Skip to main content

Rice Tolerance to High Light Intensity and UV Radiation Through Biotechnological Approaches

  • Chapter
  • First Online:
  • 542 Accesses

Abstract

Global climate change has brought about deleterious consequences like stratospheric ozone depletion, leading to high white light irradiance and unprecedented UV ray exposure which might impact staple crop plants as the most delimiting abiotic factor. Alarming ozone deficiency as much as 4% over the tropical rice-growing continents including Asia can severely affect the agricultural turnover. As a result, a multitude of morphological, physiological and genetic alterations are categorically expected for rice cultivars and agro-ecosystems at expositions of increased irradiative and UV exposure-related stress. On a phenotypic note, visible changes like stunting, leaf blotching, spikelet number alteration and grain count reduction have been observed and compared on varietal rank leading to the qualitative identification of resistant and susceptible lines. Insights over physiological as well as genetic basis of UV and high light intensity stress have revealed mechanisms of injurious responses like photosynthetic suppression, increase in non-photochemical quenching as a consequence of the photoinhibition of PSII, lipid peroxidation and protective accumulation of UV screen guarding compounds, differential expression of proteins involved in detoxification or antioxidation and various other metabolic processes. Understanding of the various common molecular responses against UV/light stress has elucidated categorical genetic and protein-level deformities which can be overbridged by selective breeding-, transcriptomics- or proteomics-based approaches. Several crop improvement programmes have been attempted already with the effort of overexpressing pivotal genes concerned with UV stress resistance. Contrastingly, a comprehensive range of betterment benefits have also been documented for certain rice varieties under UV stress, such as increased accumulation of antioxidant compounds, upheaval of total nitrogen and elevated storage protein content in grains. Thus, certainly a plethora of parameters concerning the UV or high light intensity stress amelioration need to be reviewed and analysed for the wholesome quality improvement of rice through biotechnological advancements in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamiec M, Drath M, Jackowski G (2008) Redox state of plastoquinone pool regulates expression of Arabidopsis thaliana genes in response to elevated irradiance. Acta Biochim Pol 55:161–173

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2016) Plant responses to light stress: oxidative damages, photoprotection, and role of phytohormones. In: Ahammed GJ, Yu J-Q (eds) Plant hormones under challenging environmental factors. Springer, Dordrecht, pp 181–213

    Google Scholar 

  • Barnes PW, Maggard S, Holman SR, Vergara BS (1993) Intraspecific variation in sensitivity to UV-B radiation in rice. Crop Sci 33:1041–1046

    Article  Google Scholar 

  • Basiouny FM (1986) Sensitivity of corn, oats, peanuts, rice, rye, sorghum, soybean and tobacco to UV-B radiation under growth chamber conditions. J Agron Crop Sci 157:31–35. https://doi.org/10.1111/j.1439-037X.1986.tb00043.x

    Article  Google Scholar 

  • Bharali B, Chandra K, Dey SC (1994) Effects of low light intensity on morphophysiological parameters in rice (Oryza sativa L.) genotypes. Bio Sci Res Bull 10(1):1–7

    Google Scholar 

  • Bharti AK, Khurana JP (1997) Mutants of Arabidopsis as tools to understand the regulation of phenylpropanoid pathway and UVB protection mechanisms. Photochem Photobiol 65:765–776

    Article  CAS  Google Scholar 

  • Booker FL, Fiscus EL, Philbeck RB, Heagle AS, Miller JE, Heck WW (1992) A supplemental ultraviolet-B radiation system for open-top field chambers. J Environ Qual 21:56–61

    Article  Google Scholar 

  • Brash DE et al (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A 88:10124–10128

    Article  CAS  Google Scholar 

  • Breiteneder H, Ebner C (2000) Molecular and biochemical classification of plant-derived food allergens. J Allergy Clin Immunol 106:27–36

    Article  CAS  Google Scholar 

  • Britt A (1996) DNA damage and repair in plants. Annu Rev Plant Physiol Plant Mol Biol 47:75–100. https://doi.org/10.1146/annurev.arplant.47.1.75

    Article  CAS  Google Scholar 

  • Britt A (1999) Molecular genetics of DNA repair in plants. Trends Plant Sci 4:20–25. https://doi.org/10.1016/S1360-1385(98)01355-7

    Article  CAS  Google Scholar 

  • Brown BA, Jenkins GI (2008) UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146:576–588

    Article  CAS  Google Scholar 

  • Caldwell MM, Ballare CL, Bornman JF, Flint SD, Bjorn LO, Teramura AH, Kulandaivelu G, Tevini M (2003) Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climate change factors. Photochem Photobiol Sci 2:29–38

    Article  CAS  Google Scholar 

  • Casati P, Walbot V (2003) Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol 132(1739):1754

    Google Scholar 

  • Cervilla LM, Blasco B, Rìos JJ, Romero L, Ruiz JM (2007) Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann Bot 100:747–756

    Article  CAS  Google Scholar 

  • Chen J-J, Jiang C-Z, Britt AB (1996) Little or no repair of cyclobutyl pyrimidine dimers is observed in the organellar genomes of the young Arabidopsis seedlings. Plant Physiol 111:19–25

    Article  CAS  Google Scholar 

  • Chen YF, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot 95:901–915

    Article  CAS  Google Scholar 

  • Correia CM, Areal ELV, Torres-Pereira MS, Torres-Pereira JMG (1998) Intraspecific variation in sensitivity to ultraviolet-B radiation in maize grown under field conditions. I. Growth and morphological aspects. Field Crop Res 59:81–89

    Article  Google Scholar 

  • Dai Q (1990) Responses of rice (Oryza sativa L.) to enhanced ultraviolet-8 radiation at seedling stage under glasshouse conditions. PhD Thesis, University of the Philippines, Los Banos, Laguna, Philippines. 129p

    Google Scholar 

  • Dai Q, Coronel VP, Vergara BS, Barnes PW, Quintos AT (1992) Ultraviolet-B radiation effects on growth and physiology of four rice cultivars. Crop Sci 32:1269–1274

    Article  Google Scholar 

  • De Datta S (1981) Principles and practices of rice production. Wiley, New York

    Google Scholar 

  • Depège N, Bellafiore S, Rochaix J-D (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575. https://doi.org/10.1126/science.1081397

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101. https://doi.org/10.1093/jxb/32.1.93

    Article  CAS  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030

    Article  CAS  Google Scholar 

  • Dooner HK (1983) Coordinate genetic regulation of flavonoid biosynthetic enzymes in maize. Mol Genet Genomics 189:136–141

    Article  CAS  Google Scholar 

  • Du H, Liang Y, Pei K, Ma K (2011) UV radiation-responsive proteins in rice leaves: a proteomic analysis. Plant Cell Physiol 52(2):306–316

    Article  CAS  Google Scholar 

  • Dutta S, Tyagi W, Rai M (2017) Physiological and molecular response to low light intensity in rice: a review. Agric Rev 38. https://doi.org/10.18805/ag.v38i03.8980

  • Fang C-X, Wang Q-S, Yu Y, Li Q-M, Zhang H-L, Wu X-C, Chen T, Lin W-X (2011) Suppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regul 65:1–10

    Article  CAS  Google Scholar 

  • Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, Seidlitz HK, Nagy F, Ulm R (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28:591–601

    Article  CAS  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  Google Scholar 

  • Fedina I, Hidema J, Velitchkova MY, Georgieva K, Nedeva D (2010) UV-B induced stress responses in three rice cultivars. Biol Plant 54:571–574

    Article  CAS  Google Scholar 

  • Fiscus EL, Booker FL (1995) Is increased UV-B a threat to crop photosynthesis and productivity. Photosynth Res 43:81–92

    Article  CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100. https://doi.org/10.1104/pp.110.166181

    Article  CAS  Google Scholar 

  • Foyer C, Lelandais M, Kunert K (1994) Photooxidative stress in plants. Physiol Plant 92:696–717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x

    Article  CAS  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    Article  CAS  Google Scholar 

  • Gould KS, Mckelvie J, MarkhamKR (2002) Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ 25:1261–1269

    Article  CAS  Google Scholar 

  • Gu J, Zhou Z, Li Z, Chen Y, Wang Z, Zhang H, Yang J (2017) Photosynthetic properties and potentials for improvement of photosynthesis in pale green leaf rice under high light conditions. Front Plant Sci 8:1082. https://doi.org/10.3389/fpls.2017.01082

    Article  Google Scholar 

  • Hada H, Hidema J, Maekawa M, Kumagai T (2003) Higher amounts of anthocyanins and UV-absorbing compounds effectively lowered CPD photorepair in purple rice (Oryza sativa L.). Plant Cell Environ 26:1691–1701. https://doi.org/10.1046/j.1365-3040.2003.01087x

    Article  CAS  Google Scholar 

  • Heijde M, Ulm R (2013) Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc Natl Acad Sci U S A 110:1113–1118

    Article  CAS  Google Scholar 

  • Hideg E, Kálai T, Hideg K, Vass I (1998) Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 37:11405–11411

    Article  CAS  Google Scholar 

  • Hidema J, Kang HS, Kumagai T (1996) Differences in the sensitivity to UV-B radiation of two cultivars of rice (Oryza sativa L.). Plant Cell Physiol 37:742–747

    Article  CAS  Google Scholar 

  • Hidema J, Kumagai T, Sutherland JC, Sutherland BM (1997) Ultraviolet B-sensitive rice cultivar deficient in cyclobutyl pyrimidine dimer repair. Plant Physiol 113:39–44

    Article  CAS  Google Scholar 

  • Hidema J, Zhang W-H, Yamamoto M, Sato T, Kumagai T (2005) Changes in grain size and grain storage protein of rice (Oryza sativa L.) in response to elevated UV-B radiation under outdoor conditions. J Radiat Res 46:143–149

    Article  Google Scholar 

  • Hirooka K, Bamba T, Fukusaki E, Kobayashi A (2003) Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase. Biochem J 370:679–686. https://doi.org/10.1042/BJ20021311

    Article  CAS  Google Scholar 

  • Hirouchi T, Nakajima S, Najrana T, Tanaka M, Matsunaga T et al (2003) A gene for a class II DNA photolyase from Oryza sativa: cloning of the cDNA by dilution-amplification. Mol Gen Genet 269:508–516

    Article  CAS  Google Scholar 

  • Holley SR, Yalamanchili RD, Moura DS, Ryan CA, Stratmann JW (2003) Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in wild tomato suspension-cultured cells. Plant Physiol 132:1728–1738

    Article  CAS  Google Scholar 

  • Huang S, Jacoby RP, Shingaki-Wells RN, Li L, Millar AH (2013) Differential induction of mitochondrial machinery by light intensity correlates with changes in respiratory metabolism and photorespiration in rice leaves. New Phytol 198(1):103–115. https://doi.org/10.1111/nph.12123

    Article  CAS  Google Scholar 

  • International Rice Research Institute (IRRI). Annual report 1989, Segment: ‘IRRI towards 2000 and beyond; Rice and the world’. pp 3–8

    Google Scholar 

  • Ishida H, Makino A, Mae T (1999) Fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase by reactive oxygen species occurs near Gly-329. J Biol Chem 274:5222–5226

    Article  CAS  Google Scholar 

  • Jiang L, Wang Y, Björn L, Li S (2009) Arabidopsis radical-induced cell death is involved in UV-B signaling. Photochem Photobiol Sci 8:838–846. https://doi.org/10.1039/b901187k

    Article  CAS  Google Scholar 

  • Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv Bot Res 22:97–162

    Article  CAS  Google Scholar 

  • Kanai S, Kikuno R, Toh H, Ryo H, Todo T (1997) Molecular evolution of the photolyase–blue-light photoreceptor family. J Mol Evol 45:535–548. https://doi.org/10.1007/PL00006258

    Article  CAS  Google Scholar 

  • Kang H-S, Hidema J, Kumagai T (1998) Effects of light environment during culture on UV-induced cyclobutyl pyrimidine dimers and their photorepair in rice (Oryza sativa L.). Photochem Photobiol 68:71–77

    CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux P (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    CAS  Google Scholar 

  • Kim HY, Kobayashi K, Nouchi I, Yoneyama T (1996) Enhanced UV-B radiation has little effect on growth, D13C values and pigments of pot-grown rice (Oryza sativa) in the field. Physiol Plant 96:1–5

    Article  Google Scholar 

  • Kim EH, Lee DW, Lee KR, Jung SJ, Jeon JS, Kim HU (2017) Conserved function of fibrillin5 in the plastoquinone-9 biosynthetic pathway in Arabidopsis and rice. Front Plant Sci 8:1197. https://doi.org/10.3389/fpls.2017.01197

    Article  Google Scholar 

  • Kimura S, Sakaguchi K (2006) DNA repair in plants. Chem Rev 106:753–766

    Article  CAS  Google Scholar 

  • Kimura E, Abe T, Murata K, Kimura T, Otoki Y, Yoshida T, Miyazawa T, Nakagawa K (2018) Identification of OsGGR2, a second geranylgeranyl reductase involved in α-tocopherol synthesis in rice. Sci Rep 8. https://doi.org/10.1038/s41598-018-19527-3

  • Kozai T, Fujiwara K, Runkle ES (2016) LED lighting for urban agriculture; chapter: some aspects of the light environment, pp 49–55

    Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564. https://doi.org/10.1007/s11120-008-9349-3

    Article  CAS  Google Scholar 

  • Kruk J, Szymańska R (2012) Singlet oxygen and non-photochemical quenching contributes to oxidation of the plastoquinone-pool under light stress in Arabidopsis. Biochim Biophys Acta 1817:705–710. https://doi.org/10.1016/j.bbabio.2012.02.011

    Article  CAS  Google Scholar 

  • Kumagai T, Sato T (1992) Inhibitory effects of increase in near-UV radiation on the growth of Japanese rice cultivars (Oryza sativa L.) in a phytotron and recovery by exposure to visible radiation. Jpn J Breed 42:545–552

    Article  CAS  Google Scholar 

  • Lee CP, Eubel H, Millar AH (2010) Diurnal changes in mitochondrial function reveal daily optimization of light and dark respiratory metabolism in Arabidopsis. Mol Cell Proteomics 9:2125–2139

    Article  CAS  Google Scholar 

  • Li Y, Gao Y, Xu X, Shen Q, Guo S (2009) Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J Exp Bot 60(8):2351–2360

    Article  CAS  Google Scholar 

  • Lin SY, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Qryza sativa L. using backcross inbred lines. Theor Appl Genet 96:997–1003

    Article  CAS  Google Scholar 

  • Lin W, Wu X, Linag K, Guo Y, He H, Chen F, Liang Y (2002) Effect of enhanced UV-B radiation on polyamine metabolism and endogenous hormone contents in rice (Oryza sativa L.). J Appl Ecol 13:807–813

    Article  CAS  Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD et al (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 49:249–272

    Article  CAS  Google Scholar 

  • Ma JF, Shen RF, Zhao ZQ, Wissuwa M, Takeuchi Y, Ebitani T, Yano M (2002) Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol 43:652–659

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–211

    Article  CAS  Google Scholar 

  • Mackerness SAH (2000) Plant responses to UV-B stress: what are the key regulators? Plant Growth Regul 32:27–39

    Article  CAS  Google Scholar 

  • Maekawa M, Sato T, Kumagai T, Noda K (2001) Differential responses to UV-B irradiation of three near isogenic lines carrying different purple leaf genes for anthocyanin accumulation in rice (Oryza sativa L.). Breed Sci 51:27–32

    Article  CAS  Google Scholar 

  • Mansfield TA, Freer-Smith PH (1984) The role of stomata in resistance mechanisms. In: Koziol ML, Whatley FR (eds) Gaseous pollutants and plant metabolism. Butterworth, London, pp 131–146

    Chapter  Google Scholar 

  • Marwood CA, Greenberg BM (1996) Effect of supplementary UV-B radiation on chlorophyll systems during chloroplast development in Spirodela oligarrhiza. J Photochem Photobiol 64:664–670

    Article  CAS  Google Scholar 

  • Matsunaga T, Kotaro H, Nikaido O (1991) Wavelength dependent formation of thymine dimers and (6-4) photoproducts in DNA by monochromatic ultraviolet light ranging from 150 to 365 nm. Photochem Photobiol 54:403–410

    Article  CAS  Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF, Bjorn LO, Ilyas M (2007) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Photochem Photobiol Sci 6:218–231

    Article  CAS  Google Scholar 

  • Menck CFM (2002) Shining a light on photolyase. Nat Genet 32:338–339

    Article  CAS  Google Scholar 

  • Minhajuddin M, Beg ZH, Iqbal J (2005) Hypolipidemic and antioxidant properties of tocotrienol rich fraction isolated from rice bran oil in experimentally induced hyperlipidemic rats. Food Chem Toxicol 43:747–753

    Article  CAS  Google Scholar 

  • Mitchell DL, Narin RS, Johnston DA, Byrom M, Kazianis S, Walter RB (2004) Decreased levels of (6–4) photoproduct excision repair in hybrid fish of the genus Xiphophorus. Photochem Photobiol 79(5):447–452

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Monti P et al (1999) 5-methylcytosine at HpaII sites in p53is not hypermutable after UVC irradiation. Mutat Res 431:93–103

    Article  CAS  Google Scholar 

  • Munné-Bosch S (2007) Alpha-tocopherol: a multifaceted molecule in plants. Vitam Horm 76:375–392

    Article  CAS  Google Scholar 

  • Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M et al (2004) Over-expression of a small heat shock protein, sHSP17. 7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed 13:165–175

    Article  CAS  Google Scholar 

  • Murchie E, Hubbart-Edwards S, Chen Y, Peng S, Horton P (2002) Acclimation of rice photosynthesis to irradiance under field conditions. Plant Physiol 130:1999–2010. https://doi.org/10.1104/pp.011098

    Article  CAS  Google Scholar 

  • Murchie EH, Hubbart S, Peng S, Horton P (2005) Acclimation of photosynthesis to high irradiance in rice: gene expression and interactions with leaf development. J Exp Bot 56(411):449–460

    Article  CAS  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. https://doi.org/10.1146/annurev.arplant.49.1.249

    Article  CAS  Google Scholar 

  • Norris SR, Barrette T, DellaPenna D (1995) Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7:2139–2149. https://doi.org/10.1105/tpc.7.12.2139

    Article  CAS  Google Scholar 

  • Nouchi I, Kobayashi K (1995) Effects of enhanced ultraviolet-B radiation with a modulated lamp control system on growth of 17 rice cultivars in the field. J Agric Meteorol 51:11–20

    Article  Google Scholar 

  • Pattanaik B, Schumann R, Karsten U (2007) Effects of ultraviolet radiation on cyanobacteria and their protective mechanisms. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 31–45

    Google Scholar 

  • Pfannschmidt P, Schutze K, Brost M, Oelmuller R (2001) A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. J Biol Chem 276:36125–36130. https://doi.org/10.1074/jbc.M105701200

    Article  CAS  Google Scholar 

  • Poolman MG, Kundu S, Shaw R, Fell DA (2013) Responses to light intensity in a genome-scale model of rice metabolism. Plant Physiol 162(2):1060–1072. https://doi.org/10.1104/pp.113.216762

    Article  CAS  Google Scholar 

  • Rai K, Agrawal SB (2017) Effects of UV-B radiation on morphological, physiological and biochemical aspects of plants: an overview. J Sci Res BHU 61(1–2):87–114

    Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA et al (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544. https://doi.org/10.1111/j.1365-3040.2006.01531x

    Article  Google Scholar 

  • Royo C, Nazco R, Villegas D (2014) The climate of the zone of origin of Mediterranean durum wheat (Triticum durum Desf.) landraces affects their agronomic performance. Genet Resour Crop Evol 61:1345–1358. https://doi.org/10.1007/s10722-014-0116-3

    Article  Google Scholar 

  • Sato T, Kumagai T (1993) Cultivar differences in resistance to the inhibitory effects of near-UV radiation among Asian ecotype and Japanese lowland and upland cultivars of rice (Oryza sativa L.). Jpn J Breed 43:61–68

    Article  Google Scholar 

  • Sato T, Ueda T, Fukuta Y, Kumagai T, Yano M (2003) Mapping of quantitative trait loci associated with ultraviolet-B resistance in rice (Oryza sativa L.). Theor Appl Genet 107:1003–1008

    Article  CAS  Google Scholar 

  • Schneider SH (1989) The greenhouse effect: science and policy. Science 243:771–781

    Article  CAS  Google Scholar 

  • Scientific Assessment of Ozone Depletion (2014) World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 55

    Google Scholar 

  • Singh SK, Surabhi GK, Gao W, Reddy KR (2008) Assessing genotypic variability of cowpea (Vigna unguiculata (L.) Walp.) to current and projected ultraviolet-B radiation. J Photochem Photobiol B Biol 93:71–81

    Article  CAS  Google Scholar 

  • Takahashi M, Teranishi M, Ishida H, Kawasaki J, Takeuchi A, Yamaya T, Watanabe M, Makino A, Hidema J (2011) Cyclobutane pyrimidine dimer (CPD) photolyase repairs ultraviolet-B-induced CPDs in rice chloroplast and mitochondrial DNA. Plant J 66:433–442. https://doi.org/10.1111/j.1365-313X.2011.04500.x

    Article  CAS  Google Scholar 

  • Tardy F, Créach A, Havaux M (1998) Photosynthetic pigment concentration, organization and interconversions in a pale green Syrian landrace of barley (Hordeum vulgare L., Tadmor) adapted to harsh climatic conditions. Plant Cell Environ 21:479–489. https://doi.org/10.1046/j.1365-3040.1998.00293.x

    Article  CAS  Google Scholar 

  • Telfer A (2014) Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of b-carotene. Plant Cell Physiol 55:1216–1223. https://doi.org/10.1093/pcp/pcu040

    Article  CAS  Google Scholar 

  • Teramura A (1983) Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol Plant 58:415–427. [Proc. of the international workshop on the effects of UV radiation on plants. Bjorn L, Bornman J (Eds)]

    Google Scholar 

  • Teramura AH, Ziska LH, Sztein AE (1991) Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiol Plant 83:373–380

    Article  CAS  Google Scholar 

  • Teranishi M, Iwamatsu Y, Hidema J, Kumagai T (2004) Ultraviolet-B sensitivities in Japanese lowland rice cultivars: cyclobutane pyrimidine dimer photolyase activity and gene mutation. Plant Cell Physiol 45:1845–1856

    Article  Google Scholar 

  • Tessman I, Liu S, Kennedy MA (1992) Mechanism of SOS mutagenesis of UV-irradiated DNA: mostly error-free processing of deaminated cytosine. Proc Natl Acad Sci U S A 89:1159–1163

    Article  CAS  Google Scholar 

  • Thoma F (1999) Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair. EMBO J 18(23):6585–6598. https://doi.org/10.1093/emboj/18.23.6585

    Article  CAS  Google Scholar 

  • Tommasi S, Denissenko MF, Pfeifer GP (1997) Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases. Cancer Res 57:4727–4730

    CAS  Google Scholar 

  • Ueda T, Sato T, Hidema J, Hirouchi T, Yamamoto K, Kumagai T, Yano M (2005) qUVR-10, a major quantitative trait locus for ultraviolet-B resistance in rice, encodes cyclobutane pyrimidine dimer photolyase. Genetics 171:1941–1950

    Article  CAS  Google Scholar 

  • Vass I, Cser K (2009) Janus-faced charge recombinations in photosystem II photoinhibition. Trends Plant Sci 14:200–205. https://doi.org/10.1016/j.tplants.2009.01.009

    Article  CAS  Google Scholar 

  • Velders GJM, Andersen SO, Daniel JS, Fahey DW, McFarland M (2007) The importance of the Montreal Protocol in protecting climate. Proc Natl Acad Sci U S A 104:4814–4819

    Article  CAS  Google Scholar 

  • Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236. https://doi.org/10.1093/jexbot/53.372.1227

    Article  Google Scholar 

  • Watson RT, Ozone Trends Panel (1989) Carbon dioxide and climate: summaries of research in FY 1989. DOE/ER-0425

    Google Scholar 

  • Wu XC, Lin WX, Huang ZL (2007) Influence of enhanced ultraviolet-B radiation on photosynthetic physiologies and ultrastructure of leaves in two different resistivity rice cultivars. (in Chinese with English abstract). Acta Ecol Sin 27:554–564

    CAS  Google Scholar 

  • Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:81–106. https://doi.org/10.1146/annurev-arplant-043015-112002

    Article  CAS  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharyya, S. (2020). Rice Tolerance to High Light Intensity and UV Radiation Through Biotechnological Approaches. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4120-9_21

Download citation

Publish with us

Policies and ethics