Skip to main content

Influence of WEDM Parameters for Estimating the Surface Integrity of Laser Additive Manufactured Hybrid Material

  • Conference paper
  • First Online:
Next Generation Materials and Processing Technologies

Part of the book series: Springer Proceedings in Materials ((SPM,volume 9))

Abstract

Amongst all the manufacturing process, wire electric discharge machining is one of the important processes in the manufacturing industries and also considered as finishing operation. But wire cut machined components are affected by the input process parameter’s effect of machining process. For this reason, the study of input process parameter’s effect on the machined components plays an important role. In this article, laser assisted directed energy deposited 100% Inconel 625 and combination of 50% Inconel 625 and 50% SS304L on SS304L substrate is machined by WEDM. Machining is done at different input parameters such as pulse width, pulse duration, servo voltage and peak current. Study is done on the surface integrity such as surface roughness, kerf width, cutting speed, MRR and heat affected zone generated due to high temperature of spark. Experiment is designed based on the literature survey, and post experimentation parameters are optimized to identify the most effective factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alting L, Boothroyd G (2020) Nontraditional manufacturing processes. In: Manufacturing engineering processes. CRC Press, pp 363–416

    Google Scholar 

  2. Ayesta I, Izquierdo B, Flaño O, Sánchez JA, Albizuri J, Avilés R (2016) Influence of the WEDM process on the fatigue behavior of Inconel 718. Int J Fatigue 92:220–233. https://doi.org/10.1016/j.ijfatigue.2016.07.011

    Article  CAS  Google Scholar 

  3. Cantor B, Goringe MJ (2001) Aerospace materials. IOP Publishing, London

    Book  Google Scholar 

  4. Carroll BE, Otis RA, Borgonia JP, Suh JO, Dillon RP, Shapiro AA, Hofmann DC, Liu ZK, Beese AM (2016) Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: characterization and thermodynamic modeling. Acta Mater 108:46–54. https://doi.org/10.1016/j.actamat.2016.02.019

    Article  CAS  Google Scholar 

  5. Caydas U, Ay M (2016) WEDM cutting of Inconel 718 nickel-based superalloy: effects of cutting paramters on the cutting quality. Mater Technol 50:117–125. https://doi.org/10.17222/mit.2015.026

    Article  Google Scholar 

  6. Chakraverty S, Pradhan KK (2016) Origin and basics of functionally graded structural members. In: Vibration of functionally graded beams and plates. Elsevier, pp 7–18

    Google Scholar 

  7. Chen Z, Zhang G, Han F, Zhang Y, Rong Y (2018) Determination of the optimal servo feed speed by thermal model during multi-pulse discharge process of WEDM. Int J Mech Sci 142–143:359–369. https://doi.org/10.1016/j.ijmecsci.2018.05.006

    Article  Google Scholar 

  8. Chowdhury AGK, Ali MY, Banu A (2020) Analysis of corner radius in dry micro WEDM. Int J Mech Eng Robot Res 9:158–162. https://doi.org/10.18178/ijmerr.9.1.158-162

    Article  Google Scholar 

  9. Das S, Joshi SN (2020) Thermal modeling and simulation of crater generation on wire electrode during wire EDM operation, pp 121–135

    Google Scholar 

  10. Durairaj M, Sudharsun D, Swamynathan N (2013) Analysis of process parameters in wire EDM with stainless steel using single objective Taguchi method and multi objective grey relational grade. Procedia Eng 64:868–877. https://doi.org/10.1016/j.proeng.2013.09.163

    Article  CAS  Google Scholar 

  11. Fard RK, Afza RA, Teimouri R (2013) Experimental investigation, intelligent modeling and multi-characteristics optimization of dry WEDM process of Al–SiC metal matrix composite. J Manuf Process 15:483–494. https://doi.org/10.1016/j.jmapro.2013.09.002

    Article  Google Scholar 

  12. García Navas V, Ferreres I, Marañón JA, Garcia-Rosales C, Gil Sevillano J (2008) Electro-discharge machining (EDM) versus hard turning and grinding—comparison of residual stresses and surface integrity generated in AISI O1 tool steel. J Mater Process Technol 195:186–194. https://doi.org/10.1016/j.jmatprotec.2007.04.131

    Article  CAS  Google Scholar 

  13. Goyal A, Pandey A, Sharma P (2017) Machinability of Inconel 625 aerospace material using cryogenically treated WEDM. Solid State Phenom 266:38–42. https://doi.org/10.4028/www.scientific.net/SSP.266.38

    Article  Google Scholar 

  14. Han F, Zhang J, Soichiro I (2007) Corner error simulation of rough cutting in wire EDM. Precis Eng 31:331–336. https://doi.org/10.1016/j.precisioneng.2007.01.005

    Article  Google Scholar 

  15. Izquierdo B, Plaza S, Sánchez JA, Pombo I, Ortega N (2012) Numerical prediction of heat affected layer in the EDM of aeronautical alloys. Appl Surf Sci 259:780–790. https://doi.org/10.1016/j.apsusc.2012.07.124

    Article  CAS  Google Scholar 

  16. Kumar A, Mohanty CP, Bhuyan RK, Shaik AM (2020) Performance analysis and optimization of process parameters in WEDM for Inconel 625 using TLBO couple with FIS. Springer, Singapore

    Google Scholar 

  17. Li L, Li ZY, Wei XT, Cheng X (2015) Machining characteristics of Inconel 718 by sinking-EDM and wire-EDM machining characteristics of Inconel 718 by sinking-EDM. 6914. https://doi.org/10.1080/10426914.2014.973579

  18. Liao YS, Huang JT, Chen YH (2004) A study to achieve a fine surface finish in wire-EDM 149:165–171. https://doi.org/10.1016/j.jmatprotec.2003.10.034

    Article  Google Scholar 

  19. Liu JF, Guo YB, Butler TM, Weaver ML (2016) Crystallography, compositions, and properties of white layer by wire electrical discharge machining of nitinol shape memory alloy. JMADE 109:1–9. https://doi.org/10.1016/j.matdes.2016.07.063

    Article  CAS  Google Scholar 

  20. Loh GH, Pei E, Harrison D, Monzón MD (2018) An overview of functionally graded additive manufacturing. Addit. Manuf. 23:34–44

    CAS  Google Scholar 

  21. Mahapatra SS, Patnaik A (2007) Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int J Adv Manuf Technol 34:911–925. https://doi.org/10.1007/s00170-006-0672-6

    Article  Google Scholar 

  22. Majumder H, Paul TR, Dey V, Dutta P, Saha A (2017) Use of PCA-grey analysis and RSM to model cutting time and surface finish of Inconel 800 during wire electro discharge cutting. Measurement 107:19–30. https://doi.org/10.1016/j.measurement.2017.05.007

    Article  Google Scholar 

  23. Mangalgiri PD (1999) Composite materials for aerospace applications. Bull Mater Sci 22:657–664. https://doi.org/10.1007/BF02749982

    Article  CAS  Google Scholar 

  24. Manjaiah M, Narendranath S, Basavarajappa S, Gaitonde VN (2015) Effect of electrode material in wire electro discharge machining characteristics of Ti50Ni50-xCux shape memory alloy. Precis Eng 41:68–77. https://doi.org/10.1016/j.precisioneng.2015.01.008

    Article  Google Scholar 

  25. Mouralova K, Kovar J, Klakurkova L, Bednar J, Benes L, Zahradnicek R (2018) Analysis of surface morphology and topography of pure aluminium machined using WEDM. Measurement 114:169–176. https://doi.org/10.1016/j.measurement.2017.09.040

    Article  Google Scholar 

  26. Mouralova K, Matousek R, Kovar J, Mach J, Klakurkova L, Bednar J (2016) Analyzing the surface layer after WEDM depending on the parameters of a machine for the 16MnCr5 steel. Measurement 94:771–779. https://doi.org/10.1016/j.measurement.2016.09.028

    Article  Google Scholar 

  27. Mouritz AP (2012) Introduction to aerospace materials. Woodhead Publishing Limited

    Google Scholar 

  28. Najm VN (2018) Experimental investigation of wire EDM process parameters on heat affected. Eng Technol J 36:46–54

    Google Scholar 

  29. Newton TR, Melkote SN, Watkins TR, Trejo RM, Reister L (2009) Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718. Mater Sci Eng, A 513–514:208–215. https://doi.org/10.1016/j.msea.2009.01.061

    Article  CAS  Google Scholar 

  30. Rajurkar KP, Wang WM (1993) Thermal modeling and on-line monitoring of wire-EDM. J Mater Process Technol 38:417–430

    Article  Google Scholar 

  31. Rajyalakshmi G, Ramaiah PV (2013) Multiple process parameter optimization of wire electrical discharge machining on Inconel 825 using Taguchi grey relational analysis. https://doi.org/10.1007/s00170-013-5081-z

  32. Saha A, Mondal CS (2016) Multi-objective optimization in WEDM process of nanostructured hardfacing materials through hybrid techniques. Measurement 94:46–59. https://doi.org/10.1016/j.measurement.2016.07.087

    Article  Google Scholar 

  33. Sarkar S, Sekh M, Mitra S, Bhattacharyya B (2011) A novel method of determination of wire lag for enhanced profile accuracy in WEDM. Precis Eng 35:339–347. https://doi.org/10.1016/j.precisioneng.2011.01.001

    Article  Google Scholar 

  34. Selvakumar G, Sornalatha G, Sarkar S, Mitra S (2014) Experimental investigation and multi-objective optimization of wire electrical discharge machining (WEDM) of 5083 aluminum alloy. Trans Nonferrous Met Soc China 24:373–379. https://doi.org/10.1016/S1003-6326(14)63071-5

    Article  CAS  Google Scholar 

  35. Shandilya P, Jain PK, Jain NK (2012) Parametric optimization during wire electrical discharge machining using response surface methodology. Procedia Eng 38:2371–2377. https://doi.org/10.1016/j.proeng.2012.06.283

    Article  CAS  Google Scholar 

  36. Sharma P, Chakradhar D, Narendranath S (2015) Evaluation of WEDM performance characteristics of Inconel 706 for turbine disk application. Mater Des 88:558–566. https://doi.org/10.1016/j.matdes.2015.09.036

    Article  CAS  Google Scholar 

  37. Sharma P, Chakradhar D, Narendranath S (2016) Effect of wire diameter on surface integrity of wire electrical discharge machined Inconel 706 for gas turbine application. J Manuf Process 24:170–178. https://doi.org/10.1016/j.jmapro.2016.09.001

    Article  Google Scholar 

  38. Sharma P, Chakradhar D, Narendranath S (2016) Effect of wire material on productivity and surface integrity of WEDM-processed Inconel 706 for aircraft application. J Mater Eng Perform. https://doi.org/10.1007/s11665-016-2216-z

    Article  Google Scholar 

  39. Vb T, Soni JS, Rao ML (2016) Analysis and evaluation of heat affected zones (HAZ) of the work piece surface machined using different electrode by die-sinking EDM of EN-31 die steel. Int J Eng Sci 5:37–42

    Google Scholar 

  40. Tonday HR, Tigga AM (2016) Analysis of effects of cutting parameters of wire electrical discharge machining on material removal rate and surface integrity. IOP Conf Ser Mater Sci Eng 115:012013. https://doi.org/10.1088/1757-899X/115/1/012013

    Article  Google Scholar 

  41. Tonday HR, Tigga AM (2017) Evaluation of the influence of wire electrical discharge machining parameters on material removal rate and surface characteristics in cutting of Inconel 825. Mater Today Proc 4:9865–9869. https://doi.org/10.1016/j.matpr.2017.06.283

    Article  Google Scholar 

  42. Tonday HR, Tigga AM (2019) An empirical evaluation and optimization of performance parameters of wire electrical discharge machining in cutting of Inconel 718. Measurement 140:185–196. https://doi.org/10.1016/j.measurement.2019.04.003

    Article  Google Scholar 

  43. Tosun N, Cogun C, Pihtili H (2003) The effect of cutting parameters on wire crater sizes in wire. Int J Adv Manuf Technol 21:857–865

    Article  Google Scholar 

  44. Ugrasen G, Ravindra HV, Prakash GVN, Prasad YNT (2015) Optimization of process parameters in wire EDM of HCHCr material using Taguchi’ s technique. Mater Today Proc 2:2443–2452. https://doi.org/10.1016/j.matpr.2015.07.185

    Article  Google Scholar 

  45. Unune DR, Mali HS (2017) Experimental investigation on low-frequency vibration assisted micro-WEDM of Inconel 718. Eng Sci Technol an Int J 20:222–231. https://doi.org/10.1016/j.jestch.2016.06.010

    Article  Google Scholar 

  46. Wu X, Li S, Jia Z, Xin B, Yin X (2019) Using WECM to remove the recast layer and reduce the surface roughness of WEDM surface. J Mater Process Technol 268:140–148. https://doi.org/10.1016/j.jmatprotec.2019.01.016

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all the member of the Laser Additive Manufacturing Laboratory of Raja Ramanna Centre of Advanced Technology, Indore, Madhya Pradesh, India for technical support in deposition of the additive manufactured sample. Also acknowledge to Anita Enterprise, Industrial area, Adityapur, Jamshedpur, Jharkhand, India for providing setup for the experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehem Tudu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tudu, N., Baruah, M., Prasad, S.B., Paul, C.P. (2021). Influence of WEDM Parameters for Estimating the Surface Integrity of Laser Additive Manufactured Hybrid Material. In: Bag, S., Paul, C.P., Baruah, M. (eds) Next Generation Materials and Processing Technologies. Springer Proceedings in Materials, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-16-0182-8_15

Download citation

Publish with us

Policies and ethics