Skip to main content

Simulation of Condensed Products Formation at the Surface of a Metalized Solid Propellant

  • Chapter
  • First Online:
Innovative Energetic Materials: Properties, Combustion Performance and Application

Abstract

This article considers mathematical simulation of a process of condensed products formation near the surface of a burning solid propellant. These products include agglomerates and smoke oxide particles (SOP). The idea of predicting properties of these products is based on classification of propellants with various combustion regularities depending on formulation factors. For these types of propellants, the developed models are used to determine (estimate) the relations between the two main fractions, size of the agglomerates and SOP, parameters of the chemical composition and structure of the agglomerates. Validity of the used approaches is confirmed by comparing the calculation results and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

fm (D):

Mass function of size-distribution density of agglomerates

fm (d):

Mass function of size-distribution density of smoke oxide particles

Z a m :

Fraction of initial metal in propellant used to form agglomerates

η :

Mass fraction of oxide in agglomerate

D 43 :

Mass-average diameter of agglomerates

T Al ig :

Al ignition temperature

T C d :

Carbon elements decomposition

λV, λ :

Average quantity of oxidizer particles in fixed and unit volume of the propellant

N ox :

Number of oxidizer particles

P ( N ox ) :

Probability of Nox oxidizer particles location in a fixed volume of the propellant

\(\upsilon\) :

Propellant volume

nAl, nAl2O3, ng:

Molar content of Al, Al 2 O 3 , gaseous products

p :

Pressure

t :

Time, characteristic time

W 1 :

Spreading velocity of particles material

W 2 :

Velocity of inhomogeneity appearance

L :

Work that can be performed by the separation forces

ΔE :

System energy change due to the particle separation

k1, k2, k3, ca, cd, Kp, K0:

Matching coefficients

Ω 1 , Ω 2 :

Areas of contact spots at non-equilibrium (in case of heterogeneity) and equilibrium states correspondently

T p :

Particle temperature

mAl, mAl2O3:

Aluminum and oxide masses in a particle

χ :

Fraction of the particle surface which is opened for oxidation after the fracture

S Al :

Area of the aluminum core surface

ρAl2O3, ρgas:

Oxide and gas density

M ox :

Oxidizer molar mass

h :

Oxide film thickness

j μ :

Molar oxidizer flow through a liquid film

cAl, cAl2O3:

Specific heat capacities of aluminum and oxide

Q chem :

Heat flux due to chemical reaction

Q conv :

Convective heat flux

Q rad :

Radiation heat flux

up, ugas:

Particle and gas velocities

C D :

Aerodynamic drag coefficient of the particle

S mid :

Area of the particle mid-section

K D :

The ratio of increasing of activated flaws number per unit time to increasing of activated flaws per unit time in hypothetical situation without material relaxation

λc, λh:

Critical flaws density and critical flaws per unit area

S ( t ) :

Surface area as a function of time

σ :

Stress

N 1 :

Activated flaws number without relaxation

N 2 :

Activated flaws number

C :

Wave speed in the solid

a :

Characteristic size of the relaxed area around the growing crack

mw, σ0:

Weibull distribution parameters

p s :

Saturated vapor pressure inside the bubble

r nucl :

Nuclei radius

R1, R2:

Internal and external radii of oxide film, respectively

\(\sigma_{{{\text{AlO}}_{3} - gas}}^{s} ,\), \(\sigma_{{{\text{Al}} - {\text{Al}}_{2} O_{3} }}^{s} ,\), \(\sigma_{{\text{Al}} - gas}^{s}\):

Surface tension: lower indexes Al2O3, gas and Al denote oxide, gas and aluminum, respectively

a* :

Maximal acceleration

a* eff :

“Effective” acceleration

λ * :

Most dangerous wavelength which corresponds to Rayleigh–Taylor instability

d mean :

Mean droplet size

Da:

Damköhler number

t diff :

Characteristic diffusion time in gas phase

t gas :

Characteristic time of gas-phase reaction

References

  1. Babuk VA, Ivonenko AN, Nizyaev AA (2015) Calculation of the characteristics of agglomerates during combustion of high-energy composite solid propellants. Combust Expl Shock Waves 51(5):549–559

    Google Scholar 

  2. Babuk VA, Vassiliev VA, Sviridov VV (2000) Formation of condensed combustion products at the burning surface of solid rocket propellant. In: Yang V, Brill TB, Ren WZ (eds) Progress in astronautics and aeronautics. solid propellant chemistry, combustion, and motor interior ballistics, Reston, VA: AIAA, 2000. Chapter 2.21, pp. 749–776

    Google Scholar 

  3. Babuk VA (2009) Properties of the surface layer and combustion behavior of metalized solid propellants. Combust Expl Shock Waves 45(4):486–494

    Google Scholar 

  4. Babuk VA, Nizyaev AA (2017) Modeling of evolution of the coarse fraction of condensed combustion products on a surface of burning aluminized propellant and within a combustion products flow. Int J Energetic Mater Chem Propuls 16(1):23–38

    Article  Google Scholar 

  5. Babuk VA, Dolotkazin IN, Sviridov VV (2003) Simulation of agglomerate dispersion in combustion of aluminized solid propellants. Combust Explos Shock Waves 39(2):195–203

    Google Scholar 

  6. Beckstead MW (1977) A model for solid propellant combustion. In: Proceedings of 14th JANNAF combustion meeting. CPIA, 1977, Publ. 292, Vol 1, pp 281–306

    Google Scholar 

  7. Cohen NS (1983) A pocket model for aluminum agglomeration in composite propellants. AIAA J 21(5):720–725

    Article  CAS  Google Scholar 

  8. Grigor’ev VG, Kutsenogii KP, Zarko VE (1981) Model of aluminum agglomeration during the combustion of a composite propellant. Combust Expl Shock Waves 17(4):356–363

    Google Scholar 

  9. Gladun VD, Frolov YuV, Kashporov LYa, Ostretsov GA (1976) A model for detachment of a condensed particle from a combustion surface. Combust Expl Shock Waves 12(2):167–172

    Google Scholar 

  10. Gladun VD, Frolov YuV, Kashporov LYa (1977) Coalescence of powdered aluminum particles on combustion surface of metallized compositions. Combust Expl Shock Waves 13(5):596–600

    Google Scholar 

  11. Kovalev OB (1989) Model of the agglomeration of aluminum in the combustion of mixed condensed systems. Combust Expl Shock Waves 25(1):39–48

    Google Scholar 

  12. Jackson TL, Najjar F, Buckmaster J (2005) New aluminum agglomeration models and their use in solid-propellant-rocket simulations. J Propul Power 21(5):925–936

    Article  CAS  Google Scholar 

  13. Maggi F, Bandera A, Galfetti L, DeLuca LT, Jackson TL (2010) Efficient solid rocket propulsion for access to space. Acta Astronautica 66(11–12):1563–1573

    Google Scholar 

  14. Gallier SA (2009) Stochastic pocket model for aluminum agglomeration in solid propellants. Propellants Explos Pyrotechn 34(2):97–105

    Article  CAS  Google Scholar 

  15. Yavor Y, Gany A, Beckstead MW (2014) Modeling of the agglomeration phenomena in combustion of aluminized composite solid propellant. Propellants Explos Pyrotechn 30(4):108–116

    Article  Google Scholar 

  16. Rashkovskii SA (2005) Statistical simulation of aluminum agglomeration during combustion of heterogeneous condensed mixtures. Combust Expl Shock Waves 41(2):174–184

    Google Scholar 

  17. Srinivas V, Chakravarthy SR (2007) Computer model of aluminum agglomeration on burning surface of composite solid propellant. J Propul Power 23(4):728–736

    Article  CAS  Google Scholar 

  18. Babuk VA, Vasil’ev VA, Sviridov VV (1999) Modeling the structure of composite solid rocket fuel. Combust Expl Shock Waves 35(2):144–148

    Google Scholar 

  19. Babuk VA, Vasil’ev VA, Potekhin AN (2009) Experimental investigation of agglomeration during combustion of aluminized solid propellants in an acceleration field. Combust Expl Shock Waves 45(1):32–39

    Google Scholar 

  20. Pokhil PF, Belyaev AF, Frolov Y, Logachev VS, Korotkov AI (1972) Combustion of powdered metals in active media. Nauka, Moscow (in Russian)

    Google Scholar 

  21. Sundaram DS, Puri P, Yang V (2016) A general theory of ignition and combustion of nano- and micron-sized aluminum particles. Combustion Flame 169:94–109

    Google Scholar 

  22. Babuk VA (2007) Problems in studying formation of smoke oxide particles in combustion of aluminized solid propellants. Combust Explos Shock Waves 43(2007):38–45

    Article  Google Scholar 

  23. Kofstad P (1966) High temperature oxidation of metals. Wiley, New York

    Google Scholar 

  24. Maurakh MA, Mitin BS (1979) Liquid refractory oxides. Metallurgiya, Moscow (In Russian)

    Google Scholar 

  25. Fedorov AV, Kharlamova YuV (2003) Ignition of an aluminum particles. Combustion Explos Shock Waves 39(5):65–68

    Google Scholar 

  26. Babuk VA, Glebov AA, Dolotkazin IN, Gamsov A, DeLuca LT, Galfetti L (2009) Nanoaluminum as a solid propellant fuel. J Propuls Power 25(2):482–489

    Google Scholar 

  27. Babuk VA, Budnyi NL (2019) Smoke oxide particles formation at the burning surface of condensed systems. Acta Astronautica 158:264–271, ISSN 0094-5765, https://doi.org/10.1016/j.actaastro.2019.03.031

  28. Rosenband VI, Vaganova NI (1992) A strength model of heterogeneous ignition of metal particles. Combust Explos Shock Waves 28:1–7

    Article  Google Scholar 

  29. Rosenband V (2004) Thermo-mechanical aspects of the heterogeneous ignition of metals. Combust Flame 137(3):366–375

    Google Scholar 

  30. Rosenband V, Gany A (2001) A microscopic and analytic study of aluminum particles agglomeration. Combust Sci Technol 166(1):91–108

    Google Scholar 

  31. Crump JE, Prentice JL, Kraeutle КJ (1969) Role of scanning electron microscope in the study of propellant combustion. I. Behavior of metal additives. Combust Sci Technol 1(3):205–223

    Google Scholar 

  32. Forquin P, Hild F (2010) A probabilistic damage model of the dynamic fragmentation process in brittle materials. In: Aref H, van der Giessen E (eds) Advances in Applied Mechanics (Vol 44). Academic Press

    Google Scholar 

  33. Danzer R, Supancic P, Pascual J, Lube T (2007) Fracture statistics of ceramics—Weibull statistics and deviations from Weibull statistics. Eng Fract Mech 74(18):2919–2932

    Google Scholar 

  34. Rösler J, Harders H, Bäker M (2007) Mechanical behaviour of engineering Materials. Metals, Ceramics, Polymers, and Composites. Springer

    Google Scholar 

  35. Babuk VA, Vasilyev VA (2002) model of aluminum agglomerate evolution in combustion products of solid rocket propellant. J Propuls Power 18(4):814–824

    Google Scholar 

  36. Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proceedings of the royal society of London. Series A, Math Phys Sci 201(1065):192–196

    Google Scholar 

  37. Shusser M, Weihs D (1999) Explosive boiling of a liquid droplet. Int J Multiphase Flow 25(8):1561–1573

    Google Scholar 

  38. Kolev NI (2005) Multiphase flow dynamics. Book 2: Thermal and Mechanical Interactions. Springer

    Google Scholar 

  39. Gao Y, Yang S, Deng C, Xu B, Ji F, He Y (2015) Breakup, instabilities, and dynamics of high-speed droplet under transcritical conditions. Adv Mech Eng 7(6):1–15

    Google Scholar 

  40. Girin OG (2015) Dynamics of secondary breakup of emulsified fuel drop. In: 25th ICDERS. Leeds, UK. August 2–7, 2015

    Google Scholar 

  41. Bazyn T, Krier H, Glumac N (2007) Evidence for the transition from diffusion-limit in aluminum particle combustion. In: Proceedings of the Combustion Institute 31, pp 2021–2028

    Google Scholar 

  42. Bojko BT, DesJardin P (2015) Modeling the diffusion to kinetically controlled burning transition of micron-sized aluminum particles. In: 53rd AIAA Aerospace Sciences Meeting, Kissimmee, United States. AIAA 2015–0166

    Google Scholar 

  43. Glorian J, Gallier S, Catoire L (2016) On the role of heterogeneous reactions in aluminum combustion. Combust Flame 168:378–392

    Google Scholar 

  44. Mohan S, Trunov MA, Dreizin EL (2009) On possibility of vapor-phase combustion for fine aluminum particles. Combust Flame 156(11):2213–2216

    Google Scholar 

  45. Babuk VA, Budnyi NL, Nizyaev AA (2019) Mathematical modeling of agglomerates evolution. In: EUCASS book series advances in aerospace sciences Vol 11—Progress in Propulsion Physics, EUCASS, Torus Press, EDP Sciences, Paris, pp 131–148

    Google Scholar 

  46. Arkhipov VA, Ratanov GS (1979) Laser diagnostics methods for solid combustion products. Combust Explosion Shock Waves 15:282–284

    Article  Google Scholar 

  47. Babuk VA, Glebov AA, Dolotkazin IN (2005) Burning mechanism of aluminized solid rocket propellants based on energetic binders. Propellants Explos Pyrotech 30(4):281–290

    Google Scholar 

  48. Novozhilov BV (1973) Unsteady combustion of solid propellants. Nauka, Moscow (In Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery A. Babuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babuk, V.A., Budnyi, N.L., Nizyaev, A.A. (2020). Simulation of Condensed Products Formation at the Surface of a Metalized Solid Propellant. In: Pang, W., DeLuca, L., Gromov, A., Cumming, A. (eds) Innovative Energetic Materials: Properties, Combustion Performance and Application. Springer, Singapore. https://doi.org/10.1007/978-981-15-4831-4_17

Download citation

Publish with us

Policies and ethics