Skip to main content

MIP as Drug Delivery Systems of Anticancer Agents

  • Chapter
  • First Online:
Molecularly Imprinted Polymers as Advanced Drug Delivery Systems
  • 366 Accesses

Abstract

This chapter reviews the use of molecularly imprinted polymers (MIP) as drug delivery systems (DDS) for anticancer agents. MIP-based DDS can not only realize the active targeting of anticancer drugs, but also respond to stimuli responsive (such as pH, temperature, infrared, etc.) specifically, thereby releasing anticancer agents specifically and realizing effective treatment of cancer. Cytotoxicity and in vivo tests on MIP-based DDS are also shown for evaluating biocompatibility and degrade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hema S, Thambiraj S, Shankaran DR (2018) Nanoformulations for targeted drug delivery to prostate cancer: an overview. JNN 18:5171–5191

    Article  CAS  Google Scholar 

  2. Vivek R, Thangam R, Nipunbabu V, Ponraj T, Kannan S (2014) Oxaliplatin-chitosan nanoparticles induced intrinsic apoptotic signaling pathway: a “smart” drug delivery system to breast cancer cell therapy. Int J Biol Macromol 65:289–297

    Article  CAS  PubMed  Google Scholar 

  3. Maeda H, Tominaga K, Iwanaga K, Nagao F, Habu M, Tsujisawa T, Seta Y, Toyoshima K, Fukuda J, Nishihara T (2009) Targeted drug delivery system for oral cancer therapy using sonoporation. J Oral Pathol Med 38:572–579

    Article  CAS  PubMed  Google Scholar 

  4. Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl 60:569–578

    Article  CAS  PubMed  Google Scholar 

  5. Goldstein D, Nassar T, Lambert G, Kadouche J, Benita S (2005) The design and evaluation of a novel targeted drug delivery system using cationic emulsion–antibody conjugates. J Control Release 108:418–432

    Article  CAS  PubMed  Google Scholar 

  6. Taratula O, Dani RK, Schumann C, Xu H, Wang A, Song H, Dhagat P, Taratula O (2013) Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells. Int J Pharm 458:169–180

    Article  CAS  PubMed  Google Scholar 

  7. Krukiewicz K, Zak JK (2016) Biomaterial-based regional chemotherapy: local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Mater Sci Eng C Mater Biol Appl 62:927–942

    Article  CAS  PubMed  Google Scholar 

  8. Fathi S, Oyelere AK (2016) Liposomal drug delivery systems for targeted cancer therapy: is active targeting the best choice. Future Med Chem 8:2091–2112

    Article  CAS  PubMed  Google Scholar 

  9. Sutton D, Nasongkla N, Blanco E, Gao J (2007) Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 24:1029–1046

    Article  CAS  PubMed  Google Scholar 

  10. Dai L, Liu J, Luo Z, Li M, Cai K (2016) Tumor therapy: targeted drug delivery systems. J Mater Chem B 4:6758–6772

    Article  CAS  PubMed  Google Scholar 

  11. Tatematsu K, Iijima M, Yoshimoto N, Nakai T, Okajima T, Kuroda S (2016) Bio-nanocapsules displaying various immunoglobulins as an active targeting-based drug delivery system. Acta Biomater 35:238–247

    Article  CAS  PubMed  Google Scholar 

  12. Wang HY, Cao PP, He ZY, He XW, Li WY, Li YH, Zhang YK (2019) Targeted imaging and targeted therapy of breast cancer cells via fluorescent double template-imprinted polymer coated silicon nanoparticles by an epitope approach. Nanoscale 11:17018–17030

    Article  CAS  PubMed  Google Scholar 

  13. Dong Y, Li W, Gu Z, Xing R, Ma Y, Zhang Q, Liu Z (2019) Inhibition of HER2-positive breast cancer growth by blocking the HER2 signaling pathway with HER2-glycan-imprinted nanoparticles. Angew Chem Int Ed Engl 58:10621–10625

    Article  CAS  PubMed  Google Scholar 

  14. Wang S, Yin D, Wang W, Shen X, Zhu JJ, Chen HY, Liu Z (2016) Targeting and imaging of cancer cells via monosaccharide-imprinted fluorescent nanoparticles. Sci Rep 6:22757–22768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu T, Qiao Z, Wang J, Zhang P, Zhang Z, Guo DS, Yang X (2019) Molecular imprinted S-nitrosothiols nanoparticles for nitric oxide control release as cancer target chemotherapy. Colloids Surf B: Biointerfaces 173:356–365

    Article  CAS  PubMed  Google Scholar 

  16. Liu H, Li Y, Sun K, Fan J, Zhang P, Meng J, Wang S, Jiang L (2013) Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J Am Chem Soc 135:7603–7609

    Article  CAS  PubMed  Google Scholar 

  17. Bull SD, Davidson MG, Van den Elsen JM, Fossey JS, Jenkins AT, Jiang YB, Kubo Y, Marken F, Sakurai K, Zhao J, James TD (2013) Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly. Acc Chem Res 46:312–326

    Article  CAS  PubMed  Google Scholar 

  18. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7:569–579

    Article  CAS  PubMed  Google Scholar 

  19. Song SW, Hidajat K, Kawi S (2007) PH-controllable drug release using hydrogel encapsulated mesoporous silica. Chem Commun 42:4396–4398

    Article  CAS  Google Scholar 

  20. Kamada H, Tsutsumi Y, Yoshioka Y, Yamamoto Y, Kodaira H, Tsunoda S, Okamoto T, Mukai Y, Shibata H, Nakagawa S, Mayumi T (2004) Design of a pH-sensitive polymeric carrier for drug release and its application in cancer therapy. Clin Cancer Res 10:2545–2550

    Article  CAS  PubMed  Google Scholar 

  21. Alvarez-Bautista A, Duarte CMM, Mendizabal E, Katime I (2016) Controlled delivery of drugs through smart pH-sensitive nanohydrogels for anti-cancer therapies: synthesis, drug release and cellular studies. Des Monomers Polym 19:319–329

    Article  CAS  Google Scholar 

  22. Bai J, Zhang Y, Chen L, Yan H, Zhang C, Liu L, Xu X (2018) Synthesis and characterization of paclitaxel-imprinted microparticles for controlled release of an anticancer drug. Mater Sci Eng C Mater Biol Appl 92:338–348

    Article  CAS  PubMed  Google Scholar 

  23. Zhang K, Guan X, Qiu Y, Wang D, Zhang X, Zhang H (2016) A pH/glutathione double responsive drug delivery system using molecular imprint technique for drug loading. Appl Surf Sci 389:1208–1213

    Article  CAS  Google Scholar 

  24. Zhang Q, Zhang L, Wang P, Du S (2014) Coordinate bonding strategy for molecularly imprinted hydrogels: toward pH-responsive doxorubicin delivery. J Pharm Sci 103:643–651

    Article  CAS  PubMed  Google Scholar 

  25. Abbasi F, Mirzadeh H (2010) Properties of poly (dimethyl siloxane)/hydrogel multicomponent systems. J Polym Sci Part B Polym Phys 41:2145–2156

    Article  CAS  Google Scholar 

  26. Malkoch M, Vestberg R, Gupta N, Mespouille L, Dubois P, Mason AF, Hedrick JL, Liao Q, Frank CW, Kingsbury K, Hawker CJ (2006) Synthesis of well-defined hydrogel networks using click chemistry. Chem Commun 26:2774–2776

    Article  CAS  Google Scholar 

  27. Huang G, Gao J, Hu Z, John JV, Ponder BC, Moro D (2004) Controlled drug release from hydrogel nanoparticle networks. J Control Release 94:303–311

    Article  CAS  PubMed  Google Scholar 

  28. Luo Y, Shoichet MS (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 3:249–253

    Article  CAS  PubMed  Google Scholar 

  29. Li SH, Wang J, Zhao MP (2009) Cupric ion enhanced molecular imprinting of bovine serum albumin in hydrogel. J Sep Sci 32:3359–3363

    Article  CAS  PubMed  Google Scholar 

  30. Stuart MA, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    Article  PubMed  CAS  Google Scholar 

  31. Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23

    Article  CAS  Google Scholar 

  32. Calderón M, Quadir MA, Strumia M, Haag R (2010) Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie 92:1242–1251

    Article  PubMed  CAS  Google Scholar 

  33. Ninawe PR, Parulekar SJ (2012) Drug delivery using stimuli-responsive polymer gel spheres. Ind Eng Chem Res 51:1741–1755

    Article  CAS  Google Scholar 

  34. Yang MY, Tan L, Wu HX, Liu CJ, Zhuo RX (2015) Dual-stimuli-responsive polymer-coated mesoporous silica nanoparticles used for controlled drug delivery. J Appl Polym Sci 132:42395–42404

    Article  Google Scholar 

  35. Peng X, Wei L, Jing X, Cui L, Wu J, Meng G, Liu Z, Guo X (2018) Stimuli-responsive nano-polymer composite materials based on the triazine skeleton structure used in drug delivery. JOM 71:308–314

    Article  CAS  Google Scholar 

  36. Qiu X, Hu S (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6:738–781

    Article  PubMed  PubMed Central  Google Scholar 

  37. Unsoy G, Gunduz U (2018) Smart drug delivery systems in cancer therapy. Curr Drug Targets 19:202–212

    Article  CAS  PubMed  Google Scholar 

  38. Jérme C (2010) Macromolecular engineering and stimulus response in the design of advanced drug delivery systems. MRS Bull 35:665–672

    Article  Google Scholar 

  39. Suksuwan A, Lomlim L, Rungrotmongkol T, Nakpheng T, Dickert FL, Suedee R (2015) The composite nanomaterials containing (R)-thalidomide-molecularly imprinted polymers as a recognition system for enantioselective-controlled release and targeted drug delivery. J Appl Polym Sci 132:41930–41951

    Article  Google Scholar 

  40. Franks ME, Macpherson GR, Figg WD (2004) Thalidomide. Lancet 363:1802–1811

    Article  CAS  PubMed  Google Scholar 

  41. D’Amato R (2000) Methods and compositions for inhibition of angiogenesis. Biotechnol Adv 15:779–779

    Google Scholar 

  42. Tursen B, Tursen U (2014) Treatment options in Behcet’s disease. Global J Dermatol 2:27–49

    Article  Google Scholar 

  43. Korde BA, Mankar JS, Phule S, Krupadam RJ (2019) Nanoporous imprinted polymers (nanoMIPs) for controlled release of cancer drug. Mater Sci Eng C Mater Biol Appl 99:222–230

    Article  CAS  PubMed  Google Scholar 

  44. Song Z, Xu X (2014) Advanced research on anti-tumor effects of amygdalin. J Cancer Res Ther 10:3–7

    Article  PubMed  CAS  Google Scholar 

  45. Kaminskia BM, Steinhilber D, Stein JM, Ulrich S (2012) Phytochemicals resveratrol and sulforaphane as potential agents for enhancing the anti-tumor activities of conventional cancer therapies. Curr Pharm Biotechnol 13:137–146

    Article  Google Scholar 

  46. Xu Y, Hu X, Guan P, Du C, Tian Y, Ding S, Li Z, Yan C (2019) A novel controllable molecularly imprinted drug delivery system based on the photothermal effect of graphene oxide quantum dots. J Mater Sci 54:9124–9139

    Article  CAS  Google Scholar 

  47. Bacon M, Bradley SJ, Nann T (2014) Graphene quantum dots. Part Part Syst Charact 1:415–428

    Article  CAS  Google Scholar 

  48. Wang X, Sun X, Lao J, He H, Cheng T, Wang M, Wang S, Huang F (2014) Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf B Biointerfaces 122:638–644

    Article  CAS  PubMed  Google Scholar 

  49. Wang Z, Xia J, Zhou C, Via B, Xia Y, Zhang F, Tang J (2013) Synthesis of strongly green-photoluminescent graphene quantum dots for drug carrier. Colloids Surf B Biointerfaces 112:192–196

    Article  CAS  PubMed  Google Scholar 

  50. Kim H, Lee D, Kim J, Kim TI, Kim WJ (2013) Photothermally triggered cytosolic drug delivery via disruption using a functionalized reduced graphene oxide. ACS Nano 7:6735–6746

    Article  CAS  PubMed  Google Scholar 

  51. Zhu Y, Liu R, Huang H, Zhu Q (2019) Vinblastine-loaded nanoparticles with enhanced tumor-targeting efficiency and decreasing toxicity: developed by one-step molecular imprinting process. Mol Pharm 16:2675–2689

    Article  CAS  PubMed  Google Scholar 

  52. Griffete N, Fresnais J, Espinosa A, Wilhelm C, Bée A, Ménager C (2015) Design of magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin under an alternative magnetic field in athermal conditions. Nanoscale 7:18891–18896

    Article  CAS  PubMed  Google Scholar 

  53. Learmonth ID (2003) Biocompatibility: a biomechanical and biological concept in total hip replacement. Surgeon 1:1–8

    Article  CAS  PubMed  Google Scholar 

  54. Lofti M, Nejb M, Naceur M (2013) Chapter 8: Cell adhesion to biomaterials: concept of biocompatibility in advances in biomaterials science and biomedical applications. INTECH 6:207–240

    Google Scholar 

  55. Armitage DA, Parker TL, Grant DM (2003) Biocompatibility and hemocompatibility of surface-modified NiTi alloys. J Biomed Mater Res A 66:129–137

    Article  PubMed  CAS  Google Scholar 

  56. Canfarotta F, Waters A, Sadler R, Mcgill P, Guerreiro A, Papkovsky D, Piletsky S (2016) Biocompatibility and internalization of molecularly imprinted nanoparticles. Nano Res 9:3463–3477

    Article  CAS  Google Scholar 

  57. Bernier M, Paul RK, Martin-Montalvo A, Scheibye-Knudsen M, Song S, He HJ, Armour SM, Hubbard BP, Bohr VA, Wang L, Zong Y, Sinclair DA, De Cabo R (2011) Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein. J Biol Chem 286:19270–19279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A, Weiss JM, Wlaschek M, Sunderkötter C, Scharffetter-Kochanek K (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121:985–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hashemi-Moghaddam H, Zavareh S, Karimpour S, Madanchi H (2017) Evaluation of molecularly imprinted polymer based on HER2 epitope for targeted drug delivery in ovarian cancer mouse model. React Funct Polym 121:82–90

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, J., Liu, Z. (2021). MIP as Drug Delivery Systems of Anticancer Agents. In: Liu, Z., Huang, Y., Yang, Y. (eds) Molecularly Imprinted Polymers as Advanced Drug Delivery Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-0227-6_7

Download citation

Publish with us

Policies and ethics