Skip to main content

Morphological, Physiobiochemical and Molecular Adaptability of Legumes of Fabaceae to Drought Stress, with Special Reference to Medicago Sativa L.

  • Chapter
  • First Online:
The Plant Family Fabaceae

Abstract

Drought stress (DS) is one of the most hostile limitations for sustainable crop production. Developing DS-tolerant crop cultivars and the use of better crop management practices may help improve crop performance under drought. In this chapter, the adverse effect of drought on the growth and development of legumes and the morphological, physiobiochemical, and molecular basis of adaptability to drought are described. Under drought, overproduction of reactive oxygen species causes oxidative damage. The role of osmolytes and antioxidants in countering the oxidative damages has been widely described. Moreover, “omics-based approaches,” such as proteomics, metabolomics–transcriptomics, and genomics are promissory approaches to identify drought-tolerant genes, decode complex gene networks, and numerous signaling cascades involved in drought tolerance in legumes. The recently developed CRISPR-Cas technology has already been used in precision breeding of many plants including the members of Fabaceae such as alfalfa is also discussed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

AsA:

Ascorbic acid

CAT:

Catalase

CS:

Compatible solutes

DHA:

Dehydroascorbate (oxidized ascorbate)

DHAR:

Dehydroascorbate reductase

DE:

Drought escaping

DS:

Drought stress

GB:

Glycine betaine

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GPX:

Glutathione peroxidase

GST:

Glutathione-S-transferase

H2O2:

Hydrogen peroxide

JA:

Jasmonic acid

MDA:

Malondialdehyde

MDAR:

Monodehydroascorbate reductase

MDHAR:

Monodehydroascorbate reductase

1O2:

Single oxygen

O2•-:

Uperoxide anion free radical

OH•:

Hydroxyl-free radical

PEG:

Polyethylene glycol

POD:

Peroxidase

RLD:

Root length and density

RDW:

Root dry weight

RO:

Alkoxy radical

ROS:

Reactive oxygen species

RSR:

Root shoot ratio

RT-qPCR:

Real-time quantitative polymerase chain reaction

RWC:

Relative water content

SOD:

Superoxide dismutase

TCA:

Trichloroacetic acid

References

  • Abdel-Haleem H, Lee GJ, Boerma RH (2011) Identification of QTL for increased fibrous roots in soybean. Theor Appl Genet 122:935–946

    PubMed  Google Scholar 

  • Agarwal A, Yadava P, Kumar K, Singh I (2018) Insights into maize genome editing via CRISPR/Cas9. Physiol Mol Biol Plants 24:175–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al Hassan M, Chaura J, Donat-torres P, Boscaiu M (2017) Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants 9, plx009. https://doi.org/10.1093/aobpla/plx009

  • Amede T, Kittlitz EV, Schubert S (1999) Differential drought responses of faba bean (Vicia faba L.) inbred lines. J Agron Crop Sci 183:35–45

    Google Scholar 

  • Amede T, Schubert S (2003) Mechanisms of drought resistance in grain legumes i: osmotic adjustment. Ethiop J Sci 26:37–46

    Google Scholar 

  • An J, Cheng C, Hu Z, Chen H, Cai W, Yu B (2018) The Panax ginseng PgTIP1 gene confers enhanced salt and drought tolerance to transgenic soybean plants by maintaining homeostasis of water, salt ions and ROS. Environ Exp Bot 155:45–55

    CAS  Google Scholar 

  • Anjum SA, Ashraf U, Zohaib A, Tanveer M, Naeem M, Ali I, Tabassum T, Nazir U (2017) Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste Agric 104:267–276

    Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011a) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    CAS  Google Scholar 

  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011b) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • Arnholdt-Schmitt B, Costa JH, de Melo DF (2006) AOX—a functional marker for efficient cell reprogramming under stress? Trends Plant Sci 11(6):281–287

    CAS  PubMed  Google Scholar 

  • Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A (2017) MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa L.) by silencing SPL13. Plant Sci 258:122–136

    CAS  PubMed  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28(1):169–183

    CAS  PubMed  Google Scholar 

  • Aung B, Gruber MY, Amyot L, Omari K, Bertrand A, Hannoufa A (2015a) MicroRNA156 as a promising tool for alfalfa improvement. Plant Biotech J 13:779–790

    CAS  Google Scholar 

  • Aung B, Gruber MY, Hannoufa A (2015b) The MicroRNA156 system: a tool in plant biotechnology. Biocatal Agric Biotechnol 4:432–442

    Google Scholar 

  • Azeem F, Bilal A, Rana MA, Muhammad AA, Habibullah N, Sabir H, Sumaira R, Hamid M, Usama A, Muhammad A (2019) Drought a_ects aquaporins gene expression in important pulse legume chickpea (Cicer arietinum L.). Pak J Bot 51:81–88

    CAS  Google Scholar 

  • Baloda A, Madanpotra S, Aiwal PK (2017) Transformation of mungbean plants for salt and drought tolerance by introducing a gene for an osmoprotectant glycine betaine. J Plant Stress Physiol 3:5. https://doi.org/10.19071/jpsp.2017.v3.3148

    Article  Google Scholar 

  • Bao AK, Du BQ, Touil L, Kang P, Wang QL, Wang SM (2016) Co-expression of tonoplast Cation/H + antiporter and H+ -pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions. Plant Biotech J 14:964–975

    CAS  Google Scholar 

  • Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL, Wang CM (2009) Overexpression of the Arabidopsis H+ -PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240

    CAS  Google Scholar 

  • Barrera-Figueroa BE, Peña-Castro JM, Acosta-Gallegos JA, Ruiz-Medrano R, Beatriz XC (2007) Isolation of dehydration-responsive genes in a drought tolerant common bean cultivar and expression of a group 3 late embryogenesis abundant mRNA in tolerant and susceptible bean cultivars. Funct Plant Biol 34:368–381

    CAS  PubMed  Google Scholar 

  • Benabderrahim MA, Hamza H, Haddad M, Ferchichi A (2015) Assessing the drought tolerance variability in Mediterranean alfalfa (Medicago sativa L.) genotypes under arid conditions. Plant Biosyst 149:395–403

    Google Scholar 

  • Bhardwaj J, Yadav SK (2012) Comparative study on biochemical parameters and antioxidant enzymes in a drought tolerant and a sensitive variety of horsegram under drought stress. Am J Plant Physiol 7:17–29

    CAS  Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082

    CAS  PubMed  Google Scholar 

  • Bhauso TD, Radhakrishnan T, Kumar A, Mishra GP, Dobaria JR (2014) Overexpression of bacterial mtlD gene in peanut improves drought tolerance through accumulation of mannitol. Sci World J 10, Article ID 125967. https://doi.org/10.1155/2014/125967

  • Bielach A, Hrtyan M, Tognetti VB (2017) Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18:1427. https://doi.org/10.3390/ijms18071427

    Article  CAS  PubMed Central  Google Scholar 

  • Blum WE (2013) Soil and land resources for agricultural production: general trends and future scenarios—a worldwide perspective. Int Soil Water Conserv Res 1(3):1–14

    Google Scholar 

  • Borecký J, Nogueira FT, De Oliveira KA, Maia IG, Vercesi AE, Arruda P (2006) The plant energy-dissipating mitochondrial systems: depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots. J Exp Bot 57(4):849–864

    PubMed  Google Scholar 

  • Briñez B, Morini J, Cardoso K, Rosa JS, Bassi D, Gonçalves GR, Almeida C, Fausto J, Paulino DC, Blair MW et al (2017) Mapping QTLs for drought tolerance in a SEA 5_AND 277 common bean cross with SSRs and SNP markers. Genet Mol Biol 823:813–823

    Google Scholar 

  • Cabello JV, Giacomelli JI, Gómez MC, Chan RL (2017) The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants. J Biotechnol 257:35–46

    Google Scholar 

  • Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soybean. Plant Biotechnol J 16:176–185

    CAS  PubMed  Google Scholar 

  • Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10:e0136064

    PubMed  PubMed Central  Google Scholar 

  • Calvache M, Reichardt K, Bacchp OOS (1997) Deficit irrigation at different growth stages of the common bean. Sci Agric 54:1–16

    Google Scholar 

  • Campanelli A, Ruta C, Morone-Fortunato I, De Mastro G (2013) Alfalfa (Medicago sativa L.) clones tolerant to salt stress: in vitro selection. Cent Eur J Biol 8(8):765–76

    Google Scholar 

  • Castroluna A, Ruiz OM, Quiroga AM, Pedranzani HE (2014) Effects of salinity and drought stress on germination, biomass and growth in three varieties of Medicago sativa L. Avances en Investigación Agropecuaria 18(1):39–50

    Google Scholar 

  • Cavalcanti JH, Oliveira GM, da Cruz Saraiva KD, Torquato JP, Maia IG, de Melo DF, Costa JH (2013) Identification of duplicated and stress-inducible Aox2b gene co-expressed with Aox1 in species of the Medicago genus reveals a regulation linked to gene rearrangement in leguminous genomes. J Plant Physiol 170(18):1609–1619

    CAS  PubMed  Google Scholar 

  • Chakrabarty A, Aditya M, Dey N, Banik N (2016) Antioxidant signaling and redox regulation in drought- and salinity-stressed plants. In: Drought stress tolerance in plants, vol 1. Springer, Berlin. ISBN 9783319288994

    Google Scholar 

  • Chapman SC (2008) Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding trials. Euphytica 161:195–208

    Google Scholar 

  • Chen Y, Chi Y, Meng Q, Wang X, Yu D (2018) GmSK1, an SKP1 homologue in soybean, is involved in the tolerance to salt and drought. Plant Physiol Biochem 127:25–31

    CAS  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    CAS  PubMed  Google Scholar 

  • Chowdhury JA, Karim MA, Khaliq QA, Ahmed AU, Khan MSA (2016) Effect of drought stress on gas exchange characteristics of four soybean genotypes. Bangladesh J Agric Res 41:195–205

    Google Scholar 

  • Cocks PS (2001) Ecology of herbaceous perennial legumes: a review of characteristics that may provide management options for the control of salinity and waterlogging in dryland cropping systems. Aust J Agric Res 52:137–151

    Google Scholar 

  • Considine MJ, Holtzapffel RC, Day DA, Whelan J, Millar AH (2002) Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol 129:949–953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortés AJ, This D, Carolina C, Madriñán S, Blair MW (2012) Nucleotide diversity patterns at the drought-related DREB2 encoding genes in wild and cultivated common bean (Phaseolus vulgaris L.). Theor Appl Genet 125:1069–1085

    PubMed  Google Scholar 

  • Cui XH, Hao FS, Chen H, Chen J, Wang XC (2008) Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. J Plant Res 121:207–214

    CAS  PubMed  Google Scholar 

  • Deak M, Kiss GB, Koncz C, Dudits D (1986) Transformation of Medicago by Agrobacterium mediated gene transfer. Plant Cell Rep 5(2):97–100

    CAS  PubMed  Google Scholar 

  • Dear BS, Ewing MA (2008) The search for new pasture plants to achieve more sustainable production systems in southern Australia. Aust J Exp Agric 48:387–396

    Google Scholar 

  • Dear BS, Moore GA, Hughes SJ (2003) Adaptation and potential contribution of temperate perennial legumes to the southern Australian wheat belt: a review. Aust J Exp Agric 43:1–18

    Google Scholar 

  • Del Pozo A, Ovalle C, Espinoza S, Barahona V, Gerding M, Humphries A (2017) Water relations and use-efficiency, plant survival and productivity of nine alfalfa (Medicago sativa L.) cultivars in dryland Mediterranean conditions. Eur J of Agron 84:16–22

    Google Scholar 

  • Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju NL, Vadez V (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11:70. https://doi.org/10.1186/1471-2229-11-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Z, Zhang D, Zhang J, Di H, Wu F, Hu X, Meng X, Luo K, Zhang J, Wang Y (2015) Co-transforming bar and CsALDH genes enhanced resistance to herbicide and drought and salt stress in transgenic alfalfa (Medicago sativa L.). Front Plant Sci 6:1115. https://doi.org/10.3389/fpls.2015.01115

  • Duc G, Agrama H, Bao S, Berger J, Bourion V, De Ron AM, Gowda CL, Mikic A, Millot D, Singh KB, Tullu A (2015) Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. Crit Rev Plant Sci 34:381–411

    Google Scholar 

  • Fariduddin Q, Varshney P, Yusuf M, Ali A, Ahmad A (2013) Dissecting the role of glycine betaine in plants under abiotic stress. Plant Stress 7(1):8–18

    Google Scholar 

  • Farnese FS, Menezes-silva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: The key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front Plant Sci 7:471. https://doi.org/10.3389/fpls.2016.00471

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Farooq M, Hussain M, Siddique KHM (2014) drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33:331–349

    CAS  Google Scholar 

  • Farooq M, Gogoi N, Barthakur S, Baroowa B, Bharadwaj N, Alghamdi SS, Siddique KHM (2017a) Drought stress in grain legumes during reproduction and grain filling. J Agron Crop Sci 203:81–102

    Google Scholar 

  • Farooq M, Nadeem F, Gogoi N, Ullah A, Alghamdi SS, Nayyar H, Siddique KH (2017b) Heat stress in grain legumes during reproductive and grain-filling phases. Crop Pasture Sci 68:985–1005

    Google Scholar 

  • Fischer G (2009) World food and agriculture to 2030/50. In: Technical paper from the expert meeting on how to feed the world in 2050, pp 24–26

    Google Scholar 

  • Ghahramani A, Moore AD (2013) Climate change and broadacre livestock production across southern Australia. 2. Adaptation options via grassland management. Crop Pasture Sci 64:615–630

    Google Scholar 

  • Gill SS, Gill R, Anjum NA (2014) Target osmoprotectants for abiotic stress tolerance in crop plants—glycine betaine and proline. In: Plant adaptation to environmental change: significance of amino acids and their derivatives, vol 10, pp 97–108

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    CAS  PubMed  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151. https://doi.org/10.3389/fpls.2014.00151

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomiero T (2016) Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustainability 8(3):281. https://doi.org/10.3390/su8030281

    Article  Google Scholar 

  • Guenther JF, Chanmanivone N, Galetovic MP, Wallace IS, Cobb JA, Roberts DM (2003) Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15:981–991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guler NS, Pehlivan N (2016) Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system. Acta Biol Hung 67:169–183

    CAS  PubMed  Google Scholar 

  • Gunapati S, Naresh R, Ranjan S, Nigam D, Hans A, Verma PC, Gadre R, Pathre UV, Sane AP, Sane VA (2016) Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep 6:24978. https://doi.org/10.1038/srep24978

  • Hall AE (2012) Phenotyping cowpeas for adaptation to drought. Front Physiol 3:155. https://doi.org/10.3389/fphys.2012.00155

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamidi H, Safarnejad A (2010) Effect of drought stress on alfalfa cultivars (Medicago sativa L.) in germination stage. Am Eur J Agric Environ Sci 8(6):705–709

    Google Scholar 

  • Hamwieh A, Imtiaz M, Maize I, Malhotra RS (2013) Multi-environment QTL analyses for drought-related traits in a recombinant inbred population of chickpea (Cicer arietinum L.). Theor Appl Genet 126:1025–1103

    CAS  PubMed  Google Scholar 

  • Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Smiech M, Zhao K, Rahman M, Islam T (2018) Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci 9:617. https://doi.org/10.3389/fpls.2018.00617

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartung W, Sauter A, Hose E (2002) Abscisic acid in the xylem: Where does it come from, where does it go to? J Exp Bot 53:27–32

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Silva JAT, Fujita M (2012a) Plant responses and tolerance to abiotic oxidative stress: antioxidant defenses is a key factor. In: Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies: bandi V. Springer, Berlin, pp 261–316

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2012b) Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 6:1314–1323

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013a) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Azooz MM, Prasad MNV, Ahmad P (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Google Scholar 

  • Hasanuzzaman M, Gill SS, Fujita M (2013b) Physiological role of nitric oxide in plants grown under adverse environmental conditions. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer: New York, pp 269–322

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013c) Extreme temperatures, oxidative stress and antioxidant defense in plants. In: Vahdati K, Leslie C (eds) Abiotic stress—plant responses and applications in agriculture. Tech: Rijeka Croatia, pp 169–205

    Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, BhanuPrakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou M, Tian F, Zhang L, Li S, Du T, Huang M, Yuan Y (2018) Estimating crop transpiration of soybean under different irrigation treatments using thermal infrared remote sensing imagery. Agronomy 9:8. https://doi.org/10.3390/agronomy9010008

    Article  Google Scholar 

  • Huang L, Zhang R, Huang G, Li Y, Melaku G, Zhang S, Chen H, Zhao Y, Zhang J, Zhang Y, Hu F (2018) Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system. Crop J 6:475–481

    Google Scholar 

  • Humphries AW, Auricht GC (2001) Breeding lucerne for Australia’s southern dryland cropping environments. Aust J Agric Res 52(2):153–169

    Google Scholar 

  • Hussain M, Farooq S, Hasan W, Ul-allah S, Tanveer M (2018) Drought stress in sunflower: physiological effects and its management through breeding and agronomic alternatives. Agric Water Manag 201:152–166. https://doi.org/10.1016/j.agwat.2018.01.028

    Article  Google Scholar 

  • Ibrahim HA, Abdellatif YMR (2016) Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress. Ann Agric Sci 61:267–274

    Google Scholar 

  • IPCC (2014) Climate change synthesis report contribution of working groups I. II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, p 151

    Google Scholar 

  • Islam T (2019) CRISPR-cas technology in modifying food crops. In: CAB reviews (in press)

    Google Scholar 

  • Jiang QZ, Zhang JY, Guo XL, Monteros MJ, Wang ZY (2009) Physiological characterization of transgenic alfalfa (Medicago sativa) plants for improved drought tolerance. Int J Plant Sci 170:969–978

    CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel BB (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    CAS  PubMed  Google Scholar 

  • Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genom 10:493–507

    CAS  Google Scholar 

  • Kapusi E, Corcuera-Gómez M, Melnik S, Stoger E (2017) Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front Plant Sci 8:540. https://doi.org/10.3389/fpls.2017.00540

    Article  PubMed  PubMed Central  Google Scholar 

  • Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK (2009) Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indicarice is associated with up-regulation of several stress responsive genes. Plant Biotechnol J 7:512–526

    CAS  PubMed  Google Scholar 

  • Khan HR, Paull JG, Siddique KHM, Stoddard FL (2010) Faba bean breeding for drought-affected environments: a physiological and agronomic perspective. Field Crops Res 115:279–286

    Google Scholar 

  • Khater MA, Dawood MG, Sadak MS, Shalaby MAF, El-Din KG (2018) Enhancement the performance of cowpea plants grown under drought conditions via trehalose application. Middle-East J Agric Res 7:782–800

    Google Scholar 

  • Khazaei H, Sullivan DMO, Sillanpää MJ, Stoddard FL (2014) Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.). Theor Appl Genet 127:2371–2385

    PubMed  Google Scholar 

  • Kim HJ, Cho HS, Pak JH, Kwon T, Lee J, Kim D, Lee DH, Kim C, Chung Y (2018) Molecules and cells confirmation of drought tolerance of ectopically expressed AtABF3 gene in soybean. Mol Cells 41:413–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunert KJ, Vorster BJ, Fenta BA, Kibido T, Dionisio G, Foyer CH (2016) Drought stress responses in soybean roots and nodules. Front Plant Sci 7:1015. https://doi.org/10.3389/fpls.2016.01015

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurutas EB (2016) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:1–22

    Google Scholar 

  • Laberge S, Castonguay Y, Vezina LP (1993) New coldand drought-regulated gene from Medicago sativa. Plant Physiol 101:1411–1412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258. https://doi.org/10.1186/s13059-015-0826-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, Jung H, Kim YS, Ha SH, Choi YD, Kim JK (2017) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J 15:754–764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Choi HW, Hwang IS, Choi DS, Hwang BK (2006) Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224:1209–1225

    CAS  PubMed  Google Scholar 

  • Li DH, Li W, Li HY, Guo JJ, Chen FJ (2018) The soybean GmRACK1 gene plays a role in drought tolerance at vegetative stages. Russ J Plant Physiol 65:541–552

    CAS  Google Scholar 

  • Li GD, Nie ZN, Boschma SP, Dear BS, Lodge GM, Hayes RC, Clark B, Hughes SJ, Humphries AW (2010) Persistence and productivity of Medicago sativa subspecies sativa, caerulea, falcata and varia accessions at three intermittently dry sites in south-eastern Australia. Crop Pasture Sci 61:645–658

    Google Scholar 

  • Li H, Wang Z, Ke Q, Ji CY, Jeong JC, Lee HS, Lim YP, Xu B, Deng XP, Kwak SS (2014) Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiol Biochem 85:31–40

    CAS  PubMed  Google Scholar 

  • Li JH, Jiao SM, Qing Gao RQ, Richard DB (2012) Differential effects of legume species on the recovery of soil microbial communities, and carbon and nitrogen contents in abandoned fields of the loess plateau. China Environ Manage 50:1193–1203

    PubMed  Google Scholar 

  • Li S, Yang G, Yi X, Ma G, Ma XZ, Li Y, Cao Y (2008) Transformation of Alfalfa (Medicago sativa L.) by agrobacterium-mediated process with DsNRT2 gene from Dunaliella salina. J Sichuan Univ 45:409–412

    CAS  Google Scholar 

  • Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Su L, Ye WW, Chen H, Chen HC, Dong NQ (2015) Natural alleles of a proteasome α2 subunit gene contribute to thermos-tolerance and adaptation of African rice. Nat Gen 47:827–833. https://doi.org/10.1038/ng.3305

    Article  CAS  Google Scholar 

  • Li Y, Chen Q, Nan H, Li X, Lu S, Zhao X, Liu B, Guo C, Kong F, Cao D (2017) Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean. PLoS ONE 12:e0179554. https://doi.org/10.1371/journal.pone.0179554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Wang X, Wang H, Xin H, Yang X, Yan J, Li J, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K, Qin F (2013) Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet 9:e1003790. https://doi.org/10.1371/journal.pgen.1003790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Lin L, Hill RD, Mohapatra SS (1991) Primary structure of an environmental stress and abscisic acid inducible alfalfa protein. Plant Mol Biol 17:1267–1269

    CAS  PubMed  Google Scholar 

  • Luo M, Liu JH, Mohapatra S, Hill RD, Mohapatra SS (1992) Characterization of a gene family encoding abscisic acid- and environmental stress-inducible proteins of alfalfa. J Biol Chem 267:15367–15374

    CAS  PubMed  Google Scholar 

  • Macovei A, Gill SS, Tuteja N (2012) MicroRNAs as promising tools for improving stress tolerance in rice. Plant Signal Behav 7:1296–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majumdar R, Barchi B, Turlapati SA, Gagne M (2016) Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level. Front Plant Sci 7:78. https://doi.org/10.3389/fpls.2016.00078

    Article  PubMed  PubMed Central  Google Scholar 

  • Manavalan LP, Guttikonda SK, Tran LP, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276

    CAS  PubMed  Google Scholar 

  • Mao H, Yu L, Han R, Li Z, Liu H (2016) ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiol Biochem 105:55–66

    CAS  PubMed  Google Scholar 

  • Martynenko A, Shotton K, Astatkie T, Petrash G, Fowler C, Neily W, Critchley AT (2016) Thermal imaging of soybean response to drought stress: the effect of Ascophyllum nodosum seaweed extract. Springer plus 5:1393. https://doi.org/10.1186/s40064-016-3019-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masri Z, John Ryan J (2006) Soil organic matter and related physical properties in a Mediterranean wheat-based rotation trial. Soil Till Res 87:146–154

    Google Scholar 

  • McCallum MH, Kirkegaard JA, Green TW, Cresswell HP, Davies SL, Angus JF, Peoples MB (2004) Improved subsoil macroporosity following perennial pastures. Aust J Exp Agric 44:299–307

    Google Scholar 

  • McCulley RL, Jobbágy EG, Pockman WT, Jackson RB (2004) Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Oecologia 141:620–628

    CAS  PubMed  Google Scholar 

  • Merilo E, Pirko J, Kristiina L, Omid M, Hanna H, Hannes K, Mikael B (2015) Abscisic acid transport and homeostasis in the context of stomatal regulation. Mol Plant 8:1321–1333

    CAS  PubMed  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashita K, Tanakamaru S, Maitani T, Kimura K (2005) Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot 53:205–214

    CAS  Google Scholar 

  • Mohamed IH, Hanan HL (2017) Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Plants 23:545–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montes JM, Melchinger EA, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12:433–436

    CAS  PubMed  Google Scholar 

  • Muchero W, Je V, Close TJ, Roberts PA (2009) Mapping QTL for drought stress-induced premature senescence and maturity in cowpea (Vigna unguiculata L.). Theor Appl Genet 118:849–863

    Google Scholar 

  • Muchero W, Je V, Roberts PA (2010) Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea (Vigna unguiculata (L.)Walp.). Theor Appl Genet 120:509–518

    CAS  PubMed  Google Scholar 

  • Muchero W, Roberts PA, Diop NN, Drabo I, Cisse N, Close TJ, Muranaka S, Boukar O, Ehlers JD (2013) Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PLoS ONE 8:e70041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeem M, Li J, Wang M, Shah L, Lu S, Wang X, Ma C (2018) Unraveling field crops sensitivity to heat stress: mechanisms, approaches, and future prospects. Agronomy 8:128. https://doi.org/10.3390/agronomy8070128

    Article  CAS  Google Scholar 

  • Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, Qiu L (2019) Research progress and perspective on drought stress in legumes: a review. Int J Mol Sci 20(10):254. https://doi.org/10.3390/ijms20102541

    Article  CAS  Google Scholar 

  • Nakayasu M, Akiyama R, Lee HJ, Osakabe K, Osakabe Y, Watanabe B, Sugimoto Y, Umemoto N, Saito K, Muranaka T et al (2018) Generation of solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol Biochem 131:70–77

    Google Scholar 

  • Nayak SN, Balaji J, Upadhyaya HD, Hash CT, Kishor PBK, Blair MW, Baum M, Chattopadhyay D, Marı L, Mcnally K et al (2009) Plant science isolation and sequence analysis of DREB2A homologues in three cereal and two legume species. Plant Sci 177:460–467

    CAS  Google Scholar 

  • Osman HS (2015) Enhancing antioxidant yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. Ann Agric Sci 60:389–402

    Google Scholar 

  • Park J, Lee Y, Martinoia E, Geisler M (2017) Plant hormone transporters: What we know and what we would like to know. BMC Biol 15:93. https://doi.org/10.1186/s12915-017-0443-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel PK, Hemantaranjan A, Sarma BK, Singh R (2011) Growth and antioxidant system under drought stress in chickpea (Cicer arietinum L.) as sustained by salicylic acid. J Stress Physiol Biochem 7:130–144

    Google Scholar 

  • Pipolo AE, Boerma HR, Sinclair TR (2011) Identification of QTLs associated with limited leaf hydraulic conductance in soybean. Euphytica 186:679–686

    Google Scholar 

  • Prasad PVV, Bheemanahalli R, Jagdish SK (2017) Field crops and the fear of heat stress-opportunities, challenges and future directions. Field Crops Res 200:114–121

    Google Scholar 

  • Radhika P, Gowda SJM, Kadoo NY, Mhase LB, Jamadagni BM, Sainani MN, Chandra S, Gupta VS (2007) Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor Appl Genet 115:209–216

    CAS  PubMed  Google Scholar 

  • Radović J, Sokolović D, Marković J (2009) Alfalfa-most important perennial forage legume in animal husbandry. Biotechnol Anim Husb 25:465–475

    Google Scholar 

  • Ramamoorthy P, Lakshmanan K, Upadhyaya HD, Vadez V, Varshney RK (2017) Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arietinum L.). F Crop Res 201:146–161

    Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought and desiccation induced modulation of gene. Plant Cell Environ 25:141–151

    CAS  PubMed  Google Scholar 

  • Ramon S, Cecilia C, Gabriel I (2009) Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Sci 49:1791–1799

    Google Scholar 

  • Ribeiro T, Da Silva DA, Esteves JADF, Azevedo CVG, Gonçalves JGR, Carbonell SAM, Chiorato AF (2019) Evaluation of common bean genotypes for drought tolerance. Bragantia 78:1–11

    Google Scholar 

  • Safarmejad A (2008) Morphological and biochemical response to osmotic stress in alfalfa (Medicago sativa L.). Pak J Bot 40(2):735–746

    Google Scholar 

  • Saglam A, Saruhan N, Terzi R, Kadioglu A (2011) The relations between antioxidant enzymes and chlorophyll fluorescence parameters in common bean cultivars differing in sensitivity to drought stress. Russ J Plant Physiol 58:60–68

    CAS  Google Scholar 

  • Sahitya UL, Krishna MSR, Prasad GS, Kasim DP, Deepthi RS (2018) Seed antioxidants interplay with drought stress tolerance indices in chilli (Capsicum annuum L.) seedlings. Biomed Res Int 14, Article ID 1605096, 14 p. https://doi.org/10.1155/2018/1605096

  • Sanchez-Leon S, Gil-humanes J, Ozuna CV, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910

    CAS  PubMed  Google Scholar 

  • Savitri ES, Fauziah SM (2019) Characterization of drought tolerance of GmDREB2 soybean mutants (Glycine max (L.) Merr) by ethyl methane sulfonate induction. In: AIP Conference Proceedings 2018 Oct 10, vol 1, p 020017. AIP Publishing LLC. https://doi.org/10.1063/1.5061853

  • Saxena KB, Singh G, Gupta HS, Mahajan V, Kumar RV, Singh B, Vales MI (2011) Enhancing the livelihoods of Uttarakhand farmers by introducing pigeonpea cultivation in hilly areas. J Food Legum 24:128–132

    Google Scholar 

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Google Scholar 

  • Searchinger T, Waite R, Hanson C, Ranganathan J, Dumas P, Matthews F (2019) World resources final report 2019: Creating a sustainable food future—a menu of solutions to feed nearly 10 billion people by 2050. World Resource Institute, Final Report 2019, vol 564. https://wrr-food.wri.org/sites/default/files/2019-07/WRR_Food_Full_Report_0.pdf. Accessed 29 Aug 2019

  • Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, Hanumantha Rao B, Nair RM, Prasad PVV, Nayyar H (2018) Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci 9:1705. https://doi.org/10.3389/fpls.2018.01705

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan H, Chen S, Jiang J, Chen F, Chen Y, Gu C et al (2012) Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana. Mol Biotechnol 51:160–173

    CAS  PubMed  Google Scholar 

  • Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, De Groot S, Soole K, Langridge P (2017) Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Front Plant Sci 8:1950. https://doi.org/10.3389/fpls.2017.01950

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017a) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

    CAS  PubMed  Google Scholar 

  • Shi S, Nan L, Smith KF (2017b) The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy 7(1):1. https://doi.org/10.3390/agronomy7010001

  • Shim JS, Oh N, Chung PJ, Kim YS, Choi YD, Kim JK (2018) Overexpression of osnac14 improves drought tolerance in rice. Front Plant Sci 9:310. https://doi.org/10.3389/fpls.2018.00310

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinde S, Villamor JG, Lin W, Sharma S, Verslues PE (2016) Proline co-ordination with fatty acid synthesis and redox metabolism of chloroplast and mitochondria. Plant Physiol 172:1074–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siddique KHM, Walton GH, Seymour M (1993) A comparison of seed yields of winter grain legumes in Western Australia. Aust J Exp Agric 33:15–22

    Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol 14(3):407–426

    CAS  Google Scholar 

  • Sircar D, Cardoso HG, Mukherjee C, Mitra A, Arnholdt-Schmitt B (2012) Alternative oxidase (AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of Daucus carota L. J Plant Physiol 169(7):657–663

    CAS  PubMed  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith P, House JI, Bustamante M, Sobocká J, Harper R, Pan G, West PC, Clark JM, Adhya T, Rumpel C, Paustian K (2016) Global change pressures on soils from land use and management. Global Change Biol 22(3):1008–1028

    Google Scholar 

  • Sofi PA, Djanaguiraman M, Siddique KHM, Prasad PVV (2018) Reproductive fitness in common bean (Phaseolus vulgaris L.) under drought stress is associated with root length and volume. Indian J Plant Physiol 23:796–809

    Google Scholar 

  • Solanki JK, Sarangi SK (2015) Effect of drought stress on proline accumulation in peanut genotypes. Int J Adv Res 2:301–309

    Google Scholar 

  • Srivastava R, Kumar S, Kobayashi Y, Kusunoki K, Tripathi P, Kobayashi Y, Koyama H, Sahoo L (2018) Comparative genome-wide analysis of WRKY transcription factors in two Asian legume crops: Adzuki bean and Mung bean. Sci Report 8:16971. https://doi.org/10.1038/s41598-018-34920-8

    Article  CAS  Google Scholar 

  • Suárez R, Calderón C, Iturriaga G (2009) Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Sci 49:1791–1799

    Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Google Scholar 

  • Tang L, Cai H, Ji W, Luo X, Wang Z, Wu J, Wang X, Cui L, Wang Y, Zhu Y, Bai X (2013) Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiol Biochem 71:22–30

    CAS  PubMed  Google Scholar 

  • Tang N, Ma S, Zong W, Yang N, Lv Y, Yan C, Guo Z, Li J, Li X, Xiang Y, Song H (2016) MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. Plant Cell 28:2161–2177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torres AM, Avila CM, Gutierrez N, Palomino C, Moreno MT, Cubero JI (2010) Marker-assisted selection in faba bean (Vicia faba L.). Field Crops Res 115:243–252

    Google Scholar 

  • Turan S, Cornish K, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. Aust J Crop Sci 6(9):1337–1348

    Google Scholar 

  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25:33103–33118

    CAS  Google Scholar 

  • Upadhyaya HD, Kashiwagi J, Varshney RK, Gaur PM, Saxena KB, Krishnamurthy L, Gowda CL, Pundir RP, Chaturvedi SK, Basu PS, Singh IP (2012) Phenotyping chickpeas and pigeonpeas for adaptation to drought. Front Physiol 3:179. https://doi.org/10.3389/fphys.2012.00179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadez V, Rao S, Kholova J, Krishnamurthy L, Kashiwagi J, Ratnakumar P (2008) Root research for drought tolerance in legumes: Quo vadis? J Food Legum 21:77–85

    Google Scholar 

  • Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16:363–371

    CAS  PubMed  Google Scholar 

  • Vasconcelos ESD, Barioni Junior W, Cruz CD, Ferreira RDP, Rassini JB et al (2008) Alfalfa genotype selection for adaptability and stability of dry matter production. Acta Sci Agron 30:339–343

    Google Scholar 

  • Wang L, Zhu J, Li X, Wang S, Wu J (2018) Salt and drought stress and ABA responses related to bZIP genes from V. radiata and V. angularis. Gene 651:152–160

    CAS  PubMed  Google Scholar 

  • Wang Z, Ke Q, Kim MD, Kim SH, Ji CY, Jeong JC, Lee HS, Park WS, Ahn MJ, Li H, Xu B (2015) Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance. PLoS ONE 10:e0126050

    PubMed  PubMed Central  Google Scholar 

  • Ward P, Micin M, Dunin F (2006) Using soil, climate and agronomy to predict soil water use by Lucerne compared with soil water use by annual crops or pastures. Aust J Soil Res 57:347–354

    Google Scholar 

  • Weyers JDB, Paterson NW (2001) Plant hormones and the control of physiological processes. New Phytol 152:375–407

    CAS  PubMed  Google Scholar 

  • Xu J, Yuan Y, Xu Y, Zhang G, Guo X, Wu F, Wang Q, Rong T, Pan G, Cao M et al (2014) Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol 14:83. https://doi.org/10.1186/1471-2229-14-83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 2(57):781–803

    Google Scholar 

  • Yamamoto E, Karakaya HC, Knap HT (2000) Molecular characterization of two soybean homologs of Arabidopsis thaliana CLAVATA1 from the wild type and fasciation. Biochim Biophys Acta 1491:333–340

    CAS  PubMed  Google Scholar 

  • Yang S, Pang EW, Ash EG, Huttner E, Zong EX, Kilian EA (2006) Low level of genetic diversity in cultivated Pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585–595

    CAS  PubMed  Google Scholar 

  • Yasar F, Uzal O, Yasar TO (2013) Investigation of the relationship between the tolerance to drought stress levels and antioxidant enzyme activities in green bean (Phaseolus Vulgaris L.) genotypes. Afr J Agric Res 8:5759–5763

    Google Scholar 

  • Ying S, Zhang DF, Fu J, Shi YS, Song YC, Wang TY, Li Y (2012) Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 235:253–266

    CAS  PubMed  Google Scholar 

  • Yoo JH, Park CY, Kim JC, Do Heo W, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH, Lee JH (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706

    CAS  PubMed  Google Scholar 

  • Yousfi N, Sihem N, Ramzi A, Abdelly C (2016) Growth, photosynthesis and water relations as affected by different drought regimes and subsequent recovery in Medicago laciniata (L.) populations. J Plant Biol 59:33–43

    CAS  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162:2–12

    CAS  PubMed  Google Scholar 

  • Zhai Y, Zhang L, Xia C, Fu S, Zhao G, Jia J, Kong X (2016) The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants. Biochem Biophys Res Commun 473:1321–1327

    CAS  PubMed  Google Scholar 

  • Zhang B, Wang Q (2015) MicroRNA based biotechnology for plant improvement. J Cell Physiol 230:1–15

    PubMed  Google Scholar 

  • Zhang J, Duan Z, Zhang D, Zhang J, Di H, Wu F, Wang Y (2016) Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.). Biochem Biophys Res Commun 472:75–82

    CAS  PubMed  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner W, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    CAS  PubMed  Google Scholar 

  • Zhang T, Yu LX, Zheng P, Li Y, Rivera M, Main D, Greene SL (2015) Identification of loci associated with drought resistance traits in heterozygous auto tetraploid Alfalfa (Medicago sativa L.) Using genome-wide association studies with genotyping by sequencing. PLoS ONE 10(9):e0138931

    Google Scholar 

  • Zhao X, Yang X, Pei S, He G, Wang X, Tang Q, Jia C, Lu Y, Hu R, Zhou G (2016) The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis. Gene 586:158–169

    CAS  PubMed  Google Scholar 

  • Zheng G, Fan C, Di S, Wang X, Xiang C, Pang Y (2017) Over-expression of arabidopsis EDT1 gene confers drought tolerance in Alfalfa (Medicago sativa L.). Front Plant Sci 8:2125. https://doi.org/10.3389/fpls.2017.02125

  • Zhou M, Luo H (2013) MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Mol Biol 83:59–75

    CAS  PubMed  Google Scholar 

  • Zhu J, Song N, Sun S, Yang W, Zhao H, Song W, Lai J (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J Genet Genom 43:25–36

    Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zoz T, Castagnara D (2013) Peroxidase activity as an indicator of water deficit tolerance in soybean cultivars. Biosci J 29:1664–1671

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, A., Farooq, M., EL Sabagh, A., Hasanuzzaman, M., Erman, M., Islam, T. (2020). Morphological, Physiobiochemical and Molecular Adaptability of Legumes of Fabaceae to Drought Stress, with Special Reference to Medicago Sativa L.. In: Hasanuzzaman, M., Araújo, S., Gill, S. (eds) The Plant Family Fabaceae. Springer, Singapore. https://doi.org/10.1007/978-981-15-4752-2_11

Download citation

Publish with us

Policies and ethics