Skip to main content

Emergence of Nanophytomedicine in Health Care Setting

  • Chapter
  • First Online:
Nanophytomedicine

Abstract

Plant is considered as an important source of phytopharmaceuticals. Phytomedicine is also known as herbal medicines, herbalism, phototherapeutics, or botanical medicine. Phytomedicine is a medicinal system based on the use of plants parts or plant extracts having therapeutic efficacy. Phytoconstituents are mainly extracted from different plant parts including leaves, bark, stem, roots, rhizomes, fruits, flowers, seeds, etc. Herbal medicines are widely used in different medicinal systems such as Ayurveda, Unani, Siddha, Homeopathy, and other provincial medicinal systems. Nanomedicine based drug delivery systems for herbal drugs can possibly enhance the biological activity and overcome problems associated with phytomedicines hence more amount of drug must be delivered at targeted site for therapeutic efficacy. In this book chapter authors have thoroughly reviewed the literature about role of phytomedicine in present scenario as well as futuristic role in healthcare management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lokesh BS, Kumar D, Handa M, Shukla R (2019) History of flavors associated with functional foods and nutraceuticals. In: Flavor development for functional foods and nutraceuticals. CRC Press, Boca Raton

    Google Scholar 

  2. Alexander A, Patel RJ, Saraf S, Saraf S (2016) Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release [Internet]. https://doi.org/10.1016/j.jconrel.2016.09.017

  3. Yalavarthi C, Thiruvengadarajan VS (2013) A review on identification strategy of phyto constituents present in herbal plants. Int J Res Pharm Sci 4:123–140

    Google Scholar 

  4. Sayed N, Khurana A, Godugu C (2019) Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J Drug Deliv Sci Technol [Internet] 53:101201. https://doi.org/10.1016/j.jddst.2019.101201

    Article  CAS  Google Scholar 

  5. Ambwani S, Ambwani T, Malik YS (2018) Current knowledge on nanodelivery systems and their beneficial applications in enhancing the efficacy of herbal drugs. J Exp Biol Agric Sci 6:87–107

    CAS  Google Scholar 

  6. Rodr J (2018) Pharmacological activities of phytomedicines: a challenge horizon for rational knowledge. Challenges 9:1–8

    Google Scholar 

  7. Yevale R, Khan N, Kalamkar P (2018) Overview on “Regulations of herbal medicine”. J Pharm Phytochem 7:61–63

    CAS  Google Scholar 

  8. Lekshmi NG, Chandran SM, Sundar WA (2018) Role of nanotechnology in herbal medicine. Indo Am J Pharm Sci 5(11):12052–12062

    Google Scholar 

  9. Simona AD, Florina A, Evelyne O, Maria-corina S (2017) Nanoscale delivery systems: actual and potential applications in the natural products industry. Curr Pharm Design 23(17):2414–2421

    CAS  Google Scholar 

  10. Saraf S (2010) Fitoterapia applications of novel drug delivery system for herbal formulations. Fitoterapia [Internet] 81(7):680–689. https://doi.org/10.1016/j.fitote.2010.05.001

    Article  CAS  Google Scholar 

  11. Review E, Kulkarni GT (2011) Herbal drug delivery systems: an emerging area in herbal drug research. J Chronother Drug Deliv 2(3):113–119

    Google Scholar 

  12. Review P (2014) Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed 4(Suppl 1):S1–S7

    Google Scholar 

  13. Ansari SH, Islam F (2012) Influence of nanotechnology on herbal drugs: a review. J Adv Pharm Technol Res 3(3):142–147

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ajaz A, Siddique S, Science S, Technology A, Alexander A, Yadav P (2019) Nanomedicines: Challenges and perspectives for future nanotechnology in the healthcare system. Angew Chem Int Ed Engl. 48(5):872–897

    Google Scholar 

  15. Afrin S, Jahan I, Hasan AHMN, Deepa KN (2018) Novel approaches of herbal drug delivery. J Pharm Res Int 21(5):1–11

    Google Scholar 

  16. Botlagunta M (2014) Nanophytomedicine and drug formulations. Int J Nanotechnol Appl 4:1–8

    Google Scholar 

  17. Dhiman A, Nanda A, Ahmad S (2012) Novel herbal drug delivery system (NHDDS): the need of hour 2. Types of Novel Herbal Drug Delivery Systems 49:171–175

    CAS  Google Scholar 

  18. Sachan AK, Gupta A (2015) A review on nanotized herbal drugs. J Pharm Sci Res 6(3):961

    Google Scholar 

  19. Pawar P, Kalamkar R, Jain A, Amberkar S (2015) Ethosomes: a novel tool for herbal drug delivery. IJPPR Human 3:191–202

    CAS  Google Scholar 

  20. Pradeep C, Kumar TB (2018) Review article 8(3):162–168

    Google Scholar 

  21. Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG et al (2015) Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes. Int J Nanomedicine 10:5837–5851

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gharbavi M, Amani J, Kheiri-manjili H, Danafar H, Sharafi A (2018) Niosome: a promising nanocarrier for natural drug delivery through blood-brain barrier. Adv Pharm Pharm Sci 2018:15

    Google Scholar 

  23. Prajkta C, Vinal P, Vineeta J (2017) A review on therapeutic applications of phytosomes. J Drug Deliv Therap 7(5):17–21

    CAS  Google Scholar 

  24. Conte R, De Luca I, De Luise A, Petillo O, Calarco A, Peluso G (2016) New therapeutic potentials of nanosized phytomedicine. J Nanosci Nanotechnol. 16(8):8176–8187

    CAS  Google Scholar 

  25. Mignani S, Zablocka M, Tomas H, Caminade A (2018) Chem Soc rev and analogues as anti-cancer agents. Chem Soc Rev [Internet] 47:514–532. https://doi.org/10.1039/c7cs00550d

    Article  CAS  Google Scholar 

  26. Shevalkar G, Vavia P (2019) Solidified nanostructured lipid carrier (S-NLC) for enhancing the oral bioavailability of ezetimibe. J Drug Deliv Sci Technol [Internet] 53:101211. https://doi.org/10.1016/j.jddst.2019.101211

    Article  CAS  Google Scholar 

  27. Takarkhede SN, Kale MK (2017) A review on use of herbal drugs for solid lipid nanoparticles. Int J Innov Sci Res Technol 2(10):116–121

    Google Scholar 

  28. Jaiswal P, Gidwani B, Vyas A (2014) Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol 44(1):1–14

    Google Scholar 

  29. Akash B, Ravindranath S (2019) A review on novel drug delivery system : a recent trend. J Drug Deliv Therap 9(3):517–521

    CAS  Google Scholar 

  30. Santos AC, Pattekari P, Jesus S, Veiga F, Lvov Y (2015) Sonication-assisted layer-by-layer assembly for low solubility drug nanoformulation. ACS Appl Mater Interfaces 7:11972

    CAS  PubMed  Google Scholar 

  31. Harwansh RK, Deshmukh R, Rahman A (2019) Nanoemulsion : promising nanocarrier system for delivery of herbal bioactives. J Drug Deliv Sci Technol [Internet] 51:224–233. https://doi.org/10.1016/j.jddst.2019.03.006

    Article  CAS  Google Scholar 

  32. Baskar V, SM I, Subramani A, Ali J (2018) Historic review on modern herbal nanogel formulation and delivery methods. Int J Pharm Pharm Sci 10(10). https://doi.org/10.22159/ijpps.2018v10i10.23071

  33. Lai W, Rogach AL (2017) Hydrogel-based materials for delivery of herbal medicines. ACS Appl Mater Interfaces 9:11309

    CAS  PubMed  Google Scholar 

  34. Hong C, Wang D, Liang J, Guo Y, Zhu Y, Xia J et al (2019) Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer. Theranostics 9(15):4437–4449

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Madheswaran T, Kumar P, Pillay V, Hsu A, Hansbro N, Bebawy M et al (2018) Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf B Biointerfaces [Internet]. https://doi.org/10.1016/j.colsurfb.2018.08.027

  36. Seguin J, Brullé L, Boyer R, Lu YM, Romano MR, Touil YS et al (2013) Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int J Pharm [Internet] 444(1–2):146–154. https://doi.org/10.1016/j.ijpharm.2013.01.050

    Article  CAS  Google Scholar 

  37. Fang J, Lee W, Shen S (2006) J Dermatol Sci 42:101

    CAS  PubMed  Google Scholar 

  38. Jeswani G (2015) Drug delivery research topical delivery of curcuma longa extract loaded nanosized ethosomes to combat facial wrinkles. J Pharm Drug Deliv Res 3(1). https://doi.org/10.4172/2325-9604.1000118

  39. Fan C, Li X, Zhou Y, Zhao Y, Ma S, Li W et al (2013) Enhanced Topical Delivery of Tetrandrine by Ethosomes for Treatment of Arthritis. Biomed Res Int 2013:161943

    PubMed  PubMed Central  Google Scholar 

  40. Zhou Y, Wei Y, Liu H, Zhang G, Wu X (2010) Preparation and In vitro Evaluation of Ethosomal Total Alkaloids of Sophora alopecuroides Loaded by a Transmembrane pH-Gradient Method. AAPS Pharm SciTech 11(3):1350–1358

    CAS  Google Scholar 

  41. Zhaowu Z, Xiaoli W, Yangde Z, Nianfeng L (2009) Preparation of matrine ethosome, its percutaneous permeation in vitro and anti-inflammatory activity in vivo in rats. J Liposome Res 19(87):155–162

    PubMed  Google Scholar 

  42. Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M (2005) Ethosomes for skin delivery of ammonium glycyrrhizinate : In vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release 106:99–110

    CAS  PubMed  Google Scholar 

  43. Nangare S, Dhananjay B, Shitole M (2019) Development of novel freeze-dried mulberry leaves extract-based transfersomal gel. Turk J Pharm Sci. https://doi.org/10.4274/tjps.98624

  44. Wu P, Li Y, Kuo Y, Tsai SJ, Lin C (2019) Preparation and Evaluation of Novel Transfersomes Combined with the Natural Antioxidant Resveratrol. Molecules 24:1–12

    Google Scholar 

  45. Sarwa KK, Mazumder B, Rudrapal M, Verma VK (2014) Potential of capsaicin-loaded transfersomes in arthritic rats. Drug Deliv 7544:1–9

    Google Scholar 

  46. Saraf S, Jeswani G, Kaur CD, Saraf S (2011) Development of novel herbal cosmetic cream with Curcuma longa extract loaded transfersomes for antiwrinkle effect. Afr J Pharm Pharmacol 5:1054–1062

    Google Scholar 

  47. Lu K, Xie S, Han S, Zhang J, Chang X, Chao J et al (2014) Preparation of a nano emodin transfersome and study on its anti-obesity mechanism in adipose tissue of diet-induced obese rats. J Transl Med 12:1–14

    Google Scholar 

  48. Song H, Li H, Meng Y, Zhang Y, Zhang N, Zheng W (2019) Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome. Int J Nanomedicine 14:3177–3188

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Karim NA (2018) Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation. Drug Des Devel Ther 12:795–813

    Google Scholar 

  50. Anwar E, Ramadon D, Ardi GD (2018) Novel transethosome containing green tea (CAMELLIA sinensis L. kuntze) leaf extract for enhanced skin delivery of epigallocatechin gallate: formulation and in vitro penetration test. Int J Appl Pharm 10(1):1–4

    Google Scholar 

  51. Chen ZX, Li B, Liu T, Wang X, Zhu Y, Wang L et al (2017) Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. Eur J Pharm Sci 99:240–245

    CAS  PubMed  Google Scholar 

  52. Azizah N, Sagita E, Iskandarsyah I (2017) In vitro penetration tests of transethosome gel preparations containing capsaicin. Int J Appl Pharm 9:5–8

    Google Scholar 

  53. Barani M, Mirzaei M, Torkzadeh-mahani M, Nematollahi MH (2018) Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast cancer cell line: a nano-herbal treatment for cancer. Daru 26(1):11–17

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Activity A (2017) Development of novel nano niosomes as drug delivery system of spermacoce hispida extract and in vitro antituberculosis activity. Curr Nanomat 2:17–23

    Google Scholar 

  55. Activity A (2016) Niosomes and assessment of its journal of bioequivalence & bioavailability novel encapsulation of lycopene inosomes and assessment of its anti- cancer activity. J Bioequiv Bioavail. https://doi.org/10.4172/jbb.1000300

  56. Budhiraja A, Dhingra G (2014) Development and characterization of a novel antiacne niosomal gel of rosmarinic acid. Drug Deliv 7544:1–8

    Google Scholar 

  57. Kamble B, Talreja S, Pathak D (2013) Development and biological evaluation of Gymnema sylvestre extract-loaded nonionic surfactant-based niosomes. Nanomedicine 8(8):1295–1305

    CAS  PubMed  Google Scholar 

  58. Park JH, Jang JS, Kim KC, Hong JT (2018) Anti-inflammatory effect of centella asiatica phytosome in a mouse model of phthalic anhydride-induced atopic dermatitis. Phytomedicine [Internet]. https://doi.org/10.1016/j.phymed.2018.04.013

  59. Zaidi SMA, Pathan SA, Jamil SS, Ahmad FJ, Khar RK, Singh S (2016) Enhanced neurobehavioral effects of Jadwar (Delphinium denudatum) aqueous fraction by implying nanotechnology based approach. Archiv Neurol Neurosurgery 1(1):1–6

    Google Scholar 

  60. Maryana W, Rachmawati H, Mudhakir D (2016) Symposium on flexible organic electronics. Formation of phytosome containing silymarin using thin layer-hydration technique aimed for oral delivery. Mater Today Proc 3:855–866

    Google Scholar 

  61. Yu F, Li Y, Chen Q, He Y, Wang H, Yang L et al (2016) Monodisperse microparticles loaded with the self-assembled phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. Eur J Pharm Biopharm [Internet]. https://doi.org/10.1016/j.ejpb.2016.03.019

  62. Hüsch J, Bohnet J, Fricker G, Skarke C, Artaria C, Appendino G et al (2013) Fitoterapia Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome ®) of Boswellia extract. Fitoterapia [Internet] 84:89–98. https://doi.org/10.1016/j.fitote.2012.10.002

    Article  CAS  Google Scholar 

  63. Zhang J, Shen L, Li X, Song W, Liu Y, Huang L, Zhang J, Shen L, Li X, Song W, Liu Y, Huang L (2019) Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano 13(11):12511–12524

    CAS  PubMed  Google Scholar 

  64. Helmy W, Sallam M, Fang J, Elkhodairy KA, Elzoghby AO (2018) Dual-targeted casein micelles as green nanomedicine for synergistic phytotherapy of hepatocellular carcinoma. J Control Release [Internet] 287:78–93. https://doi.org/10.1016/j.jconrel.2018.08.026

    Article  CAS  Google Scholar 

  65. Desai PP, Patravale VB (2017) Curcumin Cocrystal micelles d multifunctional nanocomposites for management of neurodegenerative ailments. J Pharm Sci [Internet] 107:1–14. https://doi.org/10.1016/j.xphs.2017.11.014

    Article  CAS  Google Scholar 

  66. Xi J, Guo R (2007) Acid – base equilibrium of puerarin in CTAB micelles. J Pharm Biomed Anal 43(April 2006):111–118

    CAS  PubMed  Google Scholar 

  67. Zhang L, Chen Z, Yang K, Liu C, Gao J, Qian F (2015) β - lapachone and paclitaxel combination micelles with improved drug encapsulation and therapeutic synergy as novel nanotherapeutics for nqo1-targeted cancer therapy. Mol Pharm. 12(11):3999–4010

    CAS  PubMed  Google Scholar 

  68. M AE, A MM (2017) Accepted us [Internet]. Pharmaceutical development and technology, Vol. 0. Taylor & Francis. https://doi.org/10.1080/10837450.2017.1344994

  69. Ghaffari M, Dehghan G, Baradaran B, Zarebkohan A, Mansoori B, Soleymani J, et al. Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids Surf B Biointerfaces [Internet]: 2019https://doi.org/10.1016/j.colsurfb.2019.110762, 188, 110762

    Article  CAS  Google Scholar 

  70. Vishnu S, Rompicharla K, Kumari P, Bhatt H, Ghosh B, Biswas S (2018) Biotin functionalized PEGylated poly (amidoamine) dendrimer conjugate for active targeting of paclitaxel in cancer. Int J Pharm [Internet] 557:329–341. https://doi.org/10.1016/j.ijpharm.2018.12.069

    Article  CAS  Google Scholar 

  71. Shakeri M, Hadi S, Shakeri S (2019) Carvacrol and astaxanthin co-entrapment in beeswax solid lipid nanoparticles as an efficient nano-system with dual antioxidant and anti- bio fi lm activities. LWT - Food Sci Technol [Internet] 107(December 2018):280–290. https://doi.org/10.1016/j.lwt.2019.03.031

    Article  CAS  Google Scholar 

  72. Ban C, Jo M, Hyun Y, Hwan J, Yong J (2019) Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem [Internet] 302:125328. https://doi.org/10.1016/j.foodchem.2019.125328

    Article  CAS  Google Scholar 

  73. Press D (2018) Pomegranate extract-loaded solid lipid nanoparticles: design, optimization, and in vitro cytotoxicity study. Int J Nanomedicine 13:1313–1326

    Google Scholar 

  74. Singh A, Ahmad I, Akhter S, Jain GK, Iqbal Z, Talegaonkar S et al (2013) Biointerfaces nanocarrier based formulation of thymoquinone improves oral delivery: stability assessment, in vitro and in vivo studies. Colloids SurfB Biointerfaces [Internet] 102:822–832. https://doi.org/10.1016/j.colsurfb.2012.08.038

    Article  CAS  Google Scholar 

  75. Wang S, Chen T, Chen R, Hu Y, Chen M, Wang Y (2012) Emodin loaded solid lipid nanoparticles : Preparation, characterization and antitumor activity studies. Int J Pharm [Internet]. 430(1–2):238–246. https://doi.org/10.1016/j.ijpharm.2012.03.027

    Article  CAS  PubMed  Google Scholar 

  76. Wang X (2017) Capsaicin-loaded nanolipoidal carriers for topical application: design, characterization, and in vitro / in vivo evaluation. Int J Nanomedicine 12:3881–3898

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ng WK, Yazan LS, Yap LH, Abd W, Wan G, Hafiza N et al (2015) Thymoquinone-Loaded Nanostructured Lipid Carrier Exhibited Cytotoxicity towards Breast Cancer Cell Lines (MDA-MB-231 and MCF-7) and Cervical Cancer Cell Lines (HeLa and SiHa). Biomed Res Int 2015:263131

    PubMed  PubMed Central  Google Scholar 

  78. Fan X, Chen J, Shen Q (2013) Docetaxel – nicotinamide complex-loaded nanostructured lipid carriers for transdermal delivery. Int J Pharm [Internet]. 458(2):296–304. https://doi.org/10.1016/j.ijpharm.2013.10.036

    Article  CAS  PubMed  Google Scholar 

  79. Press D (2013) Formulation design, preparation, and in vitro and in vivo characterizations of β -elemene- loaded nanostructured lipid carriers. Int J Nanomedicine 14:2533–2541

    Google Scholar 

  80. Chen-yu G, Chun-fen Y, Qi-lu L, Qi T, Yan-wei X, Wei-na L et al (2012) Development of a Quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int J Pharm 430:292–298

    PubMed  Google Scholar 

  81. Zhao L, Bi D, Qi X, Guo Y, Yue F (2019) Polydopamine-based surface modification of Polydopamine-based surface modification of paclitaxel nanoparticles for osteosarcoma targeted therapy. Nanotechnology 30(25):255101

    CAS  PubMed  Google Scholar 

  82. Shanmugam R, Priyanka DL, Madhuri K, Gowthamarajan K, Venkata V, Reddy S et al (2017) Formulation and Characterization of Chitosan Encapsulated Phytoconstituents of Curcumin and Rutin Nanoparticles. Int J Biol Macromol [Internet]. https://doi.org/10.1016/j.ijbiomac.2017.06.112

  83. Sahu S, Saraf S (2013) Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak J Biol Sci 16:601–609

    CAS  PubMed  Google Scholar 

  84. Hsu W, Ng L, Wu T, Lin L, Yen F, Lin C (2012) Characteristics and antioxidant activities of silymarin nanoparticles. J Nanosci Nanotechnol 12(3):2022–2027

    CAS  PubMed  Google Scholar 

  85. Pawar AP, Chellampillai B (2011) Andrographolide, a novel bioactive phytoconstituent encapsulated in sustained release biodegradable nanoparticles. Int J Nanotechnol 8:764–778

    Google Scholar 

  86. Khurana RK, Sharma T, Kaur S, Jain A, Singh B (2018) 7 role of nanoconstructs in ameliorating chemopreventive and chemotherapeutic potential of plant bioactives. NanoAgroceuticals & NanoPhytoChemicals, 151

    Google Scholar 

  87. Bioavailability IV, Monika P, Basavaraj BV, Murthy KNC, Ahalya N, Gurudev K (2017) Nanocapsules of catechin rich extract for enhanced antioxidant potential and nanocapsules of catechin rich extract for enhanced antioxidant potential and in vitro bioavailability. J Appl Pharm Sci 7(01):184–188

    Google Scholar 

  88. Yao J, Zhang Y, Hu Q, Zeng D, Hua F, Meng W et al (2017) PT [Internet]. Eur J Pharm Sci. 101:189. https://doi.org/10.1016/j.ejps.2017.01.028. Elsevier B.V

    Article  CAS  PubMed  Google Scholar 

  89. Stecanella LA, Taveira SF, Marreto RN, Valadares MC, De M (2013) Development and characterization of PLGA nanocapsules of grandisin isolated from Virola surinamensis : in vitro release and cytotoxicity studies. Rev Bras Farmacogn – Braz J Pharmacogn [Internet] 23(1):153–159. https://doi.org/10.1590/S0102-695X2012005000128

    Article  CAS  Google Scholar 

  90. Chen Y, Lin X, Park H, Greever R (2009) Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomed Nanotechnol Biol Med [Internet] 5(3):316–322. https://doi.org/10.1016/j.nano.2008.12.005

    Article  CAS  Google Scholar 

  91. Strategies NB (2019) Nanoemulsion and nanoliposome based strategies. Nutrients 11(5):1052

    Google Scholar 

  92. Mostafa NM (2018) Antibacterial activity of Ginger (Zingiber officinale) leaves essential oil nanoemulsion against the cariogenic streptococcus mutans. J Appl Pharm Sci 8(09):34–41

    CAS  Google Scholar 

  93. Kaur A, Gupta S, Tyagi A, Sharma RK, Ali J, Gabrani R et al (2017) Development of Nanoemulsion based gel loaded with Phytoconstituents for the treatment of urinary tract infection and in vivo biodistribution studies. Tabriz Univ Med Sci [Internet] 7(4):611–619.. Available from:. https://doi.org/10.15171/apb.2017.073

    Article  CAS  Google Scholar 

  94. Thomas J, Thanigaivel S, Vijayakumar S, Acharya K, Shinge D, Seelan TSJ et al (2014) Colloids and surfaces B : biointerfaces Pathogenicity of Pseudomonas aeruginosa in Oreochromis mossambicus and treatment using lime oil nanoemulsion. Colloids Surf B Biointerfaces [Internet] 116:372–377. https://doi.org/10.1016/j.colsurfb.2014.01.019

    Article  CAS  Google Scholar 

  95. Santiago RR, Gyselle K, Holanda D, Dantas N, Genre J, Freitas V et al (2018) Nanostructured lipid carriers containing amphotericin B: development, in vitro release assay, and storage stability. J Drug Deliv Sci Technol [Internet]. https://doi.org/10.1016/j.jddst.2018.10.003

  96. Cells ML (2018) Effects of apigenin and apigenin-loaded nanogel on induction of apoptosis in human chronic myeloid leukemia cells. Galen Med J 7:1008

    Google Scholar 

  97. Ashra B, Rashidipour M, Marzban A, Soroush S (2019) Mentha piperita essential oils loaded in a chitosan nanogel with inhibitory e ff ect on bio fi lm formation against S. mutans on the dental surface. Carbohydrate Polym 212(February):142–149

    Google Scholar 

  98. Divya G, Panonnummal R, Gupta S, Jayakumar R, Sabitha M (2016) Acitretin and Aloe-emodin loaded chitin nanogel for the treatment of psoriasis Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical. Eur J Pharm Biopharm [Internet]. https://doi.org/10.1016/j.ejpb.2016.06.019

  99. Zhaveh S, Mohsenifar A, Beiki M, Tahereh S, Abdollahi A, Rahmani-cherati T et al (2015) Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind Crop Prod [Internet] 69:251–256. https://doi.org/10.1016/j.indcrop.2015.02.028

    Article  CAS  Google Scholar 

  100. Tahereh S, Mohsenifar A, Beyki M, Zhaveh S, Rahmani-cherati T, Abdollahi A et al (2015) LWT - food science and technology encapsulation of thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT - Food Sci Technol [Internet] 60(1):502–508. https://doi.org/10.1016/j.lwt.2014.07.054

    Article  CAS  Google Scholar 

  101. Saraf S, Gupta A, Alexander A, Khan J (2015) Advancements and avenues in Nanophytomedicines for better pharmacological responses. J Nanosci Nanotechnol 15:4070

    CAS  PubMed  Google Scholar 

  102. Shukla R, Chauhan N, Rajak C, Flora SJS (2019) Flavors and fragrances. In: Flavor development for functional foods and nutraceuticals. CRC Press, Boca Raton

    Google Scholar 

  103. Pandey M, Debnath M, Gupta S, Chikara SK (2011) Phytomedicine: an ancient approach turning into future potential source of therapeutics. J Pharmacogn Phyther 3(2):27–37

    Google Scholar 

  104. Bento P, Maria K, Negri S (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9:1–15

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Pharmaceuticals, Ministry of Chemical and Fertilizers for providing the support. NIPER R Communication no. is NIPER-R/Communication/128.

Conflict of Interest

The authors declare no conflict of interest among themselves.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, R., Kakade, S., Handa, M., Kohli, K. (2020). Emergence of Nanophytomedicine in Health Care Setting. In: Beg, S., Barkat, M., Ahmad, F. (eds) Nanophytomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-4909-0_3

Download citation

Publish with us

Policies and ethics