Skip to main content

Deep Recurrent Neural Network (Deep-RNN) for Classification of Nonlinear Data

  • Conference paper
  • First Online:
Computational Intelligence in Pattern Recognition

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1120))

Abstract

Data mining is the most challenging approach that uses the method of extracting the most interesting patterns from a large storage of database. Classification, a supervised learning method, is mostly applicable method of data mining. In this paper, we have used different classification techniques to differentiate the results for different data sets. Deep learning or hierarchical learning is the part of machine learning which mainly follows the widely used concepts of a neural network. There are many deep learning architectures such as deep neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, etc. In this paper, we have used the concept of deep recurrent neural network (Deep-RNN) to train the model for a classification task. RNN follows a method for weight updation which is known as Backpropagation Through Time (BPTT) and we have used the concept of Deep-RNN by following the concepts of both forward pass and backward pass. Simulation results are quite impressive as compared to earlier developed machine learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katircioglu, I., Tekin, B., Salzmann, M., Lepetit, V., Fua, P.: Learning latent representations of 3d human pose with deep neural networks. Int. J. Comput. Vision 126(12), 1326–1341 (2018)

    Article  Google Scholar 

  2. Fischer, T., Krauss, C.: Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 270(2), 654–669 (2018)

    Article  MathSciNet  Google Scholar 

  3. Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M.S., Packer, C., Clune, J.: Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. 115(25), E5716–E5725 (2018)

    Article  Google Scholar 

  4. Schneider, S., Taylor, G. W., Kremer, S.: Deep learning object detection methods for ecological camera trap data. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 321–328. IEEE (2018, May)

    Google Scholar 

  5. Mac Aodha, O., Gibb, R., Barlow, K. E., Browning, E., Firman, M., Freeman, R., … Pandourski, I.: Bat detective—Deep learning tools for bat acoustic signal detection. PLoS Comput. Biol. 14(3), e1005995 (2018)

    Article  Google Scholar 

  6. Bordes, F., Berthier, T., Di Jorio, L., Vincent, P., Bengio, Y.: Iteratively unveiling new regions of interest in deep learning models (2018)

    Google Scholar 

  7. Chen, Y.H., Yang, T.J., Emer, J., Sze, V.: Understanding the limitations of existing energy-efficient design approaches for deep neural networks. Energy 2(L1), L3 (2018)

    Google Scholar 

  8. Osmani, V., Li, L., Danieletto, M., Glicksberg, B., Dudley, J., Mayora, O.: Processing of electronic health records using deep learning: a REVIEW. arXiv preprint arXiv:1804.01758 (2018)

    Google Scholar 

  9. Hegde, K., Magdon-Ismail, M., Ramanathan, R., Thapa, B.: Network signatures from image representation of adjacency matrices: deep/transfer learning for subgraph classification. arXiv preprint arXiv:1804.06275 (2018)

    Google Scholar 

  10. Bartunov, S., Santoro, A., Richards, B., Marris, L., Hinton, G.E., Lillicrap, T.: Assessing the scalability of biologically-motivated deep learning algorithms and architectures. In: Advances in Neural Information Processing Systems, pp. 9368–9378 (2018)

    Google Scholar 

  11. Busia, A., Dahl, G.E., Fannjiang, C., Alexander, D.H., Dorfman, E., Poplin, R., … DePristo, M.: A deep learning approach to pattern recognition for short DNA sequences. bioRxiv, 353474 (2019)

    Google Scholar 

  12. Washburn, J.D., Guerra, M.K.M., Ramstein, G., Kremling, K.A., Valluru, R., Buckler, E.S., Wang, H.: Evolutionarily informed deep learning methods: predicting transcript abundance from DNA sequence. BioRxiv, 372367 (2018)

    Google Scholar 

  13. Chang, P., Grinband, J., Weinberg, B.D., Bardis, M., Khy, M., Cadena, G., … Baldi, P.: Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. Am. J. Neuroradiol. 39(7), 1201–1207 (2018)

    Article  Google Scholar 

  14. Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks. Light.: Sci. & Appl. 7(2), 17141 (2018)

    Google Scholar 

  15. Saltz, J., Gupta, R., Hou, L., Kurc, T., Singh, P., Nguyen, V., … Van Arnam, J.: Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Reports 23(1), 181–193 (2018)

    Google Scholar 

  16. Li, Y., Shi, W., Wasserman, W.W.: Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. BMC Bioinform. 19(1), 202 (2018)

    Article  Google Scholar 

  17. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 37(4–5), 421–436 (2018)

    Article  Google Scholar 

  18. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Network traffic classifier with convolutional and recurrent neural networks for Internet of Things. IEEE Access 5, 18042–18050 (2017)

    Article  Google Scholar 

  19. Yin, C., Zhu, Y., Fei, J., He, X.: A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 5, 21954–21961 (2017)

    Article  Google Scholar 

  20. Mou, L., Ghamisi, P., Zhu, X.X.: Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)

    Article  Google Scholar 

  21. Hassan, A., Mahmood, A.: Convolutional recurrent deep learning model for sentence classification. IEEE Access 6, 13949–13957 (2018)

    Article  Google Scholar 

  22. Liang, G., Hong, H., Xie, W., Zheng, L.: Combining convolutional neural network with recursive neural network for blood cell image classification. IEEE Access 6, 36188–36197 (2018)

    Article  Google Scholar 

  23. Balouji, E., Gu, I.Y., Bollen, M.H., Bagheri, A., Nazari, M.: A LSTM-based deep learning method with application to voltage dip classification. In: 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), pp. 1–5. IEEE (2018, May)

    Google Scholar 

  24. He, J., Wang, L., Liu, L., Feng, J., Wu, H.: Long document classification from local word glimpses via recurrent attention learning. IEEE Access 7, 40707–40718 (2019)

    Article  Google Scholar 

  25. Zhou, J., Huang, J.X., Chen, Q., Hu, Q.V., Wang, T., He, L.: Deep learning for aspect-level sentiment classification: survey, vision and challenges. IEEE Access (2019)

    Google Scholar 

  26. Guo, X., Zhang, H., Yang, H., Xu, L., Ye, Z.: A single attention-based combination of CNN and RNN for relation classification. IEEE Access 7, 12467–12475 (2019)

    Article  Google Scholar 

  27. Naik, B., Nayak, J., Behera, H.S., Abraham, A.: A harmony search based gradient descent learning-FLANN (HS-GDL-FLANN) for classification. In: Computational Intelligence in Data Mining-Volume 2, pp. 525–539. Springer, New Delhi (2015)

    Google Scholar 

  28. Naik, B., Nayak, J., Behera, H.S.: A honey bee mating optimization based gradient descent learning–FLANN (HBMO-GDL-FLANN) for Classification. In: Emerging ICT for Bridging the Future-Proceedings of the 49th Annual Convention of the Computer Society of India CSI Volume 2, pp. 211–220. Springer, Cham (2015)

    Google Scholar 

  29. Naik, B., Nayak, J., Behera, H.S.: A novel FLANN with a hybrid PSO and GA based gradient descent learning for classification. In: Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014, pp. 745–754. Springer, Cham (2015)

    Google Scholar 

  30. Prasad, C., Mohanty, S., Naik, B., Nayak, J., Behera, H.S.: An efficient PSO-GA based back propagation learning-MLP (PSO-GA-BP-MLP) for classification. In: Computational Intelligence in Data Mining-Volume 1 (pp. 517–527). Springer, New Delhi (2015)

    Google Scholar 

  31. Kanungo, D.P., Naik, B., Nayak, J., Baboo, S., Behera, H.S.: An improved PSO based back propagation learning-MLP (IPSO-BP-MLP) for classification. In: Computational Intelligence in Data Mining-Volume 1, pp. 333–344. Springer, New Delhi (2015)

    Google Scholar 

  32. Nayak, J., Kanungo, D.P., Naik, B., Behera, H.S.: A higher order evolutionary Jordan Pi-Sigma neural network with gradient descent learning for classification. In: 2014 International Conference on High Performance Computing and Applications (ICHPCA), pp. 1–6. IEEE (2014, December)

    Google Scholar 

  33. Nayak, J., Naik, B., Behera, H.S.: A hybrid PSO-GA based Pi sigma neural network (PSNN) with standard back propagation gradient descent learning for classification. In: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 878–885. IEEE (2014, July)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, D., Naik, B., Sahoo, R.M., Nayak, J. (2020). Deep Recurrent Neural Network (Deep-RNN) for Classification of Nonlinear Data. In: Das, A., Nayak, J., Naik, B., Dutta, S., Pelusi, D. (eds) Computational Intelligence in Pattern Recognition. Advances in Intelligent Systems and Computing, vol 1120. Springer, Singapore. https://doi.org/10.1007/978-981-15-2449-3_17

Download citation

Publish with us

Policies and ethics