Skip to main content

Carbon Footprint: Concept, Methodology and Calculation

  • Chapter
  • First Online:
Carbon Footprint Case Studies

Abstract

Carbon footprint (CF) is nowadays one of the most widely used environmental indicators and calculations of CF have been recently in very high demand. Many approaches, methodologies and tools, from simplified online calculators to other more scientific and complex life-cycle based methods, have been developed and are available for estimations. CF evaluations are, in general, focused on products and organizations, but calculation approach have been developed also for specific themes/sectors, such as for instance cities, individuals, households, farms, etc. This chapter is aimed at giving an updated and comprehensive overview on the concept of CF, and also on methodologies, technical standards, protocols and tools for its calculation. Attention is focused on the two main and usual scopes of CF assessment, i.e. products and organizations, but also on other relevant specific study subjects, also discussing methodological differences and issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlgren S, Björklund A, Ekman A, Karlsson H, Berlin J, Börjesson P, Strid I (2015) Review of methodological choices in LCA of biorefinery systems-key issues and recommendations. Biofuels, Bioprod Biorefin 9(5):606–619

    Article  CAS  Google Scholar 

  2. Andersson D (2020) A novel approach to calculate individuals’ carbon footprints using financial transaction data – App development and design. J Cleaner Prod 256:120396

    Article  Google Scholar 

  3. BSI (2008) Publicly available specification 2050. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institute

    Google Scholar 

  4. Baker LA, Hartzheim PM, Hobbie SE, King JY, Nelson KC (2007) Effect of consumption choices on fluxes of carbon, nitrogen and phosphorus through households. Urban Ecosyst 10(2):97–117

    Article  Google Scholar 

  5. de Bikuña KS, Hamelin L, Hauschild MZ, Pilegaard K, Ibrom A (2018) A comparison of land use change accounting methods: seeking common grounds for key modeling choices in biofuel assessments. J Cleaner Prod 177:52–61

    Article  Google Scholar 

  6. Birnik A (2013) An evidence-based assessment of online carbon calculators. Int J Greenhouse Gas Control 17:280–293

    Article  CAS  Google Scholar 

  7. Büchs M, Bahaj AS, Blunden L, Bourikas L, Falkingham J, James P, Kamanda M, Wu Y (2018) Promoting low carbon behaviours through personalised information? Longterm evaluation of a carbon calculator interview. Energy Policy 120:284–293

    Article  Google Scholar 

  8. Carbon Trust (2007) Carbon footprinting. An introduction for organizations. Available online at https://wwwcarbontrust.co.uk/publications/publicationdetail.htm?productid=CTV033

  9. Cardellini G, Mutel CL, Vial E, Muys B (2018) Temporalis, a generic method and tool for dynamic Life Cycle Assessment. Sci Total Environ 645:585–595

    Article  CAS  Google Scholar 

  10. Choma EF, Ugaya CML (2017) Environmental impact assessment of increasing electric vehicles in the Brazilian fleet. J Clean Prod 152:497–507

    Article  Google Scholar 

  11. Chomkhamsri K, Pelletier N (2011) Analysis of existing environmental footprint methodologies for products and organizations: Recommendations, rationale, and alignment. JRC Institute for Environment and Sustainability

    Google Scholar 

  12. Čuček L, Klemeš JJ, Kravanja Z (2012) A review of footprint analysis tools for monitoring impacts on sustainability. J Cleaner Prod 34:9–20

    Google Scholar 

  13. Dalgaard R, Schmidt J, Flysjö A (2014) Generic model for calculating carbon footprint of milk using four different life cycle assessment modelling approaches. J Cleaner Prod 73:146–153

    Article  Google Scholar 

  14. van Dam SS, Bakker CA, van Hal JDM (2010) Home energy monitors: impact over the medium-term. Build Res Inf 38:458–469

    Article  Google Scholar 

  15. Darby S (2008) Energy feedback in buildings: improving the infrastructure for demand reduction. Build Res Inf 36:499–508

    Article  Google Scholar 

  16. East AJ (2008) What is a carbon footprint? An overview of definitions and methodologies. In Vegetable industry carbon footprint scoping study—Discussion papers and workshop, 26 September 2008. Sydney: Horticulture Australia Limited.

    Google Scholar 

  17. Ellen MacArthur Foundation (2019) Completing the Picture: How the Circular Economy Tackles Climate Change. www.ellenmacarthurfoundation.org/publications

  18. European Commission. Directive (EU) 2018/2001 of the European Parliament and the Council of 11 (Dece) on the promotion of the use of energy from renewable sources. off J Eur Union 2018:1–128

    Google Scholar 

  19. Fan Z, Lei Y, Wu S (2018) Research on the changing trend of the carbon footprint of residents’ consumption in Beijing. Environ Sci Pollut Res 26(4):4078–4090

    Article  CAS  Google Scholar 

  20. Finkbeiner (2009) Carbon footprinting—opportunities and threats. Int J Life Cycle Assess 14:91–94

    Article  Google Scholar 

  21. Fujii S, Bamberg S, Friman M, Garling T (2009) Are effects of travel feedback programs correctly assessed? Transportmetrica 5:43–57

    Article  Google Scholar 

  22. Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing B, Giljum S (2012) Integrating ecological, carbon and water footprint into a “Footprint Family” of indicators: Definition and role in tracking human pressure on the planet. Ecol Ind 16:100–112

    Article  Google Scholar 

  23. Garcia R, Freire F (2014) Carbon footprint of particleboard: a comparison between ISO/TS 14067, GHG Protocol, PAS 2050 and Climate Declaration. J Cleaner Prod 66:199–209

    Article  CAS  Google Scholar 

  24. Garraín D, de la Rúa C, Lechón Y (2016) Consequential effects of increased biofuel demand in Spain: Global crop area and CO2 emissions from indirect land use change. Biomass Bioenerg 85:187–197

    Article  CAS  Google Scholar 

  25. Harangozo G, Szigeti C (2017) Corporate carbon footprint analysis in practice – With a special focus on validity and reliability issues. J Cleaner Prod 167:1177–1183

    Article  Google Scholar 

  26. Hargreaves T, Nye M, Burgess J (2010) Making energy visible: a qualitative field study of how householders interact with feedback from smart energy monitors. Energy Policy 38:6111–6119

    Article  Google Scholar 

  27. IPCC, Climate Change, (2013) the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 2013

    Google Scholar 

  28. IPCC (International Panel for Climate Change) (2006) IPCC guidelines for national greenhouse gas inventories, chapter 3. LUCF sector good practice guidance

    Google Scholar 

  29. ISO 14064–1, (2018) Greenhouse gases - Part 1 Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals

    Google Scholar 

  30. International Organisation for Standardisation (ISO) (2006a) ISO 14040 - Environmental management—life cycle assessment— principles and framework. Switzerland, Geneva

    Google Scholar 

  31. International Organisation for Standardisation (ISO) (2006b) ISO 14044 - Environmental management—life cycle assessment— requirements and guidelines. Switzerland, Geneva

    Google Scholar 

  32. Isaksen ET, Narbel PA (2017) A carbon footprint proportional to expenditure - A case for Norway? Ecol Econ 131:152–165

    Article  Google Scholar 

  33. Joint Research Centre (2010) ILCD handbook: general guide for Life Cycle Assessment: detailed guidance. Publications Office of the European Union, Luxembourg

    Google Scholar 

  34. Joint Research Centre (2011) Recommendations for life cycle impact assessment in the European context - based on existing environmental impact assessment models and factors (International Reference Life Cycle Data System - ILCD handbook). Publications Office of the European Union, Luxemburg

    Google Scholar 

  35. Jørgensen SV, Hauschild MZ (2013) Need for relevant timescales when crediting temporary carbon storage. Int J Life Cycle Assess 18(4):747–754

    Article  CAS  Google Scholar 

  36. Kendall A (2012) Time-adjusted global warming potentials for LCA and carbon footprints. Int J Life Cycle Assess 17(8):1042–1049

    Article  CAS  Google Scholar 

  37. Kenny T, Gray NF (2009) Comparative performance of six carbon footprint models for use in Ireland. Environ Impact Assess Rev 29(1):1–6

    Article  Google Scholar 

  38. Kim B, Neff R (2009) Measurement and communication of greenhouse gas emissions from U.S. Food consumption via carbon calculators. Ecol Econ 69(1):186–196

    Google Scholar 

  39. Kua HW, Kamath S (2014) An attributional and consequential life cycle assessment of substituting concrete with bricks. J Cleaner Prod 81:190–200

    Article  Google Scholar 

  40. Kua HW, Lu Y (2016) Environmental impacts of substituting tempered glass with polycarbonate in construction–An attributional and consequential life cycle perspective. J Cleaner Prod 137:910–921

    Article  CAS  Google Scholar 

  41. L.E.K. Consulting LLP (2007) The L.E.K. Consulting carbon footprint report 2007: Carbon footprints and the evolution of brand–consumer relationships. L.E.K. Consulting Research Insights, I. London, L.E.K. LLB.

    Google Scholar 

  42. Laurent A, Olsen SI, Hauschild MZ (2012). Limitations of carbon footprint as indicator of environmental sustainability. Environ Sci Technol 46(7):4100-4108

    Google Scholar 

  43. Levasseur A, Lesage P, Margni M, Deschênes L, Samson R (2010) Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ Sci Technol 44:3169–3174

    Article  CAS  Google Scholar 

  44. Lueddeckens S, Saling P, Guenther E (2020) Temporal issues in life cycle assessment—a systematic review. Int J Life Cycle Assess 1–17

    Google Scholar 

  45. Maciel VG, Zortea RB, Grillo IB, Ugaya CML, Einloft S, Seferin M (2016) Greenhouse gases assessment of soybean cultivation steps in southern Brazil. J Cleaner Prod 131:747–753

    Article  CAS  Google Scholar 

  46. Mallapragada DS, Mignone BK (2020) A theoretical basis for the equivalence between physical and economic climate metrics and implications for the choice of Global Warming Potential time horizon. Climatic Change 158(2):107–124

    Article  CAS  Google Scholar 

  47. Manfredi S, Allacker K, Pelletier N, Schau E, Chomkhamsri K, Pant R, Pennington D (2015) Comparing the European Commission product environmental footprint method with other environmental accounting methods. Int J Life Cycle Assess 20(3):389–404

    Article  Google Scholar 

  48. McAuliffe GA, Takahashi T, Lee MR (2020) Applications of nutritional functional units in commodity-level life cycle assessment (LCA) of agri-food systems. Int J Life Cycle Assess 25(2):208–221

    Article  Google Scholar 

  49. Meloni I, Spissu E, Bhat CR (2011) The effect of personal cap-and-trade mileage policies on individual activity-travel patterns: the activity locator project. Transp Lett Int J Transp Res 3:293–307

    Google Scholar 

  50. Mulrow J, Machaj K, Deanes J, Derribre S (2019) The state of carbon footprint calculators: An evaluation of calculator design and user interaction features. Sustain Prod Consump 18:33–40

    Article  Google Scholar 

  51. Muthu SS (Ed.) (2015) Handbook of life cycle assessment (LCA) of textiles and clothing. Woodhead Publishing

    Google Scholar 

  52. Möser G, Bamberg S (2008) The effectiveness of soft transport policy measures: a critical assessment and meta-analysis of empirical evidence. J Environ Psychol 28:10–26

    Article  Google Scholar 

  53. Negishi K, Lebert A, Almeida D, Chevalier J, Tiruta-Barna L (2019) Evaluating climate change pathways through a building’s lifecycle based on Dynamic Life Cycle Assessment. Build Environ 164:106377

    Article  Google Scholar 

  54. Negishi K, Tiruta-Barna L, Schiopu N, Lebert A, Chevalier J (2018) An operational methodology for applying dynamic Life Cycle Assessment to buildings. Build Environ 144:611–621

    Article  Google Scholar 

  55. Notarnicola B, Sala S, Anton A, McLaren SJ, Saouter E, Sonesson U (2017) The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. J Cleaner Prod 140:399–409

    Article  Google Scholar 

  56. Notarnicola B, Tassielli G, Renzulli PA, Lo GA (2015) Life Cycle Assessment in the agri-food sector: an overview of its key aspects, international initiatives, certification, labelling schemes and methodological issues. In: Notarnicola B, Salomone R, Petti L, Renzulli PA, Roma R, Cerutti AK (eds) Life cycle Assessment in the Agri-food Sector - Case studies, Methodological Issues and Best Practices. Springer International Publishing, Switzerland, pp 1–56

    Chapter  Google Scholar 

  57. Notten P, Ramírez Á, Rivela B, Tashobya D, Network UL, Ugaya UCM (2019) Development of National LCA Database Roadmaps, including further Development of the Technical Helpdesk for National LCA Databases

    Google Scholar 

  58. Ocko IB, Hamburg SP, Jacob DJ, Keith DW, Keohane NO, Oppenheimer M, Pacala SW (2017) Unmask temporal trade-offs in climate policy debates. Science 356(6337):492–493

    Article  CAS  Google Scholar 

  59. Padgett JP, Steinemann AC, Clarke JH, Vandenbergh MP (2008) A comparison of carbon calculators. Environ Impact Assess Rev 28(2):106–115

    Article  Google Scholar 

  60. Pandey D, Agrawal M, Pandey JS (2011) Carbon footprint: current methods of estimation. Environ Monit Assess 178:135–160

    Article  CAS  Google Scholar 

  61. Panesar DK, Seto KE, Churchill CJ (2017) Impact of the selection of functional unit on the life cycle assessment of green concrete. Int J Life Cycle Assess 22(12):1969–1986

    Article  CAS  Google Scholar 

  62. Papong S, Rewlay-ngoen C, Itsubo N, Malakul P (2017) Environmental life cycle assessment and social impacts of bioethanol production in Thailand. J Cleaner Prod 157:254–266

    Article  Google Scholar 

  63. Peter C, Helming K, Nendel C (2017) Do greenhouse gas emission calculations from energy crop cultivation reflect actual agricultural management practices? – A review of carbon footprint calculators. Renew Sust Energ Rev 67:461–476

    Article  CAS  Google Scholar 

  64. Pigné Y, Gutiérrez TN, Gibon T, Schaubroeck T, Popovici E, Shimako AH, Tiruta-Barna L (2020) A tool to operationalize dynamic LCA, including time differentiation on the complete background database. Int J Life Cycle Assess 25(2):267–279

    Article  Google Scholar 

  65. Plassmann K (2018) Direct and Indirect Land Use Change. In Biokerosene (pp 375–402). Springer, Berlin, Heidelberg

    Google Scholar 

  66. Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael BAS, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Glob Change Biol 17(7):2415–2427

    Article  Google Scholar 

  67. Prapaspongsa T, Gheewala SH (2017) Consequential and attributional environmental assessment of biofuels: implications of modelling choices on climate change mitigation strategies. Int J Life Cycle Assess 22(11):1644–1657

    Article  CAS  Google Scholar 

  68. Rahaman F, O’Brien C, Ahamed SI, Zhang H, Liu L (2011) Design and implementation of an open framework for ubiquitous carbon footprint calculator applications. Sustain Comput-Infor 1:257–274

    Google Scholar 

  69. Recchioni M, Blengini GA, Fazio S, Mathieux F, Pennington D (2015) Challenges and opportunities for web-shared publication of quality-assured life cycle data: the contributions of the Life Cycle Data Network. Int J Life Cycle Assess 20(7):895–902

    Article  Google Scholar 

  70. De Rosa M, Pizzol M, Schmidt J (2018) How methodological choices affect LCA climate impact results: the case of structural timber. Int J Life Cycle Assess 23(1):147–158

    Article  CAS  Google Scholar 

  71. Saarinen M, Fogelholm M, Tahvonen R, Kurppa S (2017) Taking nutrition into account within the life cycle assessment of food products. J Cleaner Prod 149:828–844

    Article  Google Scholar 

  72. Salo M, Mattinen-Yuryev MK, Nissinen A (2019) Opportunities and limitations of carbon footprint calculators to steer sustainable household consumption – Analysis of Nordic calculator features. J Cleaner Prod 207:658–666

    Article  Google Scholar 

  73. Schmidt JH, Weidema BP, Brandão M (2015) A framework for modelling indirect land use changes in life cycle assessment. J Cleaner Prod 99:230–238

    Article  Google Scholar 

  74. Shirley R, Jones C, Kammen D (2012) A household carbon footprint calculator for islands: Case study of the United States Virgin Islands. Ecol Econ 80:8–14

    Article  Google Scholar 

  75. Sills DL, Van Doren LG, Beal C, Raynor E (2020) The effect of functional unit and co-product handling methods on life cycle assessment of an algal biorefinery. Algal Res 46:101770

    Article  Google Scholar 

  76. Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA 106(6):1704–1709

    Article  CAS  Google Scholar 

  77. Sonesson U, Davis J, Hallström E, Woodhouse A (2019) Dietary-dependent nutrient quality indexes as a complementary functional unit in LCA: A feasible option? J Cleaner Prod 211:620–627

    Article  Google Scholar 

  78. Sykes AJ, Topp CFE, Wilson RM, Reid G, Rees RM (2017) A comparison of farm-level greenhouse gas calculators in their application on beef production systems. J Cleaner Prod 164:398–409

    Article  Google Scholar 

  79. UNEP/SETAC Life Cycle Initiative (2011) Global guidance principles for life cycle Assessment databases. UNEP, Paris

    Google Scholar 

  80. Udara Willhelm Abeydeera LH, Wadu Mesthrige J, Samarasinghalage TI (2019) Global Research on Carbon Emissions: A Scientometric Review. Sustain 11:3972

    Google Scholar 

  81. Wackernagel M, Rees WE (1996) Our ecological footprint: Reducing human impact on the earth. New Society Publishers, Gabriola Island

    Google Scholar 

  82. van der Werf HM, Salou T (2015) Economic value as a functional unit for environmental labelling of food and other consumer products. J Cleaner Prod 94:394–397

    Article  Google Scholar 

  83. Wiedmann T, Minx J (2008) A definition of ‘carbon footprint. Ecol Econ Res Trends 1:1–11

    Google Scholar 

  84. World Resources Institute and World Business Council for Sustainable Development (2004) GHG Protocol Corporate Accounting and Reporting Standard

    Google Scholar 

  85. World Resources Institute and World Business Council for Sustainable Development (2011) GHG Protocol Corporate Value Chain (Scope 3) Standard

    Google Scholar 

  86. Xu Z, Fu Z, Zhai Z, Yang X, Meng F, Feng X, Zhang Z (2020) Comparative evaluation of carbon footprints between rice and potato food considering the characteristic of Chinese diet. J Cleaner Prod 257:120463

    Article  Google Scholar 

  87. Yue T, Liu H, Long R, Chen H, Gan X, Liu J (2020) Research trends and hotspots related to global carbon footprint based on bibliometric analysis: 2007–2018. Environ Sci Pollut Res 27:17671–17691

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Scrucca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scrucca, F., Barberio, G., Fantin, V., Porta, P.L., Barbanera, M. (2021). Carbon Footprint: Concept, Methodology and Calculation. In: Muthu, S.S. (eds) Carbon Footprint Case Studies. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-9577-6_1

Download citation

Publish with us

Policies and ethics