic conjunctivitis. Cont Lens Anterior Eye 35:9–16

    Article  PubMed  Google Scholar 

  49. Gonzalez-Chomon C, Silva M, Concheiro A, Alvarez-Lorenzo C (2016) Biomimetic contact lenses eluting olopatadine for allergic conjunctivitis. Acta Biomater 41:302–311

    Article  CAS  PubMed  Google Scholar 

  50. Bielory L (2002) Role of antihistamines in ocular allergy. Am J Med 113:43S–47S

    Article  Google Scholar 

  51. Ali M, Horikawa S, Venkatesh S, Saha J, Hong JW, Byrne ME (2007) Zero-order therapeutic release from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow. J Control Release 124:154–162

    Article  CAS  PubMed  Google Scholar 

  52. Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady V, Britt DW (2006) From 3D to 2D: a review of the molecular imprinting of proteins. Biotechnol Prog 22:1474–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nozik RA, Smolin G, Knowlton G, Austin R (1985) Trimethoprim-polymyxin B ophthalmic solution in treatment of surface ocular bacterial infections. Ann Ophthalmol 17:746–748

    CAS  PubMed  Google Scholar 

  54. Zavascki AP, Goldani LZ, Li J, Nation RL (2007) Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother 60:1206–1215

    Article  CAS  PubMed  Google Scholar 

  55. Malakooti N, Alexander C, Alvarez-Lorenzo C (2015) Imprinted contact lenses for sustained release of polymyxin B and related antimicrobial peptides. J Pharm Sci 104:3386–3394

    Article  CAS  PubMed  Google Scholar 

  56. Hui A, Willcox M, Jones L (2014) In vitro and in vivo evaluation of novel ciprofloxacin-releasing silicone hydrogel contact lenses. Invest Ophthalmol Vis Sci 55:4896–4904

    Article  PubMed  Google Scholar 

  57. Hiratani H, Fujiwara A, Tamiya Y, Mizutani Y, Alvarez-Lorenzo C (2005) Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials 26:1293–1298

    Article  CAS  PubMed  Google Scholar 

  58. Tieppo A, White CJ, Paine AC, Voyles ML, McBride MK, Byrne ME (2012) Sustained in vivo release from imprinted therapeutic contact lenses. J Control Release 157:391–397

    Article  CAS  PubMed  Google Scholar 

  59. Hiratani H, Mizutani Y, Alvarez-Lorenzo C (2005) Controlling drug release from imprinted hydrogels by modifying the characteristics of the imprinted cavities. Macromol Biosci 5:728–733

    Article  CAS  PubMed  Google Scholar 

  60. Yanez F, Chauhan A, Concheiro A, Alvarez-Lorenzo C (2011) Timolol-imprinted soft contact lenses: influence of the template: functional monomer ratio and the hydrogel thickness. J Appl Polym Sci 122:1333–1340

    Article  CAS  Google Scholar 

  61. Guidi G, Korogiannaki M, Sheardown H (2014) Modification of timolol release from silicone hydrogel model contact lens materials using hyaluronic acid. Eye Contact Lens 40:269–276

    Article  PubMed  Google Scholar 

  62. Korogiannaki M, Guidi G, Jones L, Sheardown H (2015) Timolol maleate release from hyaluronic acid-containing model silicone hydrogel contact lens materials. J Biomater Appl 30:361–376

    Article  CAS  PubMed  Google Scholar 

  63. Anirudhan TS, Nair AS, Parvathy J (2016) Extended wear therapeutic contact lens fabricated from timolol imprinted carboxymethyl chitosan-g-hydroxy ethyl methacrylate-g-poly acrylamide as a onetime medication for glaucoma. Eur J Pharm Biopharm 109:61–71

    Article  CAS  PubMed  Google Scholar 

  64. Deng JZ, Chen S, Chen JL, Ding HL, Deng DW, Xie ZY (2018) Self-reporting colorimetric analysis of drug release by molecular imprinted structural color contact lens. ACS Appl Mater Interfaces 10:34611–34617

    Article  CAS  PubMed  Google Scholar 

  65. Ribeiro A, Veiga F, Santos D, Torres-Labandeira JJ, Concheiro A, Alvarez-Lorenzo C (2011) Receptor-based biomimetic NVP/DMA contact lenses for loading/eluting carbonic anhydrase inhibitors. J Membr Sci 383:60–69

    Article  CAS  Google Scholar 

  66. Venkatesh S, Saha J, Pass S, Byrne ME (2008) Transport and structural analysis for controlled of molecular imprinted hydrogels drug delivery. Eur J Pharm Biopharm 69:852–860

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, L., Liu, Z. (2021). MIP as Drug Delivery Systems of Ophthalmic Drugs. In: Liu, Z., Huang, Y., Yang, Y. (eds) Molecularly Imprinted Polymers as Advanced Drug Delivery Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-0227-6_8

Download citation

Publish with us

Policies and ethics