Skip to main content

LED-Based Photoacoustic Imaging for Guiding Peripheral Minimally Invasive Procedures

  • Chapter
  • First Online:
LED-Based Photoacoustic Imaging

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 7))

Abstract

Photoacoustic imaging (PAI) could be useful for improving guidance of peripheral minimally invasive procedures. In this clinical application space, light emitting diodes (LEDs) have several potential advantages as excitation sources. B-mode ultrasound (US) imaging is often used for guiding invasive medical devices; however, most anatomical structures do not have unique US appearances, so the misidentification of tissues is common. There are several potential uses for LED-based PAI, including identifying procedural targets, avoiding critical tissue structures, and localising invasive medical devices relative to external imaging probes. In this chapter, we discuss the state-of-the-art of visualising tissue structures and medical devices relevant to minimally invasive procedures with PAI, key clinical considerations, and challenges involved with translating LED-based PAI systems from the benchtop to clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Beard, Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011). https://doi.org/10.1098/rsfs.2011.0028

    Article  Google Scholar 

  2. Y. Zhu, G. Xu, J. Yuan et al., Light emitting diodes based photoacoustic imaging and potential clinical applications. Sci. Rep. 8, 9885 (2018). https://doi.org/10.1038/s41598-018-28131-4

    Article  ADS  Google Scholar 

  3. A. Balthasar, A.E. Desjardins, M. van der Voort et al., Optical detection of peripheral nerves: an in vivo human study. Reg. Anesth. Pain Med. 37, 277–282 (2012). https://doi.org/10.1097/AAP.0b013e31824a57c2

    Article  Google Scholar 

  4. R. Nachabé, B.H.W. Hendriks, A.E. Desjardins et al., Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm. J. Biomed. Opt. 15, 037015 (2010). https://doi.org/10.1117/1.3454392

    Article  ADS  Google Scholar 

  5. M.K. Dasa, C. Markos, M. Maria et al., High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650–1850 nm region. Biomed. Opt. Express 9, 1762 (2018). https://doi.org/10.1364/BOE.9.001762

    Article  Google Scholar 

  6. S. Hu, L. Wang, Photoacoustic imaging and characterization of the microvasculature, in Proceedings of SPIE (2010), p. 011101

    Google Scholar 

  7. H.F. Zhang, K. Maslov, G. Stoica, L.V. Wang, Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006). https://doi.org/10.1038/nbt1220

    Article  Google Scholar 

  8. E.Z. Zhang, J.G. Laufer, R.B. Pedley, P.C. Beard, In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol. 54, 1035–1046 (2009). https://doi.org/10.1088/0031-9155/54/4/014

    Article  Google Scholar 

  9. M.P. Fronheiser, S.A. Ermilov, H.-P. Brecht et al., Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature. J. Biomed. Opt. 15, 021305 (2010). https://doi.org/10.1117/1.3370336

    Article  ADS  Google Scholar 

  10. B. Zabihian, J. Weingast, M. Liu et al., In vivo dual-modality photoacoustic and optical coherence tomography imaging of human dermatological pathologies. Biomed Opt Express 6, 3163 (2015). https://doi.org/10.1364/BOE.6.003163

    Article  Google Scholar 

  11. C.P. Favazza, L.A. Cornelius, L.V. Wang, In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin. J. Biomed. Opt. 16, 026004 (2011). https://doi.org/10.1117/1.3536522

    Article  ADS  Google Scholar 

  12. A.A. Plumb, N.T. Huynh, J. Guggenheim et al., Rapid volumetric photoacoustic tomographic imaging with a Fabry-Perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli. Eur. Radiol. 28, 1037–1045 (2018). https://doi.org/10.1007/s00330-017-5080-9

    Article  Google Scholar 

  13. Q. Yao, Y. Ding, G. Liu, L. Zeng, Low-cost photoacoustic imaging systems based on laser diode and light-emitting diode excitation. J. Innov. Opt. Health Sci. 10, 1730003 (2017). https://doi.org/10.1142/S1793545817300038

    Article  Google Scholar 

  14. H. Zhong, T. Duan, H. Lan et al., Review of low-cost photoacoustic sensing and imaging based on laser diode and light-emitting diode. Sensors 18, 2264 (2018). https://doi.org/10.3390/s18072264

    Article  Google Scholar 

  15. R.S. Hansen, Using high-power light emitting diodes for photoacoustic imaging, in Proceedings of SPIE. International Society for Optics and Photonics, eds. by J. D’hooge, M.M. Doyley, p. 79680A

    Google Scholar 

  16. T.J. Allen, P.C. Beard, Light emitting diodes as an excitation source for biomedical photoacoustics, in Proceedings of SPIE, eds. by A.A. Oraevsky, L.V. Wang (International Society for Optics and Photonics, 2013), p. 85811F

    Google Scholar 

  17. A. Hariri, J. Lemaster, J. Wang et al., The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics 9, 10–20 (2018). https://doi.org/10.1016/J.PACS.2017.11.001

    Article  Google Scholar 

  18. W. Xia, M. Kuniyil Ajith Singh, E. Maneas et al., Handheld real-time LED-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures. Sensors 18, 1394 (2018). https://doi.org/10.3390/s18051394

    Article  Google Scholar 

  19. W. Xia, E. Maneas, N. Trung Huynh et al., Imaging of human peripheral blood vessels during cuff occlusion with a compact LED-based photoacoustic and ultrasound system, in Proceedings of SPIE, eds. by A.A. Oraevsky, L.V. Wang (SPIE, 2019), p. 3

    Google Scholar 

  20. E. Maneas, R. Aughwane, N. Huynh et al., Photoacoustic imaging of the human placental vasculature. J. Biophotonics (2019). https://doi.org/10.1002/jbio.201900167

    Article  Google Scholar 

  21. C. Thompson, T. Barrows, Carotid arterial cannulation: removing the risk with ultrasound? Can. J. Anesth. 56, 471–472 (2009). https://doi.org/10.1007/s12630-009-9082-1

    Article  Google Scholar 

  22. A. Balthasar, A.E. Desjardins, M. van der Voort et al., Optical detection of vascular penetration during nerve blocks: an in vivo human study. Reg. Anesth. Pain Med. 37, 3–7 (2012). https://doi.org/10.1097/AAP.0b013e3182377ff1

    Article  Google Scholar 

  23. L. Song, Y. Zhou, D. Huang, Inadvertent posterior intercostal artery puncture and haemorrhage after ultrasound-guided thoracic paravertebral block: a case report. BMC Anesthesiol. 18, 196 (2018). https://doi.org/10.1186/s12871-018-0667-5

    Article  Google Scholar 

  24. K. Shirozu, S. Kuramoto, S. Kido et al., Hematoma after transversus abdominis plane block in a patient with HELLP syndrome. A A Case Rep. 8, 257–260 (2017). https://doi.org/10.1213/XAA.0000000000000487

    Article  Google Scholar 

  25. L. Helen, B.D. O’Donnell, E. Moore, Nerve localization techniques for peripheral nerve block and possible future directions. Acta Anaesthesiol. Scand. 59, 962–974 (2015). https://doi.org/10.1111/aas.12544

    Article  Google Scholar 

  26. J.M. Mari, W. Xia, S.J. West, A.E. Desjardins, Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study. J. Biomed. Opt. 20, 110503 (2015). https://doi.org/10.1117/1.JBO.20.11.110503

    Article  ADS  Google Scholar 

  27. D. Piras, C. Grijsen, P. Schütte et al., Photoacoustic needle: minimally invasive guidance to biopsy. J. Biomed. Opt. 18, 070502 (2013). https://doi.org/10.1117/1.JBO.18.7.070502

    Article  Google Scholar 

  28. W. Xia, D.I. Nikitichev, J.M. Mari et al., Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures. J. Biomed. Opt. 20, 086005 (2015). https://doi.org/10.1117/1.JBO.20.8.086005

    Article  ADS  Google Scholar 

  29. W. Xia, D.I. Nikitichev, J.M. Mari et al., An interventional multispectral photoacoustic imaging platform for the guidance of minimally invasive procedures, in Opto-Acoustic Methods and Applications in Biophotonics II (OSA, Washington, D.C., 2015), p. 95390D

    Google Scholar 

  30. W. Xia, E. Maneas, D.I. Nikitichev et al., Interventional photoacoustic imaging of the human placenta with ultrasonic tracking for minimally invasive fetal surgeries, International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Cham, 2015), pp. 371–378

    Google Scholar 

  31. W. Xia, S. Noimark, E. Maneas et al., led-based photoacoustic imaging of medical devices with carbon nanotube-polydimethylsiloxane composite coatings, in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, Washington, D.C., 2018), p. JW3A.4

    Google Scholar 

  32. T. Allen, B. Cox, P.C. Beard, Generating photoacoustic signals using high-peak power pulsed laser diodes, in Photons Plus Ultrasound: Imaging and Sensing 2005: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics (2005), pp. 233–242

    Google Scholar 

  33. T. Allen, 2006 undefined pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging. Opt. Lett. http://osapublishing.org

  34. R.G.M. Kolkman, W. Steenbergen, T.G. van Leeuwen, In vivo photoacoustic imaging of blood vessels with a pulsed laser diode. Lasers Med. Sci. 21, 134–139 (2006). https://doi.org/10.1007/s10103-006-0384-z

    Article  Google Scholar 

  35. T.J. Allen, P.C. Beard, High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics. Biomed. Opt. Express 7, 1260 (2016). https://doi.org/10.1364/BOE.7.001260

    Article  Google Scholar 

  36. X. Dai, H. Yang, H. Jiang, In vivo photoacoustic imaging of vasculature with a low-cost miniature light emitting diode excitation. Opt. Lett. 42, 1456 (2017). https://doi.org/10.1364/OL.42.001456

    Article  ADS  Google Scholar 

  37. T.J. Allen, P.C. Beard, Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging. Opt. Lett. 31, 3462 (2006). https://doi.org/10.1364/ol.31.003462

    Article  ADS  Google Scholar 

  38. C. Willert, B. Stasicki, J. Klinner, S. Moessner, Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas. Sci. Technol. 21, 075402 (2010). https://doi.org/10.1088/0957-0233/21/7/075402

    Article  ADS  Google Scholar 

  39. M. Singh, T. Agano, N. Sato et al., Real-time in vivo imaging of human lymphatic system using an LED-based photoacoustic/ultrasound imaging system, in Photons Plus Ultrasound: Imaging and Sensing 2018, eds. by A.A. Oraevsky, L.V. Wang (SPIE, 2018), p. 3

    Google Scholar 

  40. L. Leggio, S. Gawali, D. Gallego et al., Optoacoustic response of gold nanorods in soft phantoms using high-power diode laser assemblies at 870 and 905 nm. Biomed. Opt. Express 8, 1430 (2017). https://doi.org/10.1364/BOE.8.001430

    Article  Google Scholar 

  41. F. Gao, L. Bai, X. Feng et al., Remarkable in vivo nonlinear photoacoustic imaging based on near-infrared organic dyes. Small 12, 5239–5244 (2016). https://doi.org/10.1002/smll.201602121

    Article  Google Scholar 

  42. F. Gao, L. Bai, S. Liu et al., Rationally encapsulated gold nanorods improving both linear and nonlinear photoacoustic imaging contrast in vivo. Nanoscale 9, 79–86 (2017)

    Article  Google Scholar 

  43. M. Beckmann, B.S. Gutrath, Size dependent photoacoustic signal response of gold nanoparticles using a multispectral laser diode system, in IEEE International Ultrasonics Symposium, IUS (2012), pp. 2336–2339

    Google Scholar 

  44. B.S. Gutrath, M.F. Beckmann, A. Buchkremer et al., Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles. Nanotechnology 23, 225707 (2012). https://doi.org/10.1088/0957-4484/23/22/225707

    Article  ADS  Google Scholar 

  45. V. Cunningham, H. Lamela, Laser optoacoustic spectroscopy of gold nanorods within a highly scattering medium. Opt. Lett. 35, 3387–3389 (2010)

    Article  ADS  Google Scholar 

  46. E.C. Mackle, E. Maneas, C. Little et al., Wall-less vascular poly(vinyl) alcohol gel ultrasound imaging phantoms using 3D printed vessels, in Design and Quality for Biomedical Technologies XII, eds. by R. Liang, T.J. Pfefer, J. Hwang (SPIE, 2019), p. 25

    Google Scholar 

  47. E. Maneas, W. Xia, O. Ogunlade et al., Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging. Biomed. Opt. Express 9, 1151 (2018). https://doi.org/10.1364/BOE.9.001151

    Article  Google Scholar 

  48. P. Raumonen, T. Tarvainen, Segmentation of vessel structures from photoacoustic images with reliability assessment. Biomed. Opt. Express 9, 2887–2904 (2018). https://doi.org/10.1364/BOE.9.002887

    Article  Google Scholar 

  49. J. Zhang, B.I.N. Chen, M. Zhou, H. Lan, Photoacoustic image classification and segmentation of breast cancer: A feasibility study. IEEE Access 7, 5457–5466 (2019). https://doi.org/10.1109/ACCESS.2018.2888910

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Wellcome/EPSRC Centre for Interventional and Surgical Sciences at the University College London, and Dr Mithun Singh for helpful feedback on this Chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor Mackle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mackle, E., Maneas, E., Xia, W., West, S., Desjardins, A. (2020). LED-Based Photoacoustic Imaging for Guiding Peripheral Minimally Invasive Procedures. In: Kuniyil Ajith Singh, M. (eds) LED-Based Photoacoustic Imaging . Progress in Optical Science and Photonics, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-15-3984-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3984-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3983-1

  • Online ISBN: 978-981-15-3984-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics