Skip to main content

Earthworms for Eco-friendly Resource Efficient Agriculture

  • Chapter
  • First Online:
Resources Use Efficiency in Agriculture

Abstract

Waste production became the main concern in the era of the increasing world population. Millions of tons of waste are being generated everyday worldwide, and now, it is a big challenge for managing the financial and ecological expense of these wastes. An additional significant problem is arising from the disposal of municipal solid wastes, which cause emission of greenhouse gases. For sustainable development, a chief part of municipal wastes has biological garbage which can be converted into eco-friendly material like vermicompost (VCM) by using earthworm. Earthworm’s activities increase the soil fertility by improving soil formation, soil porosity, water infiltration, decomposition of organic material, humus formation, suppression of soil-borne diseases & pests, and by promoting nutrient cycles which ultimately help in plant growth. Due to their beneficial activities, they cause the main change in soil properties; therefore, they are known as “Ecological engineer.” Earthworms also act as a bioindicator. Earthworm forms a significant portion of soil invertebrate’s biomass about 40–90% in different soil condition. The earthworm species have great diversity across the globe, which is the deciding factor to earthworm’s potent towards soil improvement. Indian earthworms are dominant by indigenous species that contribute approximately 89% of total earthworm diversity and are represented by nine families, 67–69 genera, and 418–509 species of earthworms out of them, approximately 51 are exotic species. The present chapter highlights in depth the role of earthworm in efficient and sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ca:

Calcium

Cd:

Cadmium

cm:

Centimeter

CM:

Compost

DNA:

Deoxyribonucleic acid

GA:

Gibberellic acid

ha:

Hectare

HMs:

Heavy metals

IAA:

Indole-3-acetic acid

K:

Potassium

kg:

Kilograms

kPa:

Kilo Pascal

m:

Meter

mg:

Milligrams

mm:

Millimeter

Mn:

Manganese

MOs:

Microorganisms

N:

Nitrogen

P:

Phosphorus

t:

Tonnes

VCM:

Vermicompost

μm:

Micrometer

References

  • Adhikary S (2012) Vermicompost, the story of organic gold: a review. Agric Sci 3(7):905

    Google Scholar 

  • Aguilar-López JL, Pineda E (2013) An exotic species of earthworm preyed by Craugastor rhodopis (Anura: Craugastoridae) in Mexico. Herpetol Notes 6:335–336

    Google Scholar 

  • Allison A, Kraus F (2000) A new species of frog of the genus Xenorhina (Anura: Microhylidae) from the north coast ranges of Papua New Guinea. Herpetol Sep 1:285–294

    Google Scholar 

  • Ansari AA, Ori L, Ramnarain YI (2020) An effective organic waste recycling through vermicompost technology for soil health restoration. In: Meena RS (ed) Soil health restoration and management. Springer, Singapore, pp 83–112

    Chapter  Google Scholar 

  • Arancon NQ, Edwards CA, Bierman P, Welch C, Metzger JD (2004) Influences of vermicomposts on field strawberries. Effects on growth and yields. Bioresour Technol 93(2):145–153

    Article  PubMed  CAS  Google Scholar 

  • Araujo Y, Luizão FJ, Barros E (2004) Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms. Biol Fertil Soils 39(3):146–152

    Article  Google Scholar 

  • Bajiya R, Lakhran H, Kumar S, Seema (2017) Biochar for enhancing agricultural sustainability under climate change. Int J Curr Microb Appl Sci 6(2):1876–1883

    Article  CAS  Google Scholar 

  • Barker KR (2003) Perspectives on plant and soil nematology. Annu Rev Phytopathol 41(1):1–25

    Article  PubMed  CAS  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64(2):269–285

    Article  Google Scholar 

  • Bartlett MD, Briones MJ, Neilson R, Schmidt O, Spurgeon D, Creamer RE (2010) A critical review of current methods in earthworm ecology: from individuals to populations. Eur J Soil Biol 46(2):67–73

    Article  Google Scholar 

  • Bernard MJ, Neatrour MA, McCay TS (2009) Influence of soil buffering capacity on earthworm growth, survival, and community composition in the Western Adirondacks and Central New York. Northeast Nat 6(2):269–285

    Article  Google Scholar 

  • Berry EC, Jordan D (2001) Temperature and soil moisture content effects on the growth of Lumbricus terrestris (Oligochaeta: Lumbricidae) under laboratory conditions. Soil Biol Biochem 33(1):133–136

    Article  CAS  Google Scholar 

  • Bertrand M, Barot S, Blouin M, Whalen J, de Oliveira T, Roger-Estrade J (2015) Earthworm services for cropping systems. Rev Agron Sustain Develop 35(2):553–567

    Article  CAS  Google Scholar 

  • Bhadauria T, Kumar P, Kumar R, Maikhuri RK, Rao KS, Saxena KG (2012) Earthworm populations in a traditional village landscape in central Himalaya, India. Appl Soil Ecol 53:83–93

    Article  Google Scholar 

  • Bhardwaj P, Sharma R (2016) New records of earthworms from sugar-belt of Haryana. Bioscan 11(1):53–56

    Google Scholar 

  • Blanchart E, Julka JM (1997) Influence of forest disturbance on earthworm (Oligochaeta) communities in the Western Ghats (South India). Soil Biol Biochem 29(3–4):303–306

    Article  CAS  Google Scholar 

  • Blouin M, Zuily-Fodil Y, Pham-Thi AT, Laffray D, Reversat G, Pando A, Tondoh J, Lavelle P (2005) Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecol Lett 8(2):202–208

    Article  Google Scholar 

  • Blouin M, Lavelle P, Laffray D (2007) Drought stress in rice (Oryza sativa L.) is enhanced in the presence of the compacting earthworm Millsonia anomala. Environ Exp Bot 60(3):352–359

    Article  CAS  Google Scholar 

  • Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Dai J, Dendooven L, Pérès G, Tondoh JE, Cluzeau D (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64(2):161–182

    Article  Google Scholar 

  • Boag B, Yeates GW (2001) The potential impact of the New Zealand flatworm, a predator of earthworms, in western Europe. Ecol Appl 11(5):1276–1286

    Article  Google Scholar 

  • Bottinelli N, Jouquet P, Capowiez Y, Podwojewski P, Grimaldi M, Peng X (2015) Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil Tillage Res 146:118–124

    Article  Google Scholar 

  • Bouche MB (1977) Strategies lombriciennes. In: Lohm U, Persson T (eds) Soil organisms as components of ecosystems, vol 25. Ecological Bulletins, Swedish Natural Science Research Council, Stockholm, pp 122–132

    Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170(1):209–231

    Article  CAS  Google Scholar 

  • Brown GG, Edwards CA, Brussaard L (2004) How earthworms affect plant growth: burrowing into the mechanisms. Earthworm Ecol 2:13–49

    Google Scholar 

  • Brown DS, Jarman SN, Symondson WO (2012) Pyrosequencing of prey DNA in reptile faeces: analysis of earthworm consumption by slow worms. Mol Ecol Resour 12(2):259–266

    Article  PubMed  CAS  Google Scholar 

  • Brussaard L (1997) Biodiversity and ecosystem functioning in soil. Ambio 26:563–570

    Google Scholar 

  • Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130(4):1951–1957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canti MG (2003) Earthworm activity and archaeological stratigraphy: a review of products and processes. J Archaeol Sci 30(2):135–148

    Article  Google Scholar 

  • Carpenter D, Hodson ME, Eggleton P, Kirk C (2007) Earthworm induced mineral weathering: preliminary results. Eur J Soil Biol 43:S176–S183

    Article  CAS  Google Scholar 

  • Chai L, Yang Y, Yang H, Zhao Y, Wang H (2020) Transcriptome analysis of genes expressed in the earthworm Eisenia fetida in response to cadmium exposure. Chemosphere 240:124902

    Article  PubMed  CAS  Google Scholar 

  • Chan KY (2003) Using earthworms to incorporate lime into subsoil to ameliorate acidity. Commun Soil Sci Plant Anal 34(7–8):985–997

    Article  CAS  Google Scholar 

  • Chan KY (2004) Impact of tillage practices and burrows of a native Australian anecic earthworm on soil hydrology. Appl Soil Ecol 27(1):89–96

    Article  Google Scholar 

  • Chan KY, Baker GH, Conyers MK, Scott B, Munro K (2004) Complementary ability of three European earthworms (Lumbricidae) to bury lime and increase pasture production in acidic soils of South-Eastern Australia. Appl Soil Ecol 26(3):257–271

    Article  Google Scholar 

  • Chandran MS, Sujatha S, Mohan M, Julka JM, Ramasamy EV (2012) Earthworm diversity at Nilgiri biosphere reserve, Western Ghats, India. Biodivers Conserv 21(13):3343–3353

    Article  Google Scholar 

  • Cheng J, Wong MH (2002) Effects of earthworms on Zn fractionation in soils. Biol Fertil Soils 36(1):72–78

    Article  CAS  Google Scholar 

  • Clark B, York R, Bellamy Foster J (2009) Darwin’s worms and the skin of the earth: an introduction to Charles Darwin’s the formation of vegetable Mould, through the action of worms, with observations on their habits (selections). Organ Environ 22(3):338–350

    Article  Google Scholar 

  • Clements RO, Murray PJ, Sturdy RG (1991) The impact of 20 years’ absence of earthworms and three levels of N fertilizer on a grassland soil environment. Agric Ecosyst Environ 36(1–2):75–85

    Article  CAS  Google Scholar 

  • Coleman FC, Williams SL (2002) Overexploiting marine ecosystem engineers: potential consequences for biodiversity. Trends Ecol Evol 17(1):40–44

    Article  Google Scholar 

  • Dahiya S, Kumar S, Kumar S, Khedwal RS, Harender D, Chaudhary C, Ankush A (2018) Management practices for improving water use efficiency of crops for boosting crop production. In: Rao RK, Sharma PK, Raghuraman M, Singh JK (eds) Agricultural, allied sciences & biotechnology for sustainability of agriculture, nutrition & food security. Mahima Publications, Varanasi., ISBN: 978-81-926935-8-3, pp 115–121

    Google Scholar 

  • Darwin C (1881) The formation of vegetable mould through the action of worms: with observations on their habits. John Murray, London

    Book  Google Scholar 

  • Dash MC, Saxena KG (2012) Earthworms in the Himalaya and Western Ghats region of India: a review. The Bioscan 7(1):1–8

    Google Scholar 

  • Decaëns T, Jiménez JJ, Barros E, Chauvel A, Blanchart E, Fragoso C, Lavelle P (2004) Soil macrofaunal communities in permanent pastures derived from tropical forest or savanna. Agric Ecosyst Environ 103(2):301–312

    Article  Google Scholar 

  • Deepshikha V (2011) A contribution to the earthworm survey fauna of Doon valley in Uttarakhand, India with special reference to a search for vermicomposting species. Bioremed Biodivers Bioavail 5(1):81–86

    Google Scholar 

  • Densilin DM, Srinivasan S, Manju P, Sudha S (2011) Effect of individual and combined application of biofertilizers, inorganic fertilizer and vermicompost on the biochemical constituents of chilli (Ns-1701). J Biofertil Biopestici 2(106):2

    Google Scholar 

  • Dhiman N, Battish SK (2006) Earthworms from northern Indian states with Ocnerodrilusoccidentalis, Eisen, 1878, as a new report from Punjab. Zoo’s Print Jl 21(1):2135–2137

    Article  Google Scholar 

  • Dominguez J, Edwards CA, Subler S (1997) A comparison of vermicomposting and composting. Biocycle 38:57–59

    CAS  Google Scholar 

  • Edwards CA (1998) The use of earthworms in the breakdown and management of organic wastes. In: Edwards CA (ed) Earthworm ecology. CRC Press, Boca Raton, pp 327–354

    Google Scholar 

  • Edwards CA, Bohlen PJ (1992) The effects of toxic chemicals on earthworms. In: Ware GW (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 23–99

    Chapter  Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Springer Science & Business Media, Berlin

    Google Scholar 

  • Edwards CA, Subler S, Chen SK, Bogomolov DM, Straalen NM, Krivolutsky DA (1996) Essential criteria for selecting bioindicator species, processes, or systems to assess the environmental impact of chemicals on soil ecosystems. Bioindicat Syst Soil Pollut 31:67–84

    Article  Google Scholar 

  • Edwards CA, Arancon NQ, Sherman RL (2010) Vermiculture technology: earthworms, organic wastes, and environmental management. CRC press, Boca Raton, p 601

    Book  Google Scholar 

  • Eggleton P, Inward K, Smith J, Jones DT, Sherlock E (2009) A six year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. Soil Biol Biochem 41(9):1857–1865

    Article  CAS  Google Scholar 

  • Ekperusi OA, Aigbodion FI (2015) Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus. Biotech 5(6):957–965

    CAS  Google Scholar 

  • Emmerling C (2001) Response of earthworm communities to different types of soil tillage. Appl Soil Ecol 17(1):91–96

    Article  Google Scholar 

  • Fadaee R (2012) A review on earthworm Eisenia fetida and its applications. Ann Biol Res 3(5):2500–2506

    Google Scholar 

  • Feller C, Brown GG, Blanchart E, Deleporte P, Chernyanskii SS (2003) Charles Darwin, earthworms and the natural sciences: various lessons from past to future. Agric Ecosyst Environ 99(1–3):29–49

    Article  Google Scholar 

  • Fischer C, Roscher C, Jensen B, Eisenhauer N, Baade J, Attinger S, Scheu S, Weisser WW, Schumacher J, Hildebrandt A (2014) How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland? PLoS One 9(6):e98987

    Article  PubMed  PubMed Central  Google Scholar 

  • Fracchia L, Dohrmann AB, Martinotti MG, Tebbe CC (2006) Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl Microbiol Biotechnol 71(6):942

    Article  PubMed  CAS  Google Scholar 

  • Fragoso C, Kanyonyo J, Moreno A, Senapati BK, Blanchart E, Rodriguez C (1999a) A survey of tropical earthworms: Taxonomy, biogeography and environmental plasticity. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CABI Publishing, New York, pp 1–26

    Google Scholar 

  • Fragoso C, Lavelle P, Blanchart E, Senapati BK, Jimenez JJ, Martínez MA, Decaëns T, Tondoh J (1999b) Earthworm communities of tropical agroecosystems: origin, structure and influence of management practices. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CABI Publishing, New York, pp 27–55

    Google Scholar 

  • Furlong MA, Singleton DR, Coleman DC, Whitman WB (2002) Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl Environ Microbiol 68(3):1265–1279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fusaro S, Gavinelli F, Lazzarini F, Paoletti MG (2018) Soil biological quality index based on earthworms (QBS-e). A new way to use earthworms as bioindicators in agroecosystems. Ecol Indic 93:1276–1292

    Article  Google Scholar 

  • Gajalakshmi S, Abbasi SA (2002) Effect of the application of water hyacinth compost/vermicompost on the growth and flowering of Crossandra undulaefolia, and on several vegetables. Bioresour Technol 85(2):197–199

    Article  PubMed  CAS  Google Scholar 

  • Garg N, Julka JM (2016) Diversity and new records of earthworms (oligochaeta: Annelida) from Haryana, a constituent of trans Gangetic plains, India. Megadrilogica 21(10):205–209

    Google Scholar 

  • Gates GE (1959) On some earthworms from Taiwan. Am Mus Novit 1941:1–19

    Google Scholar 

  • Gibson PH, Cosens D, Buchanan K (1997) A chance field observation and pilor laboratory studies of predation of the New Zealand flatworm by the larvae and adults of carabid and staphylinid beetles. Ann Appl Biol 130(3):581–585

    Article  Google Scholar 

  • Goswami R, Mondal CK (2015) A study on earthworm population and diversity with special reference to physicochemical parameters in different habitats of South 24 Parganas district in West Bengal. Rec Zool Surv India 115(1):31–38

    Google Scholar 

  • Gowri S, Thangaraj R (2019) Studies on the toxic effects of agrochemical pesticide (Monocrotophos) on physiological and reproductive behavior of indigenous and exotic earthworm species. Int J Environ Health Res 22:1–4

    Google Scholar 

  • Grazziotin FG, Zaher H, Murphy RW, Scrocchi G, Benavides MA, Zhang YP, Bonatto SL (2012) Molecular phylogeny of the new world Dipsadidae (Serpentes: Colubroidea): a reappraisal. Cladistics 28(5):437–459

    Article  PubMed  Google Scholar 

  • Gupta A, Kumar A (2018) Climate resilient agro-technologies for enhanced crop and water productivity under water deficit agro-ecologies. In: Meena RS (ed) Sustainable agriculture. Scientific Publisher, Jodhpur, pp 339–356

    Google Scholar 

  • Gupta C, Prakash D (2020) Novel bioremediation methods in waste management: novel bioremediation methods. In: Khosrow-Pour M (ed) Waste management: concepts, methodologies, tools, and applications. IGI Global, Hershey, pp 1627–1643

    Chapter  Google Scholar 

  • Haimi J, Huhta V (1990) Effect of earthworms on decomposition processes in raw humus forest soil: a microcosm study. Biol Fertil Soils 10(3):178–183

    Google Scholar 

  • Hallatt L, Viljoen SA, Reinecke AJ (1992) Moisture requirements in the life cycle of Perionyx excavatus (Oligochaeta). Soil Biol Biochem 24(12):1333–1340

    Article  Google Scholar 

  • Hansen S (1996) Effects of manure treatment and soil compaction on plant production of a dairy farm system converting to organic farming practice. Agric Ecosyst Environ 56(3):173–186

    Article  Google Scholar 

  • Hobbs PR (2007) Conservation agriculture: what is it and why is it important for future sustainable food production? J Agric Sci Cambridge 145(2):127

    Article  Google Scholar 

  • Höckner M, Piechnik CA, Fiechtner B, Weinberger B, Tomanek L (2020) Cadmium-related effects on cellular immunity comprises altered metabolism in earthworm coelomocytes. Int J Mol Sci 21(2):599

    Article  PubMed Central  CAS  Google Scholar 

  • Homa J, Niklinska M, Plytycz B (2003) Effect of heavy metals on coelomocytes of the earthworm Allolobophora chlorotica: the 7th international symposium on earthworm ecology· Cardiff Wales 2002. Pedobiologia 47(5–6):640–645

    CAS  Google Scholar 

  • Huang K, Xia H, Zhang Y, Li J, Cui G, Li F, Bai W, Jiang Y, Wu N (2020) Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. Bioresour Technol 297:122451

    Article  PubMed  CAS  Google Scholar 

  • Ingerson-Mahar J (2002) Relating diet and morphology in adult carabid beetles. In: Holland JM (ed) The agroecology of carabid beetles, pp 111–136

    Google Scholar 

  • Ismail A (1997) Vermicology: the biology of earthworms. Orient Longman, Hyderabad

    Google Scholar 

  • Ivask M, Kuu A, Truu M, Truu J (2006) The effect of soil type and soil moisture on earthworm communities. Agric Sci 17:7–11

    Google Scholar 

  • Ivask M, Kuu A, Sizov E (2007) Abundance of earthworm species in Estonian arable soils. Eur J Soil Biol 43:S39–S42

    Article  Google Scholar 

  • Jakhar SR, Kumar S, Jangir CK, Meena RS (2017) The role of mycorrhizal relationship in sustainable manner towards plant growth and soil fertility. Indian J Agric Allied Sci 3(4):19–24

    Google Scholar 

  • Jangir CK, Singh D, Kumar S (2016) Yield and economic response of biofertilizer and fertility levels on black gram (Vigna mungo L.). Progress Res Int J 11(Special-VIII):5252–5254

    Google Scholar 

  • Jangir CK, Panghaal D, Kumar S, Meena RS, Prince (2017) Enriching soil carbon stock through mitigating soil erosion. In: Rao RK, Sharma PK, Raghuraman M, Singh JK (eds) Agricultural, Allied Sciences & Biotechnology for Sustainability of Agriculture, Nutrition & Food Security. Mahima Publications, Varanasi, pp 415–419. ISBN: 978-81-926935-8-3

    Google Scholar 

  • Jangir CK, Kumar S, Meena RS (2019) Significance of soil organic matter to soil quality and evaluation of sustainability. In: Meena RS (ed) Sustainable agriculture. Scientific Publisher, Jodhpur, pp 357–381

    Google Scholar 

  • Jégou D, Brunotte J, Rogasik H, Capowiez Y, Diestel H, Schrader S, Cluzeau D (2002) Impact of soil compaction on earthworm burrow systems using X-ray computed tomography: preliminary study. Eur J Soil Biol 38(3–4):329–336

    Article  Google Scholar 

  • Joshi N, Aga S (2009) Diversity and distribution of earthworms in a subtropical forest ecosystem in Uttarakhand, India. Tropic Nat History 9(1):21–25

    Google Scholar 

  • Jouquet P, Podwojewski P, Bottinelli N, Mathieu J, Ricoy M, Orange D, Tran TD, Valentin C (2008) Above-ground earthworm casts affect water runoff and soil erosion in northern Vietnam. Catena 74(1):13–21

    Article  Google Scholar 

  • Jouquet EP, Bloquel E, Doan TT, Ricoy M, Orange D, Rumpel C, Duc TT (2011) Do compost and vermicompost improve macronutrient retention and plant growth in degraded tropical soils? Compost Sci Utilization 19(1):15–24

    Article  CAS  Google Scholar 

  • Julka JM (1993) Earthworm resources of India and their utilization in vermiculture. The Director, Zoological Survey of India (ed) Earthworm resources and vermiculture. Calcutta 51–56

    Google Scholar 

  • Kakraliya SK, Jat RD, Kumar S, Choudhary KK, Prakash J, Singh LK (2017a) Integrated nutrient management for improving, fertilizer use efficiency, soil biodiversity and productivity of wheat in irrigated rice wheat cropping system in indo-Gangetic Plains of India. J Curr Microb and Appl Scie 6(3):152–163

    Article  CAS  Google Scholar 

  • Kakraliya SK, Kumar N, Dahiya S, Kumar S, Yadav DD, Singh M (2017b) Effect of integrated nutrient management on growth dynamics and productivity trend of wheat (Triticum aestivum L.) under irrigated cropping system. J Plant Devel Sci 9(1):11–15

    CAS  Google Scholar 

  • Kavitha V, Anandhan R, Alharbi NS, Kadaikunnan S, Khaled JM, Almanaa TN, Govindarajan M (2020) Impact of pesticide monocrotophos on microbial populations and histology of intestine in the Indian earthworm Lampito mauritii (Kinberg). Microb Pathog 139:103893

    Article  PubMed  CAS  Google Scholar 

  • King RA, Vaughan IP, Bell JR, Bohan DA, Symondson WO (2010) Prey choice by carabid beetles feeding on an earthworm community analysed using species-and lineage-specific PCR primers. Mol Ecol 19(8):1721–1732

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Meena RS, Lal R (2018) Role of legumes in soil carbon sequestration. In: Meena RS, Das A, Lal R (eds) Legumes for soil health and sustainable management. Springer, Singapore, pp 109–138. https://doi.org/10.1007/978-981-13-0253-4_4

    Chapter  Google Scholar 

  • Kumar S, Meena RS, Datta R, Verma SK, Yadav GS, Pradhan G, Molaei A, Mustafizur Rahman GKM, Mashuk HA (2020) Legumes for carbon and nitrogen cycling: an organic approach. In: Datta R, Meena RS, Pathan SI, Ceccherini MT (eds) Carbon and nitrogen cycling in soil. Springer, Singapore, pp 337–375. https://doi.org/10.1007/978-981-13-7264-3_10

    Chapter  Google Scholar 

  • Lakhran H, Kumar S, Bajiya R (2017) Crop diversification: an option for climate change resilience. Trends in Biosc 10(2):516–518

    Google Scholar 

  • Langmaack M, Schrader S, Rapp-Bernhardt U, Kotzke KV (1999) Quantitative analysis of earthworm burrow systems with respect to biological soil-structure regeneration after soil compaction. Biol Fertility Soils 28(3):219–229

    Article  Google Scholar 

  • Lavelle P, Pashanasi B, Charpentier F, Gilot C, Rossi JP, Derouard L, André J, Ponge JF, Bernier N (1998) Large-scale effects of earthworms on soil organic matter and nutrient dynamics. St. Lucie Press, Boca Raton

    Google Scholar 

  • Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15

    Article  Google Scholar 

  • Le Bayon RC, Moreau S, Gascuel-Odoux C, Binet F (2002) Annual variations in earthworm surface-casting activity and soil transport by water runoff under a temperate maize agroecosytem. Geoderma 106(1–2):121–135

    Article  Google Scholar 

  • Lee KE (1985) Earthworms: their ecology and relationships with soils and land use. Academic Press Inc., Sydney

    Google Scholar 

  • Li K, Li P, Li H (2010) Earthworms helping economy, improving ecology and protecting health. Int J Global Environ Issues 10(3–4):354–365

    Article  Google Scholar 

  • Liu M, Cao J, Wang C (2020) Bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline-contaminated soil. Ecotoxicol Environ Saf 189:109996

    Article  PubMed  CAS  Google Scholar 

  • Loehr RC, Martin JH, Neuhiauser EF, Malecki MR (1984) Waste management using earthworms: engineering and scientific relationships. NTIS, Springfield

    Google Scholar 

  • Macdonald DW (1983) Predation on earthworms by terrestrial vertebrates. In: Satchell JE (ed) Earthworm ecology. Springer, Dordrecht, pp 393–414

    Chapter  Google Scholar 

  • McCallum HM, Wilson JD, Beaumont D, Sheldon R, O’Brien MG, Park KJ (2016) A role for liming as a conservation intervention? Earthworm abundance is associated with higher soil pH and foraging activity of a threatened shorebird in upland grasslands. Agric Ecosyst Environ 223:182–189

    Article  Google Scholar 

  • Meena RS, Kumar S, Pandey A (2017) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based Agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop and Weed 13(2):222–227

    Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Yadav GS (2019) Soil carbon sequestration in crop production. In: Meena RS (ed) Nutrient dynamics for sustainable crop production. Springer, Singapore, pp 1–39. https://doi.org/10.1007/978-981-13-8660-2_1

    Chapter  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020a) Impact of agrochemicals on soil microbiota and management: a review. Land 9(34):1–22. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long term impacts of topsoil depthand amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164

    Article  CAS  Google Scholar 

  • Meysman FJ, Middelburg JJ, Heip CH (2006) Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol Evol 21(12):688–695

    Article  PubMed  Google Scholar 

  • Mohan VC, Watts P, Kaur A (2013) Diversity and distribution of earthworm species in Guru Nanak Dev University Campus, Amritsar, Punjab, India. Res J Agric Sci 1(2):35–40

    Google Scholar 

  • Munnoli PM, Da Silva JA, Saroj B (2010) Dynamics of the soil-earthworm-plant relationship: a review. Dynamic Soil Dynamic Plant 4(1):1–21

    Google Scholar 

  • Muys B, Granval PH (1997) Earthworms as bio-indicators of forest site quality. Soil Biol Biochem 29(3–4):323–328

    Article  CAS  Google Scholar 

  • Najar IA, Khan AB (2011) Earthworm communities of Kashmir valley, India. Trop Ecol 52(2):151–162

    Google Scholar 

  • Ngo PT, Rumpel C, Dignac MF, Billou D, Duc TT, Jouquet P (2011) Transformation of buffalo manure by composting or vermicomposting to rehabilitate degraded tropical soils. Ecol Eng 37(2):269–276

    Article  Google Scholar 

  • Nyffeler M, Moor H, Foelix RF (2001) Spiders feeding on earthworms. J Arachnol 29(1):119–125

    Article  Google Scholar 

  • Onrust J, Loonstra AJ, Schmaltz LE, Verkuil YI, Hooijmeijer JC, Piersma T (2017) Detection of earthworm prey by ruff Philomachus pugnax. Ibis 159(3):647–656

    Article  Google Scholar 

  • Paliwal R, Julka JM (2005) Checklist of earthworms of western Himalaya, India. Zoos’ Print J 20(9):1972–1976

    Article  Google Scholar 

  • Pereira JL, Antunes SC, Castro BB, Marques CR, Gonçalves AM, Gonçalves F, Pereira R (2009) Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology 18(4):455–463

    Article  PubMed  CAS  Google Scholar 

  • Pérès G, Vandenbulcke F, Guernion M, Hedde M, Beguiristain T, Douay F, Houot S, Piron D, Richard A, Bispo A, Grand C (2011) Earthworm indicators as tools for soil monitoring, characterization and risk assessment. An example from the national bioindicator programme (France). Pedobiologia 54:S77–S87

    Article  Google Scholar 

  • Perreault JM, Whalen JK (2006) Earthworm burrowing in laboratory microcosms as influenced by soil temperature and moisture. Pedobiologia 50(5):397–403

    Article  Google Scholar 

  • Pochron S, Simon L, Mirza A, Littleton A, Sahebzada F, Yudell M (2020) Glyphosate but not Roundup® harms earthworms (Eisenia fetida). Chemosphere 241:125017

    Article  PubMed  CAS  Google Scholar 

  • Pop VV (1998) Earthworm biology and ecology – a case study: the genus Octodrilusomodeo, 1956 (Oligochaeta, Lumbricidae), from the Carpathians. In: Edwards CA (ed) Earthworm ecology. St. Lucie Press, Boca Raton, pp 65–100

    Google Scholar 

  • Prakash O (2017) Biodiversity of earthworms and their distribution in different regions of Uttar Pradesh state of India. IOSR J Pharm 7:01–09

    Google Scholar 

  • Presley ML, McElroy TC, Diehl WJ (1996) Soil moisture and temperature interact to affect growth, survivorship, fecundity, and fitness in the earthworm Eisenia fetida. Comp Biochem Physiol A Physiol 114(4):319–326

    Article  Google Scholar 

  • Qiao Z, Zhang F, Yao X, Yu H, Sun S, Li X, Zhang J, Jiang X (2019) Growth, DNA damage and biochemical toxicity of cyantraniliprole in earthworms (Eisenia fetida). Chemosphere 236:124328

    Article  PubMed  CAS  Google Scholar 

  • Rabatin SC, Stinner BR (1988) Indirect effects of interactions between VAM fungi and soil-inhabiting invertebrates on plant processes. Agric Ecosyst Environ 24(1–3):135–146

    Article  Google Scholar 

  • Rajkhowa DJ, Bhattacharyya PN, Sarma AK, Mahanta K (2015) Diversity and distribution of earthworms in different soil habitats of Assam, north-East India, an indo-Burma biodiversity hotspot. Proc Natl Acad Sci India Sect B Biol Sci 85(2):389–396

    Article  Google Scholar 

  • Räty M, Huhta V (2003) Earthworms and pH affect communities of nematodes and enchytraeids in forest soil. Biol Fertil Soils 38(1):52–58

    Article  Google Scholar 

  • Ravindran B, Wong JW, Selvam A, Sekaran G (2016) Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste. Bioresource Technol 217:200–204

    Article  CAS  Google Scholar 

  • Reinecke AJ, Reinecke SA, Musilbono DE, Chapman A (2000) The transfer of lead (Pb) from earthworms to shrews (Myosorex varius). Arch Environ Contam Toxicol 39(3):392–397

    Article  PubMed  CAS  Google Scholar 

  • Richardson DR, Snyder BA, Hendrix PF (2009) Soil moisture and temperature: tolerances and optima for a non-native earthworm species, Amynthas agrestis (Oligochaeta: Opisthopora: Megascolecidae). Southeast Nat 8(2):325–335

    Article  Google Scholar 

  • Ross LK (2008) A jumping spider feeding on an earthworm. Peckhamia 71(1):1–2

    Google Scholar 

  • Sanchez-Hernandez JC, Ro KS, Díaz FJ (2019) Biochar and earthworms working in tandem: research opportunities for soil bioremediation. Sci Total Environ 688:574–583

    Article  PubMed  CAS  Google Scholar 

  • Sathianarayanan A, Khan AB (2006) Diversity, distribution and abundance of earthworms in Pondicherry region. Trop Ecol 47(1):139–144

    Google Scholar 

  • Sazima I (2007) Like an earthworm: chalk-browed mockingbird (Mimus saturninus) kills and eats a juvenile watersnake. Revista Brasileira de Ornitologia 19(3):450–452

    Google Scholar 

  • Scott-Fordsmand JJ, Weeks JM (2000) Biomarkers in earthworms. In: Ware GW (ed) Reviews of environmental contamination and toxicology. Springer, New York, NY, pp 117–159

    Chapter  Google Scholar 

  • Seamans TW, Blackwell BF, Bernhardt GE, Potter DA (2015) Assessing chemical control of earthworms at airports. Wildl Soc Bull 39(2):434–442

    Article  Google Scholar 

  • Sharma RK, Poonam B (2014) Earthworm diversity in trans-gangetic habitats of Haryana, India. Res J Agric Forestry Sci 2(2):2320–6063

    Google Scholar 

  • Sharma P, Meena RS, Kumar S, Gurjar DS, Yadav GS, Kumar S (2019) Growth, yield and quality of cluster bean (Cyamopsis tetragonoloba) as influenced by integrated nutrient management under alley cropping system. Indian J Agric Sci 89(11):1876–1880

    CAS  Google Scholar 

  • Shi Y, Shi Y, Zheng L (2020) Individual and cellular responses of earthworms (Eisenia fetida) to endosulfan at environmentally related concentrations. Environ Toxicol Pharmacol 74:103299

    Article  PubMed  CAS  Google Scholar 

  • Shih HT, Chang HW, Chen JH (1999) A review of the earthworms (Annelida: Oligochaeta) from Taiwan. Zool Stud 38(4):435–442

    Google Scholar 

  • Shuster W, McDonald L, McCartney D, Parmelee R, Studer N, Stinner B (2002) Nitrogen source and earthworm abundance affected runoff volume and nutrient loss in a tilled-corn agroecosystem. Biol Fertil Soils 35(5):320–327

    Article  CAS  Google Scholar 

  • Silcox MT, Teaford MF (2002) The diet of worms: an analysis of mole dental microwear. J Mammal 83(3):804–814

    Article  Google Scholar 

  • Singer AC, Jury W, Luepromchai E, Yahng CS, Crowley DE (2001) Contribution of earthworms to PCB bioremediation. Soil Biol Biochem 33(6):765–776

    Article  CAS  Google Scholar 

  • Sinha RK, Agarwal S, Chauhan K, Chandran V, Soni BK (2010) Vermiculture technology: reviving the dreams of sir Charles Darwin for scientific use of earthworms in sustainable development programs. Technol Invest 1(03):155

    Article  Google Scholar 

  • Sinkakarimi MH, Solgi E, Colagar AH (2020a) Interspecific differences in toxicological response and subcellular partitioning of cadmium and lead in three earthworm species. Chemosphere 238:124595

    Article  PubMed  CAS  Google Scholar 

  • Sinkakarimi MH, Solgi E, Colagar AH (2020b) Subcellular partitioning of cadmium and lead in Eisenia fetida and their effects to sperm count, morphology and apoptosis. Ecotoxicol Environ Saf 187:109827

    Article  PubMed  CAS  Google Scholar 

  • Stephens PM, Davoren CW (1997) Influence of the earthworms Aporrectodea trapezoides and A. rosea on the disease severity of Rhizoctonia solani on subterranean clover and ryegrass. Soil Biol Biochem 29(3–4):511–516

    Article  CAS  Google Scholar 

  • Stephenson GL, Wren CD, Middelraad IC, Warner JE (1997) Exposure of the earthworm, Lumbricus terrestris, to diazinon, and the relative risk to passerine birds. Soil Biol Biochem 29(3–4):717–720

    Article  CAS  Google Scholar 

  • Strüssmann C, de Brito ES, Marques OA (2013) What do water snakes eat? First report of predation by a Neotropical Hydropsini snake on giant earthworms (Glossoscolecidae). Salamandra 49(1):48–50

    Google Scholar 

  • Sun Y, Zhao L, Li X, Xu H, Weng L, Yang L, Li Y (2020) Response of soil bacterial and fungal community structure succession to earthworm addition for bioremediation of metolachlor. Ecotoxicol Environ Saf 189:109926

    Article  PubMed  CAS  Google Scholar 

  • Suthar S (2009) Earthworm communities a bioindicator of arable land management practices: a case study in semiarid region of India. Ecol Indic 9(3):588–594

    Article  CAS  Google Scholar 

  • Suthar S (2011) Earthworm biodiversity in western arid and semiarid lands of India. Environmentalist 31(1):74–86

    Article  Google Scholar 

  • Suthar S, Singh S, Dhawan S (2008) Earthworms as bioindicator of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils: is metal bioaccumulation affected by their ecological category? Ecol Eng 32(2):99–107

    Article  Google Scholar 

  • Tognetti C, Laos F, Mazzarino MJ, Hernandez MT (2005) Composting vs. vermicomposting: a comparison of end product quality. Compost Sci Utilization 13(1):6–13

    Article  Google Scholar 

  • Tondoh JE, Monin LM, Tiho S, Csuzdi C (2007) Can earthworms be used as bio-indicators of land-use perturbations in semi-deciduous forest? Biol Fertil Soils 43(5):585–592

    Article  Google Scholar 

  • Tripathi G, Bhardwaj P (2004) Earthworm diversity and habitat preferences in arid regions of Rajasthan. Zoo’s Print Journal 19(7):1515–1519

    Article  Google Scholar 

  • Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system of Vindhyan Region, India. Int J Chem Studies 5(4):1558–1560

    Google Scholar 

  • Verma D, Bharti S (2010) Earthworm resources in the Gangetic plain of Uttar Pradesh, India. Int J Biodivers Conserv 2(6):134–139

    Google Scholar 

  • Viljoen SA, Reinecke AJ (1992) The temperature requirements of the epigeic earthworm species Eudrilus eugeniae (Oligochaeta)—a laboratory study. Soil Biol Biochem 24(12):1345–1350

    Article  Google Scholar 

  • Vivas A, Moreno B, Garcia-Rodriguez S, Benítez E (2009) Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresour Technol 100(3):1319–1326

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Xia X, Yang J, Tariq M, Zhao J, Zhang M, Huang K, Lin K, Zhang W (2020) Exploring the bioavailability of nickel in a soil system: physiological and histopathological toxicity study to the earthworms (Eisenia fetida). J Hazard Mater 383:121169

    Article  PubMed  CAS  Google Scholar 

  • Wissuwa J, Salamon JA, Frank T (2012) Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in eastern Austria. Soil Biol Biochem 50:96–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wollny E (1890) Untersuchungenüber die beeinflussung der ackerkrumedurch die thätigkeit der regenwurmer. Forschungen Geb AgriculturPhysik 13:381–395

    Google Scholar 

  • Wu P, Wang C (2019) Differences in spatiotemporal dynamics between soil macrofauna and mesofauna communities in forest ecosystems: the significance for soil fauna diversity monitoring. Geoderma 337:266–272

    Article  Google Scholar 

  • Yao X, Zhang F, Qiao Z, Yu H, Sun S, Li X, Zhang J, Jiang X (2020) Toxicity of thifluzamide in earthworm (Eisenia fetida). Ecotoxicol Environ Saf 188:109880

    Article  PubMed  CAS  Google Scholar 

  • Žaltauskaitė J, Sodienė I (2010) Effects of total cadmium and lead concentrations in soil on the growth, reproduction and survival of earthworm Eisenia fetida. Ekologija 56(1–2):10–16

    Article  CAS  Google Scholar 

  • Zhang C, Dai J, Chen X, Li H, Lavelle P (2020) Effects of a native earthworm species (Amynthas morrisi) and Eisenia fetida on metal fractions in a multi-metal polluted soil from South China. Acta Oecol 102:103503

    Article  Google Scholar 

  • Zheng R, Canyang LI (2009) Effect of lead on survival, locomotion and sperm morphology of Asian earthworm, Pheretima guillelmi. J Environ Sci 21(5):691–695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R. et al. (2020). Earthworms for Eco-friendly Resource Efficient Agriculture. In: Kumar, S., Meena, R.S., Jhariya, M.K. (eds) Resources Use Efficiency in Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-6953-1_2

Download citation

Publish with us

Policies and ethics