Skip to main content

Ligand Nanoparticle Conjugation Approach for Targeted Cancer Chemotherapy

  • Chapter
  • First Online:
  • 478 Accesses

Abstract

Cancer is the most devastating disease currently prevailing worldwide. For the treatment of cancer, various approaches like surgery, chemotherapy, radiotherapy, and hormonal therapy are utilized have been utilized. However, the nonspecific targeting approach has made the treatment ineffective in the majority of cases. The nonspecific targeting also leads to an inadequate supply of drugs to the desired tumor site, while cancer treatment requires a high dose of drugs with a high frequency of drug dosing. Despite the advancement in cancer research, treatment strategies, and available numbers of potent anticancer drugs, the efficacy of treatment still is a matter of concern due to the lack of drug selectivity to the target cells, pharmacotoxicities, and very poor patient compliance. Therefore, novel strategies are utmost important for the effective delivery of the anticancer drugs strictly to the specific tumor site, which can minimize the systemic toxicities related to frequent and high drug doses. The active targeting approach provides selective and site-specific treatment rather than passive targeting. The active targeting technique works based on the molecular identification of biomarkers that are generally overexpressed on tumor cells, through conjugated targeting moieties over the nanodrug carrier. These targeting moieties signify the biodistribution and affinity toward the target site of the drug carrier.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. (Peter) Boyle P, Levin B (2008) International Agency for Research on Cancer., and World Health Organization. In: World cancer report 2008. International Agency for Research on Cancer, Geneva

    Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  Google Scholar 

  3. Schroeder A et al (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12(1):39–50

    Article  CAS  Google Scholar 

  4. Tong R, Langer R (2015) Nanomedicines targeting the tumor microenvironment. Cancer J (United States) 21(4):314–321

    CAS  Google Scholar 

  5. Tibbitt MW, Dahlman JE, Langer R (2016) Emerging frontiers in drug delivery. J Am Chem Soc 138(3):704–717

    Article  CAS  PubMed  Google Scholar 

  6. Howes PD, Chandrawati R, Stevens MM (2014) Colloidal nanoparticles as advanced biological sensors. Science(80- ) 346(6205):1247390

    Google Scholar 

  7. Sanchez S, Soler L, Katuri J (2015) Chemically powered micro- and nanomotors. Angew Chemie - Int Ed 54(5):1414–1444

    Article  CAS  Google Scholar 

  8. Bar-Zeev M, Livney YD, Assaraf YG (2017) Targeted nanomedicine for cancer therapeutics: towards precision medicine overcoming drug resistance. Drug Resist Updat 31:15–30

    Article  PubMed  Google Scholar 

  9. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410

    Article  CAS  PubMed  Google Scholar 

  10. Bae KH, Chung HJ, Park TG (2011) Nanomaterials for cancer therapy and imaging. Mol Cells 31(4):295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71(3):409–419

    Article  CAS  PubMed  Google Scholar 

  12. Jain RK (1987) Transport of molecules in the tumor Interstitium: a review. Cancer Res 47(12):3039–3051

    CAS  PubMed  Google Scholar 

  13. Vaupel P, Schaefer C, Okunieff P (1994) Intracellular acidosis in murine fibrosarcomas coincides with ATP depletion, hypoxia, and high levels of lactate and total pi. NMR Biomed 7(3):128–136

    Article  CAS  PubMed  Google Scholar 

  14. Au JL et al (2001) Determinants of drug delivery and transport to solid tumors. J Control Release 74(1–3):31–46

    Article  CAS  PubMed  Google Scholar 

  15. Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25(34):4633–4646

    Article  CAS  PubMed  Google Scholar 

  16. Bazak R, Houri M, El Achy S, Hussein W, Refaat T (2014) Passive targeting of nanoparticles to cancer: a comprehensive review of the literature. Mol Clin Oncol 2(6):904–908

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sinha R, Kim GJ, Nie S, Shin DM (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5(8):1909–1917

    Article  CAS  PubMed  Google Scholar 

  18. Chipman SD, Oldham FB, Pezzoni G, Singer JW (2006) Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer-drug conjugate. Int J Nanomedicine 1(4):375–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vieira DB, Gamarra LF (2016) Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein (Sao Paulo, Brazil) 14(1):99–103

    Article  Google Scholar 

  21. Cengelli F et al (2006) Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J Pharmacol Exp Ther 318(1):108–116

    Article  CAS  PubMed  Google Scholar 

  22. Moghimi SM, Hunter AC (2000) Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol 18(10):412–420

    Article  CAS  PubMed  Google Scholar 

  23. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102

    Article  CAS  PubMed  Google Scholar 

  24. Roberts MJ, Bentley MD, Harris JM (2012) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 64(SUPPL):116–127

    Article  Google Scholar 

  25. Gref R et al (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surfaces B Biointerfaces 18(3–4):301–313

    Article  CAS  PubMed  Google Scholar 

  26. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599

    Article  CAS  PubMed  Google Scholar 

  28. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6(9):688–701

    Article  CAS  PubMed  Google Scholar 

  29. Bazak R, Houri M, El Achy S, Kamel S, Refaat T (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141(5):769–784

    Article  CAS  PubMed  Google Scholar 

  30. Kirpotin DB et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66(13):6732–6740

    Article  CAS  PubMed  Google Scholar 

  31. Zwanziger D, Beck-Sickinger A (2008) Radiometal targeted tumor diagnosis and therapy with peptide hormones. Curr Pharm Des 14(24):2385–2400

    Article  CAS  PubMed  Google Scholar 

  32. Engel JB, Keller G, Schally AV, Halmos G, Hammann B, Nagy A (2005) Effective inhibition of experimental human ovarian cancers with a targeted cytotoxic bombesin analogue AN-215. Clin Cancer Res 11(6):2408–2415

    Article  CAS  PubMed  Google Scholar 

  33. Accardo A et al (2012) Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent. Int J Nanomedicine 7:2007–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Herlin G et al (2009) Quantitative assessment of 99m tc-depreotide uptake in patients with non-small-cell lung cancer: immunohistochemical correlations. Acta Radiol 50(8):902–908

    Article  CAS  PubMed  Google Scholar 

  35. Sclafani F et al (2011) Detection of somatostatin receptor subtypes 2 and 5 by somatostatin receptor scintigraphy and immunohistochemistry: clinical implications in the diagnostic and therapeutic management of gastroenteropancreatic neuroendocrine tumors. Tumori 97(5):620–628

    Article  PubMed  Google Scholar 

  36. Morichetti D et al (2010) Immunohistochemical expression and localization of somatostatin receptor subtypes in androgen ablated prostate cancer. Anal Cell Pathol 33(1):27–36

    Article  Google Scholar 

  37. He Y et al (2009) The antiproliferative effects of somatostatin receptor subtype 2 in breast cancer cells. Acta Pharmacol Sin 30(7):1053–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He S-W (1999) Regulatory effect and mechanism of gastrin and its antagonists on colorectal carcinoma. World J Gastroenterol 5(5):408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu C et al (2004) The effect of somatostatin and SSTR3 on proliferation and apoptosis of gastric cancer cells. Cancer Biol Ther 3(8):726–730

    Article  CAS  PubMed  Google Scholar 

  40. Ji X-Q, Ruan X-J, Chen H, Chen G, Li S-Y, Yu B (2011) Somatostatin analogues in advanced hepatocellular carcinoma: an updated systematic review and meta-analysis of randomized controlled trials. Med Sci Monit 17(8):RA169–RA176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang CM, Wu YT, Chen ST (2000) Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis. Chem Biol 7(7):453–461

    Article  CAS  PubMed  Google Scholar 

  42. Sun M, Wang Y, Shen J, Xiao Y, Su Z, Ping Q (2010) Octreotide-modification enhances the delivery and targeting of doxorubicin-loaded liposomes to somatostatin receptors expressing tumor in vitro and in vivo. Nanotechnology 21(47):475101

    Article  PubMed  CAS  Google Scholar 

  43. Zhang J, Jin W, Wang X, Wang J, Zhang X, Zhang Q (2010) A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models. Mol Pharm 7(4):1159–1168

    Article  PubMed  CAS  Google Scholar 

  44. Bagnato A, Tecce R, Moretti C, Di Castro V, Spergel D, Catt KJ (1995) Autocrine actions of Endothelin-1 as a growth factor in human ovarian carcinoma cells. Clin Cancer Res 1(9):1059–1066

    CAS  PubMed  Google Scholar 

  45. Asundi J et al (2011) An antibody-drug conjugate targeting the endothelin B receptor for the treatment of melanoma. Clin Cancer Res 17(5):965–975

    Article  CAS  PubMed  Google Scholar 

  46. Chen X, Plasencia C, Hou Y, Neamati N (2005) Synthesis and biological evaluation of dimeric RGD peptide−paclitaxel conjugate as a model for integrin-targeted drug delivery. J Med Chem 48(4):1098–1106

    Article  CAS  PubMed  Google Scholar 

  47. Murphy EA et al (2008) Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci U S A 105(27):9343–9348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen K et al (2009) Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting. Biomaterials 30(36):6912–6919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mizejewski GJ (1999) Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med 222(2):124–138

    Article  CAS  PubMed  Google Scholar 

  50. Xiao K et al (2012) ‘OA02’ peptide facilitates the precise targeting of paclitaxel-loaded micellar nanoparticles to ovarian cancer in vivo. Cancer Res 72(8):2100–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine 2(2):129–141

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ali Mansoori G, Brandenburg KS, Shakeri-Zadeh A (2010) A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancer 2(4):1911–1928

    Article  CAS  Google Scholar 

  53. Ye W et al (2014) Cellular Uptake and Antitumor Activity of DOX-hyd-PEG-FA Nanoparticles. PLoS One 9(5):e97358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Prabaharan M, Grailer JJ, Steeber DA, Gong S (2009) Thermosensitive micelles based on folate-conjugated poly(N-vinylcaprolactam)-block-poly(ethylene glycol) for tumor-targeted drug delivery. Macromol Biosci 9(8):744–753

    Article  CAS  PubMed  Google Scholar 

  55. Yang R, An YL, Miao FQ, Li MF, Liu PD, Tang QS (2014) Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo. Int J Nanomedicine 9:4231–4243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lin JY, Hsu SK, Sibuet JC, Lee CS, Liang CW (2013) Plate tearing in the northwestern corner of the subducting philippine sea plate. J Asian Earth Sci 70–71(1):1–7

    Article  Google Scholar 

  57. Pandey S, Mewada A, Thakur M, Shah R, Oza G, Sharon M (2013) Biogenic gold nanoparticles as fotillas to fire berberine hydrochloride using folic acid as molecular road map. Mater Sci Eng C 33(7):3716–3722

    Article  CAS  Google Scholar 

  58. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30(30):6065–6075

    Article  CAS  PubMed  Google Scholar 

  59. Lu W et al (2010) Tumor site-specific silencing of NF-κB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res 70(8):3177–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mehdizadeh A et al (2014) The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. Lasers Med Sci 29(3):939–948

    Article  PubMed  Google Scholar 

  61. Wang H et al (2012) Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging. Int J Pharm 430(1–2):342–349

    Article  CAS  PubMed  Google Scholar 

  62. Singh M (1999) Transferrin as a targeting ligand for liposomes and anticancer drugs. Curr Pharm Des 5(6):443–451

    CAS  PubMed  Google Scholar 

  63. Daniels TR et al (2012) The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta Gen Subj 1820(3):291–317

    Article  CAS  Google Scholar 

  64. Habeshaw JA, Lister TA, Stansfeld AG, Greaves MF (1983) Correlation of transferrin receptor expression with histological class and OUTCOME in non-hodgkin lymphoma. Lancet 321(8323):498–501

    Article  Google Scholar 

  65. Recht L, Torres CO, Smith TW, Raso V, Griffin TW (1990) Transferrin receptor in normal and neoplastic brain tissue: implications for brain-tumor immunotherapy. J Neurosurg 72(6):941–945

    Article  CAS  PubMed  Google Scholar 

  66. Jiang W et al (2012) Conjugation of Functionalized SPIONs with Transferrin for Targeting and Imaging Brain Glial Tumors in Rat Model. PLoS One 7(5):e37376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pirollo KF et al (2006) Tumor-targeting nanoimmunoliposome complex for short interfering RNA delivery. Hum Gene Ther 17(1):117–124

    Article  CAS  PubMed  Google Scholar 

  68. Prassl R, Laggner P (2009) Molecular structure of low density lipoprotein: current status and future challenges. Eur Biophys J 38(2):145–158

    Article  CAS  PubMed  Google Scholar 

  69. Firestone RA (1994) Low-density lipoprotein as a vehicle for targeting antitumor compounds to Cancer cells. Bioconjug Chem 5(2):105–113

    Article  CAS  PubMed  Google Scholar 

  70. Chu ACY, Tsang SY, Lo EHK, Fung KP (2001) Low density lipoprotein as a targeted carrier for doxorubicin in nude mice bearing human hepatoma HepG2 cells. Life Sci 70(5):591–601

    Article  CAS  PubMed  Google Scholar 

  71. Berg K et al (2005) Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc 218(2):133–147

    Article  CAS  PubMed  Google Scholar 

  72. Chang JE, Yoon IS, Sun PL, Yi E, Jheon S, Shim CK (2014) Anticancer efficacy of photodynamic therapy with hematoporphyrin-modified, doxorubicin-loaded nanoparticles in liver cancer. J Photochem Photobiol B Biol 140:49–56

    Article  CAS  Google Scholar 

  73. Okamoto T, Kobayashi T, Yoshida S (2005) Chemical aspects of Coumarin compounds for the prevention of hepatocellular carcinomas. Curr Med Chem Agents 5(1):47–51

    Article  CAS  Google Scholar 

  74. Michaelis K et al (2006) Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 317(3):1246–1253

    Article  CAS  PubMed  Google Scholar 

  75. Pinzón-Daza M et al (2012) The association of statins plus LDL receptor-targeted liposome-encapsulated doxorubicin increases in vitro drug delivery across blood-brain barrier cells. Br J Pharmacol 167(7):1431–1447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47(1):65–81

    Article  CAS  PubMed  Google Scholar 

  77. Wieduwilt MJ, Moasser MM (2008) The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 65(10):1566–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thompson DM, Gill GN (1985) The EGF receptor: structure, regulation and potential role in malignancy. Cancer Surv 4(4):767–788

    CAS  PubMed  Google Scholar 

  79. Shimada T et al (2009) Development of targeted therapy with paclitaxel incorporated into EGF-conjugated nanoparticles. Anticancer Res 29(4):1009–1014

    CAS  PubMed  Google Scholar 

  80. Yuan Q, Lee E, Yeudall WA, Yang H (2010) Dendrimer-triglycine-EGF nanoparticles for tumor imaging and targeted nucleic acid and drug delivery. Oral Oncol 46(9):698–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li J, Dickson DCM, Li S (2015) Some ruin problems for the MAP risk model. Insur Math Econ 65:1–8

    Article  CAS  Google Scholar 

  82. Ren H, Gao C, Zhou L, Liu M, Xie C, Lu W (2015) EGFR-targeted poly(ethylene glycol)-distearoylphosphatidylethanolamine micelle loaded with paclitaxel for laryngeal cancer: preparation, characterization and in vitro evaluation. Drug Deliv 22(6):785–794

    Article  CAS  PubMed  Google Scholar 

  83. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9(7):537–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Knights V, Cook SJ (2010) De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther 125(1):105–117

    Article  CAS  PubMed  Google Scholar 

  85. Haugsten EM, Wiedlocha A, Olsnes S, Wesche J (2010) Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res 8(11):1439–1452

    Article  CAS  PubMed  Google Scholar 

  86. Xiao H et al (2010) QIP, a protein that converts duplex siRNA into single strands, is required for meiotic silencing by unpaired DNA. Genetics 186(1):119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cai L et al (2012) Peptide ligand and PEG-mediated long-circulating liposome targeted to FGFR overexpressing tumor in vivo. Int J Nanomedicine 7:4499–4510

    CAS  PubMed  PubMed Central  Google Scholar 

  88. John CS, Vilner BJ, Geyer BC, Moody T, Bowen WD (1999) Targeting sigma receptor-binding benzamides as in vivo diagnostic and therapeutic agents for human prostate tumors. Cancer Res 59(18):4578–4583

    CAS  PubMed  Google Scholar 

  89. Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127(7):1323–1334

    Article  CAS  PubMed  Google Scholar 

  90. Hornick JR, Spitzer D, Goedegebuure P, MacH RH, Hawkins WG (2012) Therapeutic targeting of pancreatic cancer utilizing sigma-2 ligands. Surg (United States) 152(3 SUPPL):S152–S156

    Google Scholar 

  91. Hornick JR et al (2010) The novel sigma-2 receptor ligand SW43 stabilizes pancreas cancer progression in combination with gemcitabine. Mol Cancer 9(1):298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weissman AD, Su TP, Hedreen JC, London ED (1988) Sigma receptors in post-mortem human brains. J Pharmacol Exp Ther 247(1):29–33

    CAS  PubMed  Google Scholar 

  93. Guitart X, Codony X, Monroy X (2004) Sigma receptors: biology and therapeutic potential. Psychopharmacology 174(3):301–319

    Article  CAS  PubMed  Google Scholar 

  94. Walter L, Hajnóczky G (2005) Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 37(3):191–206

    Article  CAS  PubMed  Google Scholar 

  95. Csordás G et al (2010) Imaging Interorganelle contacts and local calcium dynamics at the ER-mitochondrial Interface. Mol Cell 39(1):121–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Zhang Y, Huang Y, Zhang P, Gao X, Gibbs RB, Li S (2012) Incorporation of a selective sigma-2 receptor ligand enhances uptake of liposomes by multiple cancer cells. Int J Nanomedicine 7:4473–4485

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54(4):561–587

    Article  CAS  PubMed  Google Scholar 

  98. Ren WH et al (2010) Development of transferrin functionalized poly(ethylene glycol)/poly(lactic acid) amphiphilic block copolymeric micelles as a potential delivery system targeting brain glioma. J Mater Sci Mater Med 21(9):2673–2681

    Article  CAS  PubMed  Google Scholar 

  99. Malarvizhi GL, Retnakumari AP, Nair S, Koyakutty M (2014) Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxorubicin and sorafenib against hepatocellular carcinoma. Nanomed Nanotechnol Biol Med 10(8):1649–1659

    Article  CAS  Google Scholar 

  100. Guo Y, Wang L, Lv P, Zhang P (2015) Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncol Lett 9(3):1065–1072

    Article  PubMed  Google Scholar 

  101. Koppu S et al (2010) Tumor regression after systemic administration of a novel tumor-targeted gene delivery system carrying a therapeutic plasmid DNA. J Control Release 143(2):215–221

    Article  CAS  PubMed  Google Scholar 

  102. Qin Y et al (2011) Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery. Int J Pharm 419(1–2):85–95

    Article  CAS  PubMed  Google Scholar 

  103. Kim YH et al (2011) Blood-brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small 26(1):83–90

    Google Scholar 

  104. Lewin M et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnols 18(4):410–414

    Article  CAS  Google Scholar 

  105. Goswami D, Vitorino HA, MacHini MT, Espósito BP (2015) Self-assembled penetratin-deferasirox micelles as potential carriers for hydrophobic drug delivery. Biopolymers 104(6):712–719

    Article  CAS  PubMed  Google Scholar 

  106. Lee JY et al (2011) Cell-penetrating chitosan/doxorubicin/TAT conjugates for efficient cancer therapy. Int J Cancer 128(10):2470–2480

    Article  CAS  PubMed  Google Scholar 

  107. Zhu QL et al (2014) Low-density lipoprotein-coupled N-succinyl chitosan nanoparticles co-delivering siRNA and doxorubicin for hepatocyte-targeted therapy. Biomaterials 35(22):5965–5976

    Article  CAS  PubMed  Google Scholar 

  108. Kreuter J et al (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10(4):317–325

    Article  CAS  PubMed  Google Scholar 

  109. Reynolds L, Mulik RS, Wen X, Dilip A, Corbin IR (Oct. 2014) Low-density lipoprotein-mediated delivery of docosahexaenoic acid selectively kills murine liver cancer cells. Nanomedicine 9(14):2123–2141

    Article  CAS  PubMed  Google Scholar 

  110. Wang FS, Ding N, Liu ZQ, Ji YY, Yue ZF (2014) Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike. Compos Struct 117(1):222–233

    Article  Google Scholar 

  111. Ji S et al (Feb. 2012) RGD-conjugated albumin nanoparticles as a novel delivery vehicle in pancreatic cancer therapy. Cancer Biol Ther 13(4):206–215

    Article  CAS  PubMed  Google Scholar 

  112. Miura Y et al (Oct. 2013) Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood–brain tumor barrier. ACS Nano 7(10):8583–8592

    Article  CAS  PubMed  Google Scholar 

  113. Gormley AJ, Malugin A, Ray A, Robinson R, Ghandehari H (2011) Biological evaluation of RGDfK-gold nanorod conjugates for prostate cancer treatment. J Drug Target 19(10):915–924

    Article  CAS  PubMed  Google Scholar 

  114. Pangburn TO, Georgiou K, Bates FS, Kokkoli E (2012) Targeted Polymersome delivery of siRNA induces cell death of breast Cancer cells dependent upon Orai3 protein expression. Langmuir 28(35):12816–12830

    Article  CAS  PubMed  Google Scholar 

  115. Zhao D et al (2010) Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine 5(1):669–677

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Varshosaz J, Sadeghi-Aliabadi H, Ghasemi S, Behdadfar B (2013) Use of magnetic folate-dextran-retinoic acid micelles for dual targeting of doxorubicin in breast cancer. Biomed Res Int 2013:16

    Google Scholar 

  117. Fazilati M (2014) Folate decorated magnetite nanoparticles: synthesis and targeted therapy against ovarian cancer. Cell Biol Int 38(2):154–163

    Article  CAS  PubMed  Google Scholar 

  118. Tseng CL et al (2008) Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomaterials 29(20):3014–3022

    Article  CAS  PubMed  Google Scholar 

  119. Nikolaev BP et al (2013) Magnetic epidermal growth factor conjugate for targeted delivery to grafted tumor in mouse model. IEEE Trans Magn 49(1):429–435

    Article  Google Scholar 

  120. Kim SK, Huang L (2012) Nanoparticle delivery of a peptide targeting EGFR signaling. J Control Release 157(2):279–286

    Article  CAS  PubMed  Google Scholar 

  121. Nobs L, Buchegger F, Gurny R, Allémann E (2004) Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 93(8):1980–1992

    Article  CAS  PubMed  Google Scholar 

  122. Shi G, Guo W, Stephenson SM, Lee RJ (2002) Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J Control Release 80(1–3):309–319

    Article  CAS  PubMed  Google Scholar 

  123. Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J (2007) Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 120:18–26

    Article  CAS  PubMed  Google Scholar 

  124. Lau A, Bérubé G, Ford CH (1995) Conjugation of doxorubicin to monoclonal anti-carcinoembryonic antigen antibody via novel thiol-directed cross-linking reagents. Bioorg Med Chem 3(10):1299–1304

    Article  CAS  PubMed  Google Scholar 

  125. Nobs L, Buchegger F, Gurny R, Allémann E (2003) Surface modification of poly(lactic acid) nanoparticles by covalent attachment of thiol groups by means of three methods. Int J Pharm 250(2):327–337

    Article  CAS  PubMed  Google Scholar 

  126. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626

    Article  CAS  PubMed  Google Scholar 

  127. Ikeda J, Sun YL, An KN, Amadio PC, Zhao C (2011) Application of carbodiimide derivatized synovial fluid to enhance extrasynovial tendon gliding ability. J Hand Surg Am 36(3):456–463

    Article  PubMed  PubMed Central  Google Scholar 

  128. Cirstoiu-Hapca A, Buchegger F, Bossy L, Kosinski M, Gurny R, Delie F (2009) Nanomedicines for active targeting: physico-chemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells. Eur J Pharm Sci 38(3):230–237

    Article  CAS  PubMed  Google Scholar 

  129. Townsend SA, Evrony GD, Gu FX, Schulz MP, Brown RH, Langer R (2007) Tetanus toxin C fragment-conjugated nanoparticles for targeted drug delivery to neurons. Biomaterials 28(34):5176–5184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fahmy TM, Samstein RM, Harness CC, Saltzman WM (2005) Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials 26(28):5727–5736

    Article  CAS  PubMed  Google Scholar 

  131. Zhang F et al (2011) Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small 7(22):3113–3127

    Article  CAS  PubMed  Google Scholar 

  132. Nobs L, Buchegger F, Gurny R, Allémann E (2004) Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin™ for active targeting. Eur J Pharm Biopharm 58(3):483–490

    Article  CAS  PubMed  Google Scholar 

  133. Cirstoiu-Hapca A, Bossy-Nobs L, Buchegger F, Gurny R, Delie F (2007) Differential tumor cell targeting of anti-HER2 (Herceptin®) and anti-CD20 (Mabthera®) coupled nanoparticles. Int J Pharm 331(2):190–196

    Article  CAS  PubMed  Google Scholar 

  134. Le UM, Tran H, Pathak Y (2012) Methods for polymeric nanoparticle conjugation to monoclonal antibodies. In: Antibody-mediated drug delivery systems. Wiley, Hoboken, pp 351–363

    Chapter  Google Scholar 

  135. Wang CF et al (2014) Copper-free azide-alkyne cycloaddition of targeting peptides toporous silicon nanoparticles for intracellular drug uptake. Biomaterials 35(4):1257–1266

    Article  CAS  PubMed  Google Scholar 

  136. Thamake SI, Raut SL, Ranjan AP, Gryczynski Z, Vishwanatha JK (2011) Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy. Nanotechnology 22(3):035101

    Article  CAS  PubMed  Google Scholar 

  137. Chen H et al (Oct. 2009) Surface modification of Mitoxantrone-loaded PLGA nanospheres with chitosan. Colloids Surfaces B Biointerfaces 73(2):212–218

    Article  CAS  PubMed  Google Scholar 

  138. Grabovac V, Bernkop-Schnurch A (2007) Development and in vitro evaluation of surface modified poly(lactide-co-glycolide) nanoparticles with chitosan-4-thiobutylamidine. Drug Dev Ind Pharm 33(7):767–774

    Article  CAS  PubMed  Google Scholar 

  139. Pasut G, Veronese FM (2012) State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release 161(2):461–472

    Article  CAS  PubMed  Google Scholar 

  140. Kou G et al (2007) Preparation and characterization of paclitaxel-loaded PLGA nanoparticles coated with cationic SM5-1 single-chain antibody. J Biochem Mol Biol 40(5):731–739

    CAS  PubMed  Google Scholar 

  141. Chang J et al (2009) Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm 379(2):285–292

    Article  CAS  PubMed  Google Scholar 

  142. Ataman-Önal Y et al (2006) Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J Control Release 112(2):175–185

    Article  PubMed  CAS  Google Scholar 

  143. Il Chung Y et al (2010) The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting. J Control Release 143(3):374–382

    Article  CAS  Google Scholar 

  144. Yameen B, Il Choi W, Vilos C, Swami A, Shi J, Farokhzad OC (2014) Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 190:485–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xiang S et al (2012) Uptake mechanisms of non-viral gene delivery. J Control Release 158(3):371–378

    Article  CAS  PubMed  Google Scholar 

  146. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rappoport JZ (2008) Focusing on clathrin-mediated endocytosis. Biochem J 412(3):415–423

    Article  CAS  PubMed  Google Scholar 

  148. Pucadyil TJ, Schmid SL (2009) Conserved functions of membrane active GTPases in coated vesicle formation. Science (80- ) 325(5945):1217–1220

    Article  CAS  Google Scholar 

  149. Medina-Kauwe LK (2007) ‘Alternative’ endocytic mechanisms exploited by pathogens: new avenues for therapeutic delivery? Adv Drug Deliv Rev 59(8):798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8(3):185–194

    Article  CAS  PubMed  Google Scholar 

  151. Perumal OP, Inapagolla R, Kannan S, Kannan RM (2008) The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 29(24–25):3469–3476

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dibrugarh University, India, and Department of Science and Technology (DST), Government of India, for providing facility and research fellowship to carry out this work.

Conflict of Interest

The author declares that there is no conflict of interest. All the tables and figures are self-made and original.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarma, A., Das, M.K., Chakraborty, T. (2020). Ligand Nanoparticle Conjugation Approach for Targeted Cancer Chemotherapy. In: Das, M.K., Pathak, Y.V. (eds) Nano Medicine and Nano Safety. Springer, Singapore. https://doi.org/10.1007/978-981-15-6255-6_15

Download citation

Publish with us

Policies and ethics