Skip to main content

Strategies to Enhance Photosynthesis for the Improvement of Crop Yields

  • Chapter
  • First Online:

Abstract

The impact of climate change and the rising demand for food, feed, and biofuels requires an increase in crop productivity without the use of additional land, water, or agrochemicals. Despite recent progress in plant breeding and biotechnology, improving crop productivity beyond existing yield potentials remains one of the greatest challenges in agricultural research. Photosynthesis is a critical process that underlies plant growth and agronomic performance, so the improvement of photosynthetic efficiency is necessary to achieve higher crop yields. Several biotechnological approaches have been proposed to increase the rate of photosynthesis in important C3 crops, including the engineering of RuBisCO, enhancing the activity of Calvin cycle enzymes, introducing CO2-concentration mechanisms and manipulating photorespiration. However, few of these strategies have led to significantly higher crop yields in practice. In this review, we will briefly discuss the limitations of photosynthesis in C3 plants before focusing on current strategies to overcome the bottlenecks and achieve higher agricultural productivity. Finally, we consider the remaining challenges and perspectives for the future development of novel strategies to enhance the efficiency of photosynthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson LE (1971) Chloroplast and cytoplasmic enzymes. II. Pea leaf triose phosphate isomerases. Biochim Biophys Acta 235:237–244

    CAS  PubMed  Google Scholar 

  • Artus NN, Somerville SC, Somerville CR (1986) The biochemistry and cell biology of photorespiration. CRC Crit Rev Plant Sci 4:121–147

    CAS  Google Scholar 

  • Asadieh B, Krakauer NY, Fekete BM (2016) Historical trends in mean and extreme runoff and streamflow based on observations and climate models. Water 8:189. https://doi.org/10.3390/w8050189. Atkinson N, Feike D, Mackinder LC, Meyer MT, Griffiths H, Jonikas MC, Smith AM, McCormick

    Article  Google Scholar 

  • Atkinson J (2016) Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components. Plant Biotechnol J 14:1302–1315

    CAS  PubMed  Google Scholar 

  • Atkinson N, Leitao N, Orr DJ, Meyer MT, Carmo-Silva E, Griffiths H, Smith AM, McCormick AJ (2017) Rubisco small subunits from the unicellular green alga Chlamydomonas complement Rubiscodeficient mutants of Arabidopsis. New Phytol 214:655–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:369–392

    CAS  Google Scholar 

  • Betti M, Bauwe H, Busch FA, Fernie AR, Keech O, Leveys M, Ort DO, Parry AAJ, Sage R, Timm S, Walker B, Weber APM (2016) Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. J Exp Bot 67:2977–2988

    CAS  PubMed  Google Scholar 

  • Bloom AJ, Lancaster KM (2018) Manganese binding to Rubisco could drive a photorespiratory pathway that increases the energy efficiency of photosynthesis. Nat Plants 4:414–422

    CAS  PubMed  Google Scholar 

  • Blume C, Behrens C, Eubel H, Braun H-P, Peterhänsel C (2013) A possible role for the chloroplast pyruvate dehydrogenase complex in plant glycolate and glyoxylate metabolism. Phytochemistry 95:168–176

    CAS  PubMed  Google Scholar 

  • Cardona T, Shao S, Nixon PJ (2018) Enhancing photosynthesis in plants: the light reactions. Essays Biochem 62:85–94

    PubMed  PubMed Central  Google Scholar 

  • Carvalho JF, Madgwick PJ, Powers SJ, Keys AJ, Lea PJ, Parry MAJ (2011) An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration. BMC Biotechnol 11:111. https://doi.org/10.1186/s13068-015-0357-1

    Article  CAS  PubMed Central  Google Scholar 

  • Dalal J, Lopez H, Vasani NB, Hu ZH, Swift JE, Yalamanchili R, Dvora M, Lin XL, Xie DY, Qu RD, Sederoff HW (2015) A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa. Biotechnol Biofuels 8:175. https://doi.org/10.1186/s13068-015-0357-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Förster B, Rourke L, Howitt SM, Price DG (2014) Characterisation of cyanobacterial bicarbonate transporters in E. coli shows that SbtA homologs are functional in this heterologous expression system. PLoS One 9:e115905. https://doi.org/10.1371/journal.pone.0115905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endo-symbiontically to plants. Proc Natl Acad Sci U S A 105:17199–17204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fahnenstich H, Saigo M, Niessen M, Zanor MI, Andreo CS, Ferni AR, Drincovich MF, Flügge U-I, Maurino VG (2007) Alteration of organic acid metabolism in Arabidopsis thaliana overexpressing the maize C4- NADP-malic enzyme causes accelerated senescence during extended darkness. Plant Physiol 145:640–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flügel F, Timm S, Arrivault S, Florian A, Stitt M, Fernie AR, Bauwe H (2017) The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis. Plant Cell 29:2537–2551

    PubMed  PubMed Central  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC et al (2011) Solutions for a cultivated planet. Nature 478:337–342

    CAS  PubMed  Google Scholar 

  • Gonzalez-Moro B, Lacuesta M, Becerril JM, Gonzalez-Murua C, Munoz-Rueda A (1997) Glycolate accumulation causes a decrease of photosynthesis by inhibiting RUBISCO activity in maize. J Plant Physiol 150:388–394

    CAS  Google Scholar 

  • Gu JF, Zhou ZX, Li ZK, Chen Y, Wang ZQ, Zhang H (2017) Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crop Res 200:58–70

    Google Scholar 

  • Häusler RE, Bailey KJ, Lea PJ, Leegood RC (1996) Control of photosynthesis in barley mutants with reduced activities of glutamine synthetase and glutamate synthase. 3. Aspects of glyoxylate metabolism and effects of glyoxylate on the activation state of ribulose-1,5-bisphosphate carboxylase-oxygenase. Planta 200:388–396

    Google Scholar 

  • Huma B, Kundu S, Poolman MG, Kruger NJ, Fell DA (2018) Stoichiometric analysis of the energetics and metabolic impact of photorespiration in C3 plants. Plant J 96:1228–1241

    CAS  PubMed  Google Scholar 

  • IPCC (2018) Global warming of 1.5 °C special report. October 2018. https://www.ipcc.ch/sr15/

  • Jonik C, Sonnewald U, Hajirezaei MR, Flügge UI, Ludewig F (2012) Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. Plant Biotechnol J 10:1088–1098

    CAS  PubMed  Google Scholar 

  • Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Planta 161:308–313

    CAS  PubMed  Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    CAS  PubMed  Google Scholar 

  • Kelly GJ, Latzko E (1976) Inhibition of spinach-leaf phosphofructokinase by 2-phosphoglycollate. FEBS Lett 68:55–58

    CAS  PubMed  Google Scholar 

  • Kerfeld CA, Melnicki MR (2016) Assembly, function and evolution of cyanobacterial carboxysomes. Curr Opin Plant Biol 31:66–75

    CAS  PubMed  Google Scholar 

  • Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857–861

    CAS  PubMed  Google Scholar 

  • Langdale JA (2011) C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell 23:3879–3892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leegood R, Lea PJ, Adcock MD, Häusler RE (1995) The regulation and control of photorespiration. J Exp Bot 46:1397–1414

    CAS  Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR (2014a) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:547–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Devonshire J, Hines KM, Parry MA, Hanson MR (2014b) β-Carboxysomal proteins assemble into highly organized structures in Nicotiana chloroplasts. Plant J 79:1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long SP, Marshallcolon A, Zhu XG (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:56–66

    CAS  PubMed  Google Scholar 

  • Long BM, Hee WY, Sharwood RE, Rae BD, Kaines S, Lim YL, Nguyen ND, Massey B, Bala S, von Caemmerer S, Badger MR, Price GD (2018) Carboxysome encapsulation of the CO2-fixing enzyme Rubisco in tobacco chloroplasts. Nat Commun 9:3570. https://doi.org/10.1038/s41467-018-06044-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Calcagno PE, Fisk S, Brown KL, Bull SE, South PF, Raines CA (2018) Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse and field grown transgenic tobacco plants. Plant Biotechnol J 16:1–11

    Google Scholar 

  • Maier A, Fahnenstich H, von Caemmer S, Engqvist MKM, Weber APM, Flügge U-I, Maurino VG (2012) Transgenic introduction of a glycolate oxidative cycle into A. thaliana chloroplasts leads to growth improvement. Front Plant Sci 3:1–12

    Google Scholar 

  • Mangan NM, Flamholz A, Hood RD, Milo R, Savage DF (2016) pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism. Proc Natl Acad Sci U S A 113:E5354–E5362. https://doi.org/10.1073/pnas.1525145113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath JM, Long SP (2014) Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol 164:2247–2261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medrano H, Keys AJ, Lawlor DW, Parry MAJ, Azcon-Bieto J, Delgado E (1995) Improving plant production by selection for survival at low CO2 concentrations. J Exp Bot 46:1389–1396

    CAS  Google Scholar 

  • Meyer MT, McCormick AJ, Griffiths H (2016) Will an algal CO2-concentrating mechanism work in higher plants? Curr Opin Plant Biol 31:181–188

    CAS  PubMed  Google Scholar 

  • Nölke G, Houdelet M, Kreuzaler F, Peterhänsel C, Schillberg S (2014) The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield. Plant Biotechnol J 12:734–742

    PubMed  Google Scholar 

  • Nölke G, Barsoum M, Houdelet M, Arcalis E, Kreuzaler F, Fischer R, Schillberg S (2019) The integration of algal carbon concentration mechanism components into tobacco chloroplasts increases photosynthetic efficiency and biomass. Biotechnol J 14:e1800170

    Google Scholar 

  • Occhialini A, Lin MT, Andralojc PJ, Hanson MR, Parry MAJ (2016) Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2. Plant J 85:148–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orr DJ, Pereira AM, Pereira PF, Pereira-Lima IA, Zsögön A, Araujo WL (2017) Engineering photosynthesis: progress and perspectives. F1000 Res 6:1891. https://doi.org/10.12688/f1000re-search.12181.1

    Article  Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R et al (2015) Rede-signing photosynthesis to sustainability meet global food and energy demand. Proc Natl Acad Sci U S A 112:8529–8536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellicer MT, Badia J, Aguilar J, Baldoma L (1996) Glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J Bacteriol 178:2051–2059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pengelly JJ, Forster B, von Caemmerer S, Badger M, Price GD, Whitney SM (2014) Transplastomic integration of cyanobacteria bicarbonate transporter into tobacco chloroplasts. J Exp Bot 12:3071–3080

    Google Scholar 

  • Peterhänsel C, Maurino VG (2011) Photorespiration redesigned. Plant Physiol 155:49–55

    PubMed  Google Scholar 

  • Peterhänsel C, Horst I, Niessen M, Blume C, Kebeish R, Kürkcüoglu S, Kreuzaler F (2010) Photorespiration. Arabidopsis Book 8:e0130

    PubMed  PubMed Central  Google Scholar 

  • Peterhänsel C, Blume C, Offermann S (2013) Photorespiratory bypasses: how can they work? J Exp Bot 64:709–715

    PubMed  Google Scholar 

  • Phillips R, Milo R (2009) A feeling for the numbers in biology. Proc Natl Acad Sci U S A 106:21465–21471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Price GD, Badger MR, von Caemmerer S (2011) The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. Plant Physiol 155:20–26

    CAS  PubMed  Google Scholar 

  • Price GD, Pengelly JJL, Forster B, Du J, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR (2013) The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot 3:753–768

    Google Scholar 

  • Rae BD, Long BM, Föster B, Nguyen ND, Velanis CN, Atkinson N, Hee WY, Mukherjee B, Price D, McCormick AJ (2017) Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. J Exp Bot 68:3717–3737

    CAS  PubMed  Google Scholar 

  • Raines CA (2011) Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155:36–42

    CAS  PubMed  Google Scholar 

  • Raven JA (2010) Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth Res 106:123–134

    CAS  PubMed  Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293. https://doi.org/10.1038/ncomms2296

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant Cell Environ 35:1799–1823

    PubMed  Google Scholar 

  • Rolland V, Badger MR, Price GD (2016) Redirecting the cyanobacterial bicarbonate transporters BicA and SbtA to the chloroplast envelope: soluble and membrane cargos need different chloroplast targeting signals in plants. Front Plant Sci 7:185

    PubMed  PubMed Central  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    CAS  PubMed  Google Scholar 

  • Sedelnikova OV, Hughes TE, Langdale JA (2018) Understanding the genetic basis of C4 Kranz anatomy with a view to engineering C3 crops. Annu Rev Genet 52:249–270

    CAS  PubMed  Google Scholar 

  • Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plant 73:147–152

    CAS  Google Scholar 

  • Sharwood RE, Sonawane BV, Ghannoum O, Whitney SM (2016) Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry. J Exp Bot 67:3137–3148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen BR, Wang LM, Lin XL, Yao Z, Xu HW, Zhu CH, Teng HY, Cui LL, Liu EE, Zhang JJ, He ZH, Peng XX (2019) Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Mol Plants 12(2):199–214. https://doi.org/10.1016/j.molp.2018.11.013

    Article  CAS  Google Scholar 

  • Simkin AJ, McAusland L, Headland LR, Lawson T, Raines CA (2015) Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. J Exp Bot 66:4075–4090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, Lopez-Calcagno PE, Davey PA, Headland LR, Lawson T, Timm S, Bauwe H, Raines CA (2017) Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphosphate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnol J 15:805–816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, Lopez-Calcagno PE, Raines CA (2019) Feeding the world: improving photosynthetic efficiency for sustainable crop production. J Exp Bot 70:1119–1140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Somerville CR (1984) The analysis of photosynthetic carbon dioxide fixation and photorespiration by mutant selection. Oxf Surv Plant Mol Cell Biol 1:103–131

    CAS  Google Scholar 

  • Somerville CR (2001) An early Arabidopsis demonstration. Resolving a few issues concerning photorespiration. Plant Physiol 125:20–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Wang Y, Qu M, Ort DR, Zhu XG (2017) The impact of modifying photosystem antenna size on canopy photosynthetic efficiency: development of a new canopy photosynthesis model scaling from metabolism to canopy level processes. Plant Cell Environ 40:2946–2957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnewald U, Fernie AR (2018) Next-generation strategies for understanding and influencing source-sink relations in crop plants. Curr Opin Plant Biol 43:63–70

    PubMed  Google Scholar 

  • South PF, Cavanagh A, Lopez-Calcagno PE, Raines CA, Ort DR (2018) Optimizing photorespiration for improved crop productivity. J Integr Plant Biol 60:1217–1230

    CAS  PubMed  Google Scholar 

  • South PF, Cavanagh A, Liu HW, Ort DR (2019) Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363. https://doi.org/10.1126/science.aat9077

  • Tcherkez G (2013) Modelling the reaction mechanism of ribulose 1,5 bisphosphate carboxylase/oxygenase and consequences for kinetic parameters. Plant Cell Environ 36:7246–7251

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timm S, Florian A, Arrivault S, Stitt M, Fernie AR, Bauwe H (2012) Glycine decarboxylase controls photosynthesis and plant growth. FEBS Lett 586:3692–3697

    CAS  PubMed  Google Scholar 

  • Timm S, Wittmiss M, Gamlien S, Ewald R, Florian A, Frank M, Wirtz M, Hell R, Fernie AR, Bauwe H (2015) Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana. Plant Cell 27:1968–1984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timm S, Florian A, Fernie AR, Bauwe H (2016) The regulatory interplay between photorespiration and photosynthesis. J Exp Bot 67:2923–2929

    CAS  PubMed  Google Scholar 

  • Tolbert NE (1997) The C2 oxidative photosynthetic carbon cycle. Annu Rev Plant Physiol Plant Mol Biol 48:1–25

    CAS  PubMed  Google Scholar 

  • von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336:1671–1672

    Google Scholar 

  • Walker BJ, South PF, Ort DR (2016a) Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration. Photosynth Res 129:93–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR (2016b) The costs of photorespiration to food production now and in the future. Annu Rev Plant Biol 67:107–129

    CAS  PubMed  Google Scholar 

  • Wang Y, Stessman DJ, Spalding MH (2015) The CO2-concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works against the gradient. Plant J 82:429–448

    PubMed  Google Scholar 

  • Weber APM, Bar-Even A (2019) Update: improving the efficiency of photosynthetic carbon reactions. Plant Physiol 179:803–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xin CP, Tholen D, Devloo V, Zhu XG (2015) The benefits of photorespiratory bypasses: how can they work? Plant Physiol 167:574–585

    CAS  PubMed  Google Scholar 

  • Zarzycki J, Axen SD, Kinney JN, Kerfeld CA (2013) Cyanobacteria-based approaches to improving photosynthesis in plants. J Exp Bot 64:787–798

    CAS  PubMed  Google Scholar 

  • Zhu XG, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

    CAS  PubMed  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Wolfgang Koch and Dr. Markus Niessen (KWS Saat, Einbeck, Germany) for the design and management of semi-field studies. We thank Dr. Richard M. Twyman for manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schillberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nölke, G., Schillberg, S. (2020). Strategies to Enhance Photosynthesis for the Improvement of Crop Yields. In: Kumar, A., Yau, YY., Ogita, S., Scheibe, R. (eds) Climate Change, Photosynthesis and Advanced Biofuels. Springer, Singapore. https://doi.org/10.1007/978-981-15-5228-1_5

Download citation

Publish with us

Policies and ethics