Skip to main content

Dynamic Axial Chirality in Drug Design and Discovery: Introduction to Atropisomerism, Classification, Significance, Recent Trends and Challenges

  • Chapter
  • First Online:
Drug Discovery and Development

Abstract

Induction of chirality in non-chiral ligands via involvement of hindered rotation around a single bond has led to the development of atropisomers. The atropisomers behave similarly as the chiral compounds and impact the drug discovery process. The chapter deals importantly with the brief introduction to this class, nomenclature descriptors, methods to measure atropisomers racemization, and the impact of atropisomers on drug discovery and includes relevant examples of drugs both from synthetic and natural origin. The chapter further extends to deal with various methodologies involved in atropselective conversions and regulatory guidelines involved in the development of atropisomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicolaou K. Organic synthesis: the art and science of replicating the molecules of living nature and creating others like them in the laboratory. Proc Roy Soc A Math Phys Eng Sci. 2014;470(2163):20130690.

    CAS  Google Scholar 

  2. Feringa BL. The art of building small: from molecular switches to motors (Nobel lecture). Angew Chem Int Ed. 2017;56(37):11,060–78.

    Article  CAS  Google Scholar 

  3. Agranat I, Caner H, Caldwell J. Putting chirality to work: the strategy of chiral switches. Nat Rev Drug Discov. 2002;1(10):753.

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen LA, He H, Pham-Huy C. Chiral drugs: an overview. Int J Biomed Sci. 2006;2(2):85.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wozniak TJ, Bopp RJ, Jensen EC. Chiral drugs: an industrial analytical perspective. J Pharm Biomed Anal. 1991;9(5):363–82.

    Article  CAS  PubMed  Google Scholar 

  6. Williams K, Lee E. Importance of drug enantiomers in clinical pharmacology. Drugs. 1985;30(4):333–54.

    Article  CAS  PubMed  Google Scholar 

  7. Alkorta I, Elguero J, Roussel C, Vanthuyne N, Piras P. Atropisomerism and axial chirality in heteroaromatic compounds. Adv Heterocyclic Chem. 2012;105:1–188.

    Article  CAS  Google Scholar 

  8. Lassaletta JM. Atropisomerism and axial chirality. An Quím. 2019;115(5):451–2.

    Google Scholar 

  9. Christie GH, Kenner J. LXXI.—The molecular configurations of polynuclear aromatic compounds. Part I. The resolution of γ-6: 6′-dinitro-and 4: 6: 4′: 6′-tetranitro-diphenic acids into optically active components. J Chem Soc Trans. 1922;121:614–20.

    Article  CAS  Google Scholar 

  10. Freudenberg K. Stereochemie, Leipzig u. Wien, Franz Deutliche. 1933:695.

    Google Scholar 

  11. Clayden J, Moran WJ, Edwards PJ, LaPlante SR. The challenge of atropisomerism in drug discovery. Angew Chem Int Ed. 2009;48(35):6398–401.

    Article  CAS  Google Scholar 

  12. Toenjes ST, Gustafson JL. Atropisomerism in medicinal chemistry: challenges and opportunities. Future Med Chem. 2018;10(4):409–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Atroposelective synthesis of axially chiral biaryl compounds. Angew Chem Int Ed. 2005;44(34):5384–427.

    Article  CAS  Google Scholar 

  14. Kumarasamy E, Raghunathan R, Sibi MP, Sivaguru J. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations. Chem Rev. 2015;115(20):11239–300.

    Article  CAS  PubMed  Google Scholar 

  15. LaPlante SR, Fader LD, Fandrick KR, Fandrick DR, Hucke O, Kemper R, Miller SP, Edwards PJ. Assessing atropisomer axial chirality in drug discovery and development. J Med Chem. 2011;54(20):7005–22.

    Article  CAS  PubMed  Google Scholar 

  16. Bringmann G, Gulder T, Gulder TA, Breuning M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem Rev. 2010;111(2):563–639.

    Article  PubMed  CAS  Google Scholar 

  17. Glunz PW. Recent encounters with atropisomerism in drug discovery. Bioorg Med Chem Lett. 2018;28(2):53–60.

    Article  CAS  PubMed  Google Scholar 

  18. LaPlante SR, Edwards PJ, Fader LD, Jakalian A, Hucke O. Revealing atropisomer axial chirality in drug discovery. ChemMedChem. 2011;6(3):505–13.

    Article  CAS  PubMed  Google Scholar 

  19. Mann A. Conformational restriction and/or steric hindrance in medicinal chemistry. In: Wermuth CG, editor. The practice of medicinal chemistry: Elsevier; 2008. p. 363–79.

    Google Scholar 

  20. Durairaj K. Modern concepts and strategies in synthesis of biaryl compounds. Curr Sci. 1994:833–8.

    Google Scholar 

  21. Bringmann G, Menche D. Stereoselective total synthesis of axially chiral natural products via biaryl lactones. Acc Chem Res. 2001;34(8):615–24.

    Article  CAS  PubMed  Google Scholar 

  22. Mendive-Tapia L, Bertran A, García J, Acosta G, Albericio F, Lavilla R. Constrained cyclopeptides: biaryl formation through Pd-catalyzed C−H activation in peptides—structural control of the cyclization vs cyclodimerization outcome. Chem Eur J. 2016;22(37):13,114–9.

    Article  CAS  Google Scholar 

  23. Xue X, Gu Z. Synthesis of bridged biaryl atropisomers via sequential cu-and Pd-catalyzed asymmetric ring opening and cyclization. Org Lett. 2019;21:3942.

    Article  CAS  PubMed  Google Scholar 

  24. Finar I. Organic chemistry, volume 2, Stereochemistry and the chemistry of natural products. Edinburgh: English Language Book Society. Longman Group Limited; 1970.

    Google Scholar 

  25. Eliel EL, Wilen SH. Stereochemistry of organic compounds. New York: Wiley; 2008.

    Google Scholar 

  26. Smyth JE, Butler NM, Keller PA. A twist of nature–the significance of atropisomers in biological systems. Nat Prod Rep. 2015;32(11):1562–83.

    Article  CAS  PubMed  Google Scholar 

  27. Leivers AL, Tallant M, Shotwell JB, Dickerson S, Leivers MR, McDonald OB, Gobel J, Creech KL, Strum SL, Mathis A. Discovery of selective small molecule type III phosphatidylinositol 4-kinase alpha (PI4KIIIα) inhibitors as anti hepatitis C (HCV) agents. J Med Chem. 2013;57(5):2091–106.

    Article  PubMed  CAS  Google Scholar 

  28. Tucci FC, Hu T, Mesleh MF, Bokser A, Allsopp E, Gross TD, Guo Z, Zhu YF, Struthers RS, Ling N. Atropisomeric property of 1-(2, 6-difluorobenzyl)-3-[(2R)-amino-2-phenethyl]-5-(2-fluoro-3-methoxyphenyl)-6-methyluracil. Chirality. 2005;17(9):559–64.

    Article  CAS  PubMed  Google Scholar 

  29. Paul B, Butterfoss GL, Boswell MG, Renfrew PD, Yeung FG, Shah NH, Wolf C, Bonneau R, Kirshenbaum K. Peptoid atropisomers. J Am Chem Soc. 2011;133(28):10,910–9.

    Article  CAS  Google Scholar 

  30. Patel L, Chandrasekhar J, Evarts J, Forseth K, Haran AC, Ip C, Kashishian A, Kim M, Koditek D, Koppenol S. Discovery of orally efficacious phosphoinositide 3-kinase δ inhibitors with improved metabolic stability. J Med Chem. 2016;59(19):9228–42.

    Article  CAS  PubMed  Google Scholar 

  31. Hasegawa F, Kawamura K, Tsuchikawa H, Murata M. Stable C–N axial chirality in 1-Aryluracil scaffold and differences in in vitro metabolic clearance between atropisomers of PDE4 inhibitor. Bioorg Med Chem. 2017;25(16):4506–11.

    Article  CAS  PubMed  Google Scholar 

  32. Penketh PG, Baumann RP, Shyam K, Williamson HS, Ishiguro K, Zhu R, Eriksson ES, Eriksson LA, Sartorelli AC. 1, 2-Bis (methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl) ethoxy] carbonyl] hydrazine (KS119): a cytotoxic prodrug with two stable conformations differing in biological and physical properties. Chem Biol Drug Des. 2011;78(4):513–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang J, Zeng W, Li S, Shen L, Gu Z, Zhang Y, Li J, Chen S, Jia X. Discovery and assessment of atropisomers of (±)-lesinurad. ACS Med Chem Lett. 2017;8(3):299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Welch CJ, Biba M, Pye P, Angelaud R, Egbertson M. Serendipitous discovery of a pH-dependant atropisomer bond rotation: toward a write-protectable chiral molecular switch? J Chromatogr B. 2008;875(1):118–21.

    Article  CAS  Google Scholar 

  35. LaPlante SR, Forgione P, Boucher C, Coulombe R, Gillard J, Hucke O, Jakalian A, Joly M-A, Kukolj G, Lemke C. Enantiomeric atropisomers inhibit HCV polymerase and/or HIV matrix: characterizing hindered bond rotations and target selectivity. J Med Chem. 2013;57(5):1944–51.

    Article  PubMed  CAS  Google Scholar 

  36. Ichikawa M, Yokomizo A, Itoh M, Haginoya N, Sugita K, Usui H, Terayama K, Kanda A. Discovery of atrop fixed alkoxy-aminobenzhydrol derivatives: novel, highly potent and orally efficacious squalene synthase inhibitors. Bioorg Med Chem. 2011;19(17):5207–24.

    Article  CAS  PubMed  Google Scholar 

  37. Farand J, Mai N, Chandrasekhar J, Newby ZE, Van Veldhuizen J, Loyer-Drew J, Venkataramani C, Guerrero J, Kwok A, Li N. Selectivity switch between FAK and Pyk2: macrocyclization of FAK inhibitors improves Pyk2 potency. Bioorg Med Chem Lett. 2016;26(24):5926–30.

    Article  CAS  PubMed  Google Scholar 

  38. Beutner G, Carrasquillo R, Geng P, Hsiao Y, Huang EC, Janey J, Katipally K, Kolotuchin S, La Porte T, Lee A. Adventures in atropisomerism: total synthesis of a complex active pharmaceutical ingredient with two chirality axes. Org Lett. 2018;20(13):3736–40.

    Article  CAS  PubMed  Google Scholar 

  39. Davoren JE, Nason D, Coe J, Dlugolenski K, Helal C, Harris AR, LaChapelle E, Liang S, Liu Y, O’Connor R, Orozco CC, Rai B, Salafia M, Samas B, Xu W, Kozak R, Gray D. Discovery and lead optimization of atropisomer D1 agonists with reduced desensitization. J Med Chem. 2018;61(24):11,384–97.

    Google Scholar 

  40. Yang Z, Zhou J. Palladium-catalyzed, asymmetric Mizoroki–Heck reaction of benzylic electrophiles using phosphoramidites as chiral ligands. J Am Chem Soc. 2012;134(29):11,833–5.

    Article  CAS  Google Scholar 

  41. Merlic CA, Aldrich CC, Albaneze-Walker J, Saghatelian A, Mammen J. Total synthesis of the calphostins: application of fischer carbene complexes and thermodynamic control of atropisomers. J Org Chem. 2001;66(4):1297–309.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Calupitan JP, Rojas T, Tumbleson R, Erbland G, Kammerer C, Ajayi TM, Wang S, Curtiss LA, Ngo AT. A chiral molecular propeller designed for unidirectional rotations on a surface. Nat Commun. 2019;10(1):1–9.

    CAS  Google Scholar 

  43. Petit M, Lapierre AJ, Curran DP. Relaying asymmetry of transient atropisomers of o-iodoanilides by radical cyclizations. J Am Chem Soc. 2005;127(43):14,994–5.

    Article  CAS  Google Scholar 

  44. Davoren JE, Bundesmann MW, Yan QT, Collantes EM, Mente S, Nason DM, Gray DL. Measurement of atropisomer racemization kinetics using segmented flow technology. ACS Med Chem Lett. 2012;3(5):433–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Juchtmans R, Verbeeck J. Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries. Phys Rev B. 2015;92(13):134108.

    Article  CAS  Google Scholar 

  46. Almenningen A, Bastiansen O, Svendsas P. Electron diffraction studies of 2, 2′-dithienyl vapour. Acta Chem Scand. 1958;12:1671–4.

    Article  CAS  Google Scholar 

  47. Casarini D, Lunazzi L, Mazzanti A. Recent advances in stereodynamics and conformational analysis by dynamic nmr and theoretical calculations. Eur J Org Chem. 2010;2010(11):2035–56.

    Article  CAS  Google Scholar 

  48. Kessler H. Detection of hindered rotation and inversion by NMR spectroscopy. Angew Chem Int Ed Engl. 1970;9(3):219–35.

    Article  CAS  Google Scholar 

  49. Flack H, Bernardinelli G. The use of X-ray crystallography to determine absolute configuration. Chirality. 2008;20(5):681–90.

    Article  CAS  PubMed  Google Scholar 

  50. Liu P, Lanza TJ Jr, Chioda M, Jones C, Chobanian HR, Guo Y, Chang L, Kelly TM, Kan Y, Palyha O. Discovery of benzodiazepine sulfonamide-based bombesin receptor subtype 3 agonists and their unusual chirality. ACS Med Chem Lett. 2011;2(12):933–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Katritzky AR. Advances in heterocyclic chemistry, vol. 99. Oxford: Academic; 2009.

    Google Scholar 

  52. Minkin V, Zhdanov YA, Medyantzeva E, Ostroumov YA. The problem of acoplanarity of aromatic azomethines. Tetrahedron. 1967;23(9):3651–66.

    Article  CAS  Google Scholar 

  53. Gilli P, Pretto L, Bertolasi V, Gilli G. Predicting hydrogen-bond strengths from acid−base molecular properties. The p K a slide rule: toward the solution of a long-lasting problem. Acc Chem Res. 2008;42(1):33–44.

    Article  CAS  Google Scholar 

  54. Hansch C, Leo A, Taft R. A survey of Hammett substituent constants and resonance and field parameters. Chem Rev. 1991;91(2):165–95.

    Article  CAS  Google Scholar 

  55. Ten Thije P, Janssen M. Hammett and Taft-Ingold relations in heterocyclic compounds. Recueil des Travaux Chimiques des Pays-Bas. 1965;84(9):1169–76.

    Article  Google Scholar 

  56. Kapłon K, Demchuk O, Pietrusiewicz K. The DFT study on racemisation of atropisomeric biaryls. Curr Chem Lett. 2015;4(4):145–52.

    Article  Google Scholar 

  57. Raut VS, Jean M, Vanthuyne N, Roussel C, Constantieux T, Bressy C, Bugaut X, Bonne D, Rodriguez J. Enantioselective syntheses of furan atropisomers by an oxidative central-to-axial chirality conversion strategy. J Am Chem Soc. 2017;139(6):2140–3.

    Article  CAS  PubMed  Google Scholar 

  58. Hu Y-L, Wang Z, Yang H, Chen J, Wu Z-B, Lei Y, Zhou L. Conversion of two stereocenters to one or two chiral axes: atroposelective synthesis of 2, 3-diarylbenzoindoles. Chem Sci. 2019;10:6777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Trapp O. Interconversion of stereochemically labile enantiomers (enantiomerization). In: Schurig V, editor. Differentiation of enantiomers II. Berlin Heidelberg: Springer; 2013. p. 231–69.

    Chapter  Google Scholar 

  60. Hughes A, Price D, Simpkins N. Atropisomeric amides: stereoselective enolate chemistry and enantioselective synthesis via a new SmI 2-mediated reduction. J Chem Soc Perkin Trans 1. 1999;10:1295–304.

    Article  Google Scholar 

  61. Duan W-L, Imazaki Y, Shintani R, Hayashi T. Asymmetric construction of chiral C–N axes through rhodium-catalyzed 1, 4-addition. Tetrahedron. 2007;63(35):8529–36.

    Article  CAS  Google Scholar 

  62. Curran DP, Hale GR, Geib SJ, Balog A, Cass QB, Degani ALG, Hernandes MZ, Freitas LCG. Rotational features of carbon-nitrogen bonds in axially chiral o-tert-butyl anilides and related molecules. Potential substrates for the ‘prochiral auxiliary’approach to asymmetric synthesis. Tetrahedron Asymmetry. 1997;8(23):3955–75.

    Article  CAS  Google Scholar 

  63. Lipshutz BH, Kayser F, Liu ZP. Asymmetric synthesis of biaryls by intramolecular oxidative couplings of cyanocuprate intermediates. Angew Chem Int Ed Engl. 1994;33(18):1842–4.

    Article  Google Scholar 

  64. Lin GQ, Zhang JG, Cheng JF. Overview of chirality and chiral drugs. Chiral Drugs Chem Biol Action. 2011:14–8.

    Google Scholar 

  65. Calcaterra A, D’Acquarica I. The market of chiral drugs: chiral switches versus de novo enantiomerically pure compounds. J Pharm Biomed Anal. 2018;147:323–40.

    Article  CAS  PubMed  Google Scholar 

  66. Kazmierski WM, Danehower S, Duan M, Ferris RG, Elitzin V, Minick D, Sharp M, Stewart E, Villeneuve M. Biological and structural characterization of rotamers of C–C chemokine receptor type 5 (CCR5) inhibitor GSK214096. ACS Med Chem Lett. 2014;5(12):1296–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, G., Kaur, M., Kumar, R. (2021). Dynamic Axial Chirality in Drug Design and Discovery: Introduction to Atropisomerism, Classification, Significance, Recent Trends and Challenges. In: Poduri, R. (eds) Drug Discovery and Development. Springer, Singapore. https://doi.org/10.1007/978-981-15-5534-3_4

Download citation

Publish with us

Policies and ethics