Skip to main content

Bat Algorithm Aided System to Extract Tumor in Flair/T2 Modality Brain MRI Slices

  • Chapter
  • First Online:
Applications of Bat Algorithm and its Variants

Part of the book series: Springer Tracts in Nature-Inspired Computing ((STNIC))

  • 485 Accesses

Abstract

Recently, a large number of inspection methods are implemented to examine the brain MRI slices recorded using Flair/T2 modality. The Flair/T2 modality provides more visible brain abnormalities than other modalities. This work implemented a heuristic algorithm based examination procedure. In this, the Bat Algorithm (BA) is used to improve the visibility of the tumor-pixels using the Kapur’s Entropy (KE). The improved tumor section is then collected using the Watershed Segmentation Method (WSM). Later, a comparison linking the tumor portion and available Ground-Truth Image (GTI) is executed and the Quality Measures (QM) is computed individually for Flair and T2. During this investigation, the MRI slices with 240 × 240 × 1 pixel resolution are considered and this technique is implemented on 400 MRI slices (Flair = 200 + T2 = 200). The average result of QM confirmed that the BA-based technique helped to get superior result (Accuracy >95% for Flair/T2 modality slices). In future, this methodology can be implemented to analyze the MRI slices obtained from the hospitals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernandes SL et al (2019) A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput Appl 1–12. https://doi.org/10.1007/s00521-019-04369-5

  2. Dey N et al (2019) Social-Group-Optimization based tumor evaluation tool for clinical brain MRI of Flair/diffusion-weighted modality. Biocybern Biomed Eng 39(3):843–856. https://doi.org/10.1016/j.bbe.2019.07.005

    Article  Google Scholar 

  3. Pugalenthi R et al (2019) Evaluation and classification of the brain tumor MRI using machine learning technique. Control Eng Appl Inf 21(4):12–21

    Google Scholar 

  4. Satapathy SC, Rajinikanth V (2018) Jaya algorithm guided procedure to segment tumor from brain MRI. J Optim 2018:12. https://doi.org/10.1155/2018/3738049

    Article  MATH  Google Scholar 

  5. He T, Pamela MB, Shi F (2016) Curvature manipulation of the spectrum of a Valence–Arousal-related fMRI dataset using a Gaussian-shaped fast fourier transform and its application to fuzzy KANSEI adjective modeling. Neurocomputing 174:1049–1059

    Article  Google Scholar 

  6. Hore S, Chakroborty S, Ashour AS, Dey N, Ashour AS, Sifakipistolla D, Bhattacharya T, Bhadra Chaudhuri SR (2015) Finding contours of hippocampus brain cell using microscopic image analysis. J Adv Microsc Res 10(2):93–103

    Article  Google Scholar 

  7. Kovalev V, Kruggel F (2007) Texture anisotropy of the brain’s white matter as revealed by anatomical MRI. IEEE Trans Med Imaging 26(5):678–685

    Article  Google Scholar 

  8. Moldovanu S, Moraru L, Biswas A (2016) Edge-based structural similarity analysis in brain MR images. J Med Imaging Health Inf 6:1–8

    Article  Google Scholar 

  9. Rajinikanth V, Dey N, Kumar R, Panneerselvam J, Raja NSM (2019) Fetal head periphery extraction from ultrasound image using Jaya algorithm and Chan-Vese segmentation. Procedia Comput Sci 152:66–73. https://doi.org/10.1016/j.procs.2019.05.028

    Article  Google Scholar 

  10. Tatla SK, Radomski A, Cheung J, Maron M, Jarus T (2012) Wii-habilitation as balance therapy for children with acquired brain injury. Dev Neurorehabil 1–15. http://www.ncbi.nlm.nih.gov/pubmed/23231377

  11. Sullivan JR, Riccio C A (2010) Language functioning and deficits following pediatric traumatic brain injury. Appl Neuropsychol 17(2):93–98. http://www.ncbi.nlm.nih.gov/pubmed/20467948

  12. McKinlay A, Grace RC, Horwood LJ, Fergusson DM, Ridder EM, MacFarlane MR (2008) Prevalence of traumatic brain injury among children, adolescents and young adults: prospective evidence from a birth cohort. Brain Inj 22(2):175–181. http://www.ncbi.nlm.nih.gov/pubmed/18240046

  13. Rajinikanth V, Dey N, Satapathy SC, Ashour AS (2018) An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model. Future Gener Comput Syst 85:160–172

    Article  Google Scholar 

  14. Acharya UR et al (2019) Automated detection of Alzheimer’s disease using brain MRI images—a study with various feature extraction techniques. J Med Syst 43(9):302. https://doi.org/10.1007/s10916-019-1428-9

    Article  Google Scholar 

  15. Jahmunah V et al (2019) Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 100:101698. https://doi.org/10.1016/j.artmed.2019.07.006

    Article  Google Scholar 

  16. Rajinikanth V, Satapathy SC, Fernandes SL, Nachiappan S (2017) Entropy based segmentation of tumor from brain MR images—a study with teaching learning based optimization. Pattern Recognit Lett 94:87–95. https://doi.org/10.1016/j.patrec.2017.05.028

    Article  Google Scholar 

  17. Rajinikanth V, Satapathy SC, Dey N, Lin H (2018) Evaluation of ischemic stroke region from CT/MR images using hybrid image processing techniques. In: Intelligent multidimensional data and image processing, pp 194–219. https://doi.org/10.4018/978-1-5225-5246-8.ch007

  18. Palani TK, Parvathavarthini B, Chitra K (2016) Segmentation of brain regions by integrating meta heuristic multilevel threshold with markov random field. Curr Med Imaging Rev 12(1):4–12

    Article  Google Scholar 

  19. Menze B, Reyes M, Leemput KV et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024

    Article  Google Scholar 

  20. Havaei M, Davy A, Warde-Farley D et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Article  Google Scholar 

  21. Paul AY, Joseph P, Heather CH, Rachel GS, Sean H, James CG, Guido G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  Google Scholar 

  22. Xin-She Y (2013) Bat algorithm: literature review and applications. Int J Bio-Inspired Comput 5(3):141–149

    Article  Google Scholar 

  23. Fister IJ, Yang XS, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. Electrotech Rev 80(3):1–7

    MATH  Google Scholar 

  24. Rajinikanth V, Satapathy SC, Dey N, Fernandes SL, Manic KS (2019) Skin melanoma assessment using Kapur’s entropy and level set—a study with bat algorithm. Smart Innov Syst Technol 104:193–202. https://doi.org/10.1007/978-981-13-1921-1_19

    Article  Google Scholar 

  25. Shriranjani D et al (2018) Kapur’s entropy and active contour-based segmentation and analysis of retinal optic disc. Lect Notes Electr Eng 490:287–295. https://doi.org/10.1007/978-981-10-8354-9_26

    Article  Google Scholar 

  26. Wang Y et al (2019) Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network. Appl Soft Comput 74:40–50. https://doi.org/10.1016/j.asoc.2018.10.006

    Article  Google Scholar 

  27. Wang Y et al (2019) Morphological segmentation analysis and texture-based support vector machines classification on mice liver fibrosis microscopic images. Curr Bioinform 14(4):282–294. https://doi.org/10.2174/1574893614666190304125221

    Article  Google Scholar 

  28. Roopini TI, Vasanthi M, Rajinikanth V, Rekha M, Sangeetha M (2018) Segmentation of tumor from brain MRI using fuzzy entropy and distance regularised level set. Lect Notes Electr Eng 490:297–304. https://doi.org/10.1007/978-981-10-8354-9_27

    Article  Google Scholar 

  29. Manic KS, Hasoon FA, Shibli NA, Satapathy SC, Rajinikanth V (2019) An approach to examine brain tumor based on Kapur’s entropy and Chan-Vese algorithm. AISC 797:901–909

    Google Scholar 

  30. Rajinikanth V, Satapathy SC, Dey N, Lin H (2018) Evaluation of ischemic stroke region from CT/MR images using hybrid image processing techniques. In:Intelligent multidimensional data and image processing, pp 194–219. https://doi.org/10.4018/978-1-5225-5246-8.ch007

  31. Rajinikanth V, Fernandes SL, Bhushan B, Sunder NR (2018) Segmentation and analysis of brain tumor using Tsallis entropy and regularised level set. Lect Notes Electr Eng 434:313–321

    Article  Google Scholar 

  32. Revanth K et al (2018) Computational investigation of stroke lesion segmentation from Flair/DW modality MRI. In: Fourth international conference on biosignals, images and instrumentation (ICBSII). IEEE, pp 206–212. https://doi.org/10.1109/icbsii.2018.8524617

  33. Rajinikanth V, Raja NSM, Kamalanand K (2017) Firefly algorithm assisted segmentation of tumor from brain MRI using Tsallis function and Markov random field. J Control Eng Appl Inform 19(3):97–106

    Google Scholar 

  34. Bauer S, Wiest R, Nolte LP et al (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97

    Article  Google Scholar 

  35. Ma C, Luo G, Wang K (2018) Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images. IEEE Trans Med Imaging 37(8):1943–1954

    Article  Google Scholar 

  36. Liu M, Zhang J, Nie D et al (2018) Anatomical landmark based deep feature representation for MR images in brain disease diagnosis. IEEE J Biomed Health 22(5):1476–1485

    Article  Google Scholar 

  37. El-Dahshan ESA, Mohsen HM, Revett K et al (2014) Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 41(11):5526–5554

    Article  Google Scholar 

  38. Kanmani P, Marikkannu P (2018) MRI brain images classification: a multi-level threshold based region optimization technique. J Med Syst 42(4):62

    Article  Google Scholar 

  39. Leandrou S, Petroudi S, Reyes-Aldasoro CC et al (2018) Quantitative MRI brain studies in mild cognitive impairment and Alzheimer’s disease: a methodological review. IEEE Rev Bio-Med Eng 11:97–111

    Article  Google Scholar 

  40. Amin J, Sharif M, Yasmin M et al (2018) Big data analysis for brain tumor detection: deep convolutional neural networks. Future Gener Comput Syst 87:290–297

    Article  Google Scholar 

  41. Yang XS (2011) Bat algorithm for multi-objective optimization. Int J Bio-Inspired Comput 3:267–274

    Article  Google Scholar 

  42. Yang XS (2010) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, United Kingdom

    Google Scholar 

  43. Abdel-Raouf O, Abdel-Baset M, El-Henawy I (2014) An improved chaotic bat algorithm for solving integer programming problems. Int J Mod Educ Comput Sci (IJMECS) 6(8):18–24. https://doi.org/10.5815/ijmecs.2014.08.03

    Article  Google Scholar 

  44. Roy S, Biswas S, Chaudhuri SS (2014) Nature-inspired swarm intelligence and its applications. Int J Mod Educ Comput Sci (IJMECS) 6(12):55–65. https://doi.org/10.5815/ijmecs.2014.12.08

    Article  Google Scholar 

  45. Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29:273–285

    Article  Google Scholar 

  46. Manic KS, Priya RK, Rajinikanth V (2016) Image multithresholding based on Kapur/Tsallis entropy and firefly algorithm. Indian J Sci Technol 9(12):89949

    Google Scholar 

  47. Raja NSM, Rajinikanth V, Fernandes SL, Satapathy SC (2017) Segmentation of breast thermal images using Kapur’s entropy and hidden Markov random field. J Med Imaging Health Inform 7(8):1825–1829

    Article  Google Scholar 

  48. Fernandes SL, Rajinikanth V, Kadry S (2019) A hybrid framework to evaluate breast abnormality. IEEE Consum Electron Mag 8(5):31–36. https://doi.org/10.1109/MCE.2019.2905488

    Article  Google Scholar 

  49. Dey N, Rajinikanth V, Ashour AS, Tavares JMRS (2018) Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 10(2):51. https://doi.org/10.3390/sym10020051

    Article  MATH  Google Scholar 

  50. Dey N, Shi F, Rajinikanth V (2019) Leukocyte nuclei segmentation using entropy function and Chan-Vese approach. Inf Technol Intell Transp Syst 314:255–264. https://doi.org/10.3233/978-1-61499-939-3-255

    Article  Google Scholar 

  51. Roerdink JBTM, Meijster A (2001) The watershed transform: definitions, algorithms and parallelization strategies. Fundam Informaticae 41:187–228

    Article  MathSciNet  MATH  Google Scholar 

  52. Shanthakumar P, Kumar PG (2015) Computer aided brain tumor detection system using watershed segmentation techniques. Int J Imaging Syst Technol 25(4):297–301. https://doi.org/10.1002/ima.22147

    Article  Google Scholar 

  53. Rajinikanth V, Thanaraj PK, Satapathy SC, Fernandes SL, Dey N (2019) Shannon’s entropy and watershed algorithm based technique to inspect ischemic stroke wound. SIST 105:23–31. https://doi.org/10.1007/978-981-13-1927-3_3

    Article  Google Scholar 

  54. Raj SPS et al (2018) Examination of digital mammogram using Otsu’s function and watershed segmentation. In: Fourth international conference on biosignals, images and instrumentation (ICBSII). IEEE, pp 206–212. https://doi.org/10.1109/icbsii.2018.8524794

  55. Garg G, Juneja M (2018) A survey of prostate segmentation techniques in different imaging modalities. Curr-Med Imaging Rev 14(1):19–46

    Article  Google Scholar 

  56. Raja NSM et al (2019) A study on segmentation of leukocyte image with Shannon’s entropy. Histopathol Image Anal Med Decis Mak 1–27. https://doi.org/10.4018/978-1-5225-6316-7.ch001

  57. Rajinikanth V, Dey N, Kavallieratou E, Lin H (2020) Firefly algorithm-based Kapur’s thresholding and Hough transform to extract leukocyte section from hematological images. In: Applications of Firefly algorithm and its variants: case studies and new developments, pp 221–235. https://doi.org/10.1007/978-981-15-0306-1_10

  58. Rajinikanth V, Dey N, Satapathy SC, Kamalanand K (2020) Inspection of crop-weed image database using Kapur’s entropy and spider monkey optimization. Adv Intell Syst Comput 1048:405–414. https://doi.org/10.1007/978-981-15-0035-0_32

  59. Rajinikanth V, Raja NSM, Satapathy SC, Dey N, Devadhas GG (2018) Thermogram assisted detection and analysis of ductal carcinoma in situ (DCIS). In: International conference on intelligent computing, instrumentation and control technologies (ICICICT). IEEE, pp 1641–1646. https://doi.org/10.1109/icicict1.2017.8342817

  60. AlShahrani AM, Al-Abad MA, Al-Malki AS, Ashour AS, Dey N (2018) Automated system for crops recognition and classification. In: Computer vision: concepts, methodologies, tools, and applications, pp 1208–1223. https://doi.org/10.4018/978-1-5225-5204-8.ch050

  61. Dey N, Ashour AS, Bhattacharyya S (2019) Applied nature-inspired computing: algorithms and case studies. Springer tracts in nature-inspired computing

    Google Scholar 

  62. Dey N (ed) (2017) Advancements in applied metaheuristic computing. IGI Global

    Google Scholar 

  63. Dey N (2020) Applications of Firefly algorithm and its variants. Springer tracts in nature-inspired computing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sindhu .

Editor information

Editors and Affiliations

Appendix

Appendix

See Figs. 8, 9, and 10.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sindhu, V., Singaravelan, M., Ramadevi, J., Vinitha, S., Hemapriyaa, S. (2021). Bat Algorithm Aided System to Extract Tumor in Flair/T2 Modality Brain MRI Slices. In: Dey, N., Rajinikanth, V. (eds) Applications of Bat Algorithm and its Variants. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-15-5097-3_9

Download citation

Publish with us

Policies and ethics