Skip to main content

Linear Combination of Molecular Orbitals of Fragments (FMO-LCMO) Method: Its Application to Charge Transfer Studies

  • Chapter
  • First Online:
Recent Advances of the Fragment Molecular Orbital Method

Abstract

Fragment molecular orbital-linear combination of molecular orbitals of fragments (FMO-LCMO) method makes possible to effectively construct one-electron Hamiltonian, canonical MOs, and their energies of large molecules including protein, DNA, and so on, by using the output of usual FMO calculations. This Chapter reviews the FMO-LCMO method and its applications to the studies on the charge transfer phenomena in bio-systems and organic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Chem Phys Lett 313:701

    CAS  Google Scholar 

  2. Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Chem Phys Lett 351:475

    Article  CAS  Google Scholar 

  3. Fedorov DG, Kitaura K (2004) J Chem Phys 120:6832

    Article  CAS  Google Scholar 

  4. Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV (2012) Chem Rev 112:632

    Article  CAS  Google Scholar 

  5. Yang W (1991) Phys Rev Lett 66:1438

    Article  CAS  Google Scholar 

  6. Inadomi Y, Nakano T, Kitaura K, Nagashima U (2002) Chem Phys Lett 364:139

    Article  CAS  Google Scholar 

  7. Watanabe T, Inadomi Y, Umeda H, Fukuzawa K, Tanaka S, Nakano T, Nagashima U (2009) J Comput Theor Nanosci 6:1328

    Article  CAS  Google Scholar 

  8. Umeda H, Inadomi Y, Watanabe T, Yagi T, Ishimoto T, Ikegami T, Tadano H, Sakurai T, Nagashima U (2010) J Comput Chem 31:2381

    CAS  PubMed  Google Scholar 

  9. Sakurai T, Sugiura H (2003) J Comput Appl Math 159:119

    Article  Google Scholar 

  10. Tsuneyuki S, Kobori T, Akagi K, Sodeyama K, Terakura K, Fukuyama H (2009) Chem Phys Lett 476:104

    Article  CAS  Google Scholar 

  11. Kobori T, Sodeyama K, Otsuka T, Tateyama Y, Tsuneyuki S (2013) J Chem Phys 139:094113

    Article  Google Scholar 

  12. Nishioka H, Ando K (2011) J Chem Phys 134:204109

    Article  Google Scholar 

  13. Kitoh-Nishioka H, Ando K (2012) J Phys Chem B 116:12933

    Article  CAS  Google Scholar 

  14. Kitoh-Nishioka H, Ando K (2016) J Chem Phys 145:114103

    Article  Google Scholar 

  15. Sato R, Kitoh-Nishioka H, Ando K, Yamato T (2018) J Phys Chem B 122:6912

    Article  CAS  Google Scholar 

  16. Kitoh-Nishioka H, Ando K (2015) Chem Phys Lett 621:96

    Article  CAS  Google Scholar 

  17. Kitoh-Nishioka H, Welke K, Nishimoto Y, Fedorov DG, Irle S (2017) J Phys Chem C 121:17712

    Article  CAS  Google Scholar 

  18. Sato R, Kitoh-Nishioka H, Yanai T, Shigeta Y (2017) Chem Lett 46:873

    Article  CAS  Google Scholar 

  19. Sato R, Kitoh-Nishioka H, Kamada K, Mizokuro T, Kobayashi K, Shigeta Y (2018) J Phys Chem C 122:5334

    Article  CAS  Google Scholar 

  20. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature 355:796

    Article  CAS  Google Scholar 

  21. Gray HB, Winkler JR (2005) Proc Natl Acad Sci USA 102:3534

    Article  CAS  Google Scholar 

  22. Fedorov DG, Kitaura K (2017) J Chem Phys 147:104106

    Article  Google Scholar 

  23. Nakano T, Kaminuma T, Sato T, Akiyama Y, Uebayasi M, Kitaura K (2000) Chem Phys Lett 318:614

    Article  CAS  Google Scholar 

  24. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S et al (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  25. Fedorov DG, Jensen JH, Deka RC, Kitaura K (2008) J Phys Chem A 112:11808

    Article  CAS  Google Scholar 

  26. Fedorov DG, Kitaura K, Li H, Jensen JH, Gordon MS (2006) J Comput Chem 27:976

    Article  CAS  Google Scholar 

  27. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265

    Article  CAS  Google Scholar 

  28. Cave RJ, Newton MD (1996) Chem Phys Lett 249:15

    Article  CAS  Google Scholar 

  29. Skourtis SS, Beratan DN (1999) Adv Chem Phys 106:377

    CAS  Google Scholar 

  30. Stuchebrukov AA (2003) Theor Chem Acc 110:291

    Article  Google Scholar 

  31. Stuchebrukhov AA (1996) J Chem Phys 105:10819

    Article  CAS  Google Scholar 

  32. Smith MB, Michl J (2010) Chem Rev 110:6891

    Article  CAS  Google Scholar 

  33. Nishimoto Y, Fedorov DG, Irle S (2014) J Chem Theory Comput 10:4801

    Article  CAS  Google Scholar 

  34. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260

    Article  CAS  Google Scholar 

  35. Kubas A, Hoffmann F, Heck A, Oberhofer H, Elstner M, Blumberger J (2014) J Chem Phys 140:104105

    Article  Google Scholar 

  36. Fujita T, Mochizuki Y (2018) J Phys Chem A 122:3886

    Article  CAS  Google Scholar 

  37. Fujita T, Alam MDK, Hoshi T (2018) Phys Chem Chem Phys 20:26443

    Google Scholar 

  38. Yamada S, Shimojo F, Akashi R, Tsuneyuki S (2017) Phys Rev B 95:045106

    Article  Google Scholar 

Download references

Acknowledgements

H.K.-H. acknowledges the support by JST, PRESTO Grant Number JPMJPR17G4, Japan. R.S. was supported by a special postdoctoral researcher program at RIKEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Kitoh-Nishioka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kitoh-Nishioka, H., Sato, R., Shigeta, Y., Ando, K. (2021). Linear Combination of Molecular Orbitals of Fragments (FMO-LCMO) Method: Its Application to Charge Transfer Studies. In: Mochizuki, Y., Tanaka, S., Fukuzawa, K. (eds) Recent Advances of the Fragment Molecular Orbital Method. Springer, Singapore. https://doi.org/10.1007/978-981-15-9235-5_20

Download citation

Publish with us

Policies and ethics