Skip to main content

Kernel Fuzzy C Means Clustering with New Spatial Constraints

  • Conference paper
  • First Online:
  • 1004 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1253))

Abstract

Kernel fuzzy c-means clustering with spatial constraints (KFCM_S) is one of the most convenient and effective algorithms for change detection in synthetic aperture radar (SAR) images. However, this algorithm exists problems of weak noise-immunity and detail-preserving on account of the failure to use spatial neighborhood information. In order to overcome above problems, this paper proposed an algorithm using bilateral filtering and large scale median filtering instead of the original spatial constraints. In particular, the approach uses different calculation methods of constraint terms at different locations of image. The bilateral filtering value is used as spatial neighborhood information at the boundary region for preserving the boundary information while the large scale median filtering value is used at the non boundary region for facilitating noise removal. In this paper, 3 remote sensing datasets are used to verify the proposed approach, and the results show that the proposed approach improves the accuracy of remote sensing image change detection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Almutairi, A., Warner, T.: Change detection accuracy and image properties: a study using simulated data. Remote Sensing 2(6), 1508–1529 (2010)

    Article  Google Scholar 

  2. Bruzzone, L., Serpico, S.: An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images. IEEE Trans. Geosci. Remote Sensing 35(4), 858–867 (1997)

    Article  Google Scholar 

  3. Chavez, P., Mackinnon, D.: Automatic detection of vegetation changes in the southwestern United States using remotely sensed images. Photogram. Eng. Remote Sensing 60(5), 571–582 (1994)

    Google Scholar 

  4. Ma, N., Jianhe, G., Pingzeng, L., Ziqing, Z., Gregory, M.P.O.: GA-BP air quality evaluation method based on fuzzy theory. Comput. Mater. Continua 58(1), 215–227 (2019)

    Article  Google Scholar 

  5. Yousif, O., Ban, Y.: Improving SAR-based urban change detection by combining MAP-MRF classifier and nonlocal means similarity weights. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sensing 7(10), 4288–4300 (2014)

    Article  Google Scholar 

  6. Ye, S., Chen, D.: An unsupervised urban change detection procedure by using luminance and saturation for multispectral remotely sensed images. Photogram. Eng. Remote Sensing 81(8), 637–645 (2015)

    Article  Google Scholar 

  7. Gong, M., Su, L., Jia, M., Chen, W.: Fuzzy clustering With a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans. Fuzzy Syst. 22(1), 98–109 (2014)

    Article  Google Scholar 

  8. Chapman, B., Blom, R.: Synthetic Aperture Radar. Technol. Past Fut. Appl. Archaeol. (2013)

    Google Scholar 

  9. Qi, H., et al.: A weighted threshold secret sharing scheme for remote sensing images based on Chinese remainder theorem. Comput. Mater. Continua 58(2), 349–361 (2019)

    Article  Google Scholar 

  10. Mishra, N., Ghosh, S., Ghosh, A.: Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images. Appl. Soft Comput. J. 12(8), 2683–2692 (2012)

    Article  Google Scholar 

  11. Ruikang, X., Chenghai, L.: Fuzzy C-means algorithm automatically determining optimal number of clusters. Comput. Mater. Continua 60(2), 767–780 (2019)

    Article  Google Scholar 

  12. Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. 34(4), 1907–1916 (2004)

    Article  Google Scholar 

  13. Noordam J, vandenBroek W, Buydens L.: Geometrically guided fuzzy C-means clustering for multivariate image segmentation. In: 15th IEEE International Conference on Pattern Recognition, vol. 1, pp. 462–465 (2000)

    Google Scholar 

  14. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40(3), 825–838 (2007)

    Article  Google Scholar 

  15. Krinidis, S., Chatzis, V.: A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)

    Article  MathSciNet  Google Scholar 

  16. Zhou, W., Jia, Z., Yang, J., Kasabov, N.: SAR image change detection based on combinatorial difference map and FCM clustering. Laser J. (3) (2018)

    Google Scholar 

  17. Gong, M., Zhou, Z., Ma, J.: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Process. 21(4), 2141–2151 (2012)

    Article  MathSciNet  Google Scholar 

  18. Liu, J., Gong, M., Miao, Q., Su, L., Li, H.: Change detection in synthetic aperture radar images based on unsupervised artificial immune systems. Appl. Soft Comput. 34, 151–163 (2015)

    Article  Google Scholar 

  19. Rosin, P., Ioannidis, E.: Evaluation of global image thresholding for change detection. Pattern Recogn. Lett. 24(14), 2345–2356 (2003)

    Article  Google Scholar 

  20. Shang, R., Yuan, Y., Jiao, L., Meng, Y., Ghalamzan, A.M.: A selfpaced learning algorithm for change detection in synthetic aperture radar images. Signal Process 142, 375–387 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Niu, S., Geng, L. (2020). Kernel Fuzzy C Means Clustering with New Spatial Constraints. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Communications in Computer and Information Science, vol 1253. Springer, Singapore. https://doi.org/10.1007/978-981-15-8086-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8086-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8085-7

  • Online ISBN: 978-981-15-8086-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics