Skip to main content

Mouse Models of Neural Tube Defects

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1236))

Abstract

During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gu X, Lin L, Zheng X, Zhang T, Song X, Wang J, et al. High prevalence of NTDs in Shanxi Province: a combined epidemiological approach. Birth Defects Res A Clin Mol Teratol. 2007;79(10):702–7.

    Article  CAS  PubMed  Google Scholar 

  2. Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer RE, et al. Updated national birth prevalence estimates for selected birth defects in the United States, 2004-2006. Birth Defects Res A Clin Mol Teratol. 2010;88(12):1008–16.

    Article  CAS  PubMed  Google Scholar 

  3. Copp AJ, Stanier P, Greene ND. Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurol. 2013;12(8):799–810.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Adzick NS, Thom EA, Spong CY, Brock JW III, Burrows PK, Johnson MP, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):993–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thompson DN. Postnatal management and outcome for neural tube defects including spina bifida and encephalocoeles. Prenat Diagn. 2009;29(4):412–9.

    Article  PubMed  Google Scholar 

  6. Oakeshott P, Hunt GM. Long-term outcome in open spina bifida. Br J Gen Pract. 2003;53(493):632–6.

    PubMed  PubMed Central  Google Scholar 

  7. Dias MS, McLone DG. Hydrocephalus in the child with dysraphism. Neurosurg Clin N Am. 1993;4(4):715–26.

    Article  CAS  PubMed  Google Scholar 

  8. Adzick NS, Walsh DS. Myelomeningocele: prenatal diagnosis, pathophysiology and management. Semin Pediatr Surg. 2003;12(3):168–74.

    Article  PubMed  Google Scholar 

  9. Hertzler DA II, DePowell JJ, Stevenson CB, Mangano FT. Tethered cord syndrome: a review of the literature from embryology to adult presentation. Neurosurg Focus. 2010;29(1):E1.

    Article  PubMed  Google Scholar 

  10. Yamada S, Won DJ, Siddiqi J, Yamada SM. Tethered cord syndrome: overview of diagnosis and treatment. Neurol Res. 2004;26(7):719–21.

    Article  PubMed  Google Scholar 

  11. Hudgins RJ, Gilreath CL. Tethered spinal cord following repair of myelomeningocele. Neurosurg Focus. 2004;16(2):E7.

    Article  PubMed  Google Scholar 

  12. Copp AJ, Adzick NS, Chitty LS, Fletcher JM, Holmbeck GN, Shaw GM. Spina bifida. Nat Rev Dis Primers. 2015;1:15007.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bassuk AG, Kibar Z. Genetic basis of neural tube defects. Semin Pediatr Neurol. 2009;16(3):101–10.

    Article  PubMed  Google Scholar 

  14. Lupo PJ, Agopian AJ, Castillo H, Castillo J, Clayton GH, Dosa NP, et al. Genetic epidemiology of neural tube defects. J Pediatr Rehabil Med. 2017;10(3–4):189–94.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen CP. Chromosomal abnormalities associated with neural tube defects (II): partial aneuploidy. Taiwan J Obstet Gynecol. 2007;46(4):336–51.

    Article  PubMed  Google Scholar 

  16. Chen CP. Chromosomal abnormalities associated with neural tube defects (I): full aneuploidy. Taiwan J Obstet Gynecol. 2007;46(4):325–35.

    Article  PubMed  Google Scholar 

  17. Chen CP. Prenatal sonographic features of fetuses in trisomy 13 pregnancies (II). Taiwan J Obstet Gynecol. 2009;48(3):218–24.

    Article  PubMed  Google Scholar 

  18. Detrait ER, George TM, Etchevers HC, Gilbert JR, Vekemans M, Speer MC. Human neural tube defects: developmental biology, epidemiology, and genetics. Neurotoxicol Teratol. 2005;27(3):515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kinoshita H, Kokudo T, Ide T, Kondo Y, Mori T, Homma Y, et al. A patient with DiGeorge syndrome with spina bifida and sacral myelomeningocele, who developed both hypocalcemia-induced seizure and epilepsy. Seizure. 2010;19(5):303–5.

    Article  PubMed  Google Scholar 

  20. Chen CP. Meckel syndrome: genetics, perinatal findings, and differential diagnosis. Taiwan J Obstet Gynecol. 2007;46(1):9–14.

    Article  PubMed  Google Scholar 

  21. Chen CP. Syndromes, disorders and maternal risk factors associated with neural tube defects (III). Taiwan J Obstet Gynecol. 2008;47(2):131–40.

    Article  PubMed  Google Scholar 

  22. Baldwin CT, Lipsky NR, Hoth CF, Cohen T, Mamuya W, Milunsky A. Mutations in PAX3 associated with Waardenburg syndrome type I. Hum Mutat. 1994;3(3):205–11.

    Article  CAS  PubMed  Google Scholar 

  23. Canda MT, Demir N, Bal FU, Doganay L, Sezer O. Prenatal diagnosis of a 22q11 deletion in a second-trimester fetus with conotruncal anomaly, absent thymus and meningomyelocele: Kousseff syndrome. J Obstet Gynaecol Res. 2012;38(4):737–40.

    Article  PubMed  Google Scholar 

  24. Forrester S, Kovach MJ, Smith RE, Rimer L, Wesson M, Kimonis VE. Kousseff syndrome caused by deletion of chromosome 22q11-13. Am J Med Genet. 2002;112(4):338–42.

    Article  PubMed  Google Scholar 

  25. Kousseff BG. Sacral meningocele with conotruncal heart defects: a possible autosomal recessive trait. Pediatrics. 1984;74(3):395–8.

    CAS  PubMed  Google Scholar 

  26. Logan CV, Abdel-Hamed Z, Johnson CA. Molecular genetics and pathogenic mechanisms for the severe ciliopathies: insights into neurodevelopment and pathogenesis of neural tube defects. Mol Neurobiol. 2011;43(1):12–26.

    Article  CAS  PubMed  Google Scholar 

  27. Maclean K, Field MJ, Colley AS, Mowat DR, Sparrow DB, Dunwoodie SL, et al. Kousseff syndrome: a causally heterogeneous disorder. Am J Med Genet A. 2004;124A(3):307–12.

    Article  CAS  PubMed  Google Scholar 

  28. Nickel RE, Magenis RE. Neural tube defects and deletions of 22q11. Am J Med Genet. 1996;66(1):25–7.

    Article  CAS  PubMed  Google Scholar 

  29. Nickel RE, Pillers DA, Merkens M, Magenis RE, Driscoll DA, Emanuel BS, et al. Velo-cardio-facial syndrome and DiGeorge sequence with meningomyelocele and deletions of the 22q11 region. Am J Med Genet. 1994;52(4):445–9.

    Article  CAS  PubMed  Google Scholar 

  30. Seller MJ, Mohammed S, Russell J, Ogilvie C. Microdeletion 22q11.2, Kousseff syndrome and spina bifida. Clin Dysmorphol. 2002;11(2):113–5.

    Article  PubMed  Google Scholar 

  31. Toriello HV, Sharda JK, Beaumont EJ. Autosomal recessive syndrome of sacral and conotruncal developmental field defects (Kousseff syndrome). Am J Med Genet. 1985;22(2):357–60.

    Article  CAS  PubMed  Google Scholar 

  32. Nye JS, Balkin N, Lucas H, Knepper PA, McLone DG, Charrow J. Myelomeningocele and Waardenburg syndrome (type 3) in patients with interstitial deletions of 2q35 and the PAX3 gene: possible digenic inheritance of a neural tube defect. Am J Med Genet. 1998;75(4):401–8.

    Article  CAS  PubMed  Google Scholar 

  33. Hart J, Miriyala K. Neural tube defects in Waardenburg syndrome: a case report and review of the literature. Am J Med Genet A. 2017;173(9):2472–7.

    Article  CAS  PubMed  Google Scholar 

  34. Risch N. Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs. Am J Hum Genet. 1990;46(2):242–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Risch N. Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet. 1990;46(2):229–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mitchell LE. Epidemiology of neural tube defects. Am J Med Genet C Semin Med Genet. 2005;135C(1):88–94.

    Article  PubMed  Google Scholar 

  37. Mitchell LE, Adzick NS, Melchionne J, Pasquariello PS, Sutton LN, Whitehead AS. Spina bifida. Lancet. 2004;364(9448):1885–95.

    Article  PubMed  Google Scholar 

  38. Au KS, Ashley-Koch A, Northrup H. Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Dev Disabil Res Rev. 2010;16(1):6–15.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Greene ND, Stanier P, Copp AJ. Genetics of human neural tube defects. Hum Mol Genet. 2009;18(R2):R113–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. De Marco P, Merello E, Piatelli G, Cama A, Kibar Z, Capra V. Planar cell polarity gene mutations contribute to the etiology of human neural tube defects in our population. Birth Defects Res A Clin Mol Teratol. 2014;100(8):633–41.

    Article  PubMed  CAS  Google Scholar 

  41. Zohn IE, Sarkar AA. Modeling neural tube defects in the mouse. Curr Top Dev Biol. 2008;84:1–35.

    Article  CAS  PubMed  Google Scholar 

  42. Harris MJ, Juriloff DM. Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. Birth Defects Res A Clin Mol Teratol. 2007;79(3):187–210.

    Article  CAS  PubMed  Google Scholar 

  43. Zohn IE. Mouse as a model for multifactorial inheritance of neural tube defects. Birth Defects Res C Embryo Today. 2012;96(2):193–205.

    Article  CAS  PubMed  Google Scholar 

  44. Harris MJ, Juriloff DM. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol. 2010;88(8):653–69.

    Article  CAS  PubMed  Google Scholar 

  45. Juriloff DM, Harris MJ. A consideration of the evidence that genetic defects in planar cell polarity contribute to the etiology of human neural tube defects. Birth Defects Res A Clin Mol Teratol. 2012;94(10):824–40.

    Article  CAS  PubMed  Google Scholar 

  46. Juriloff DM, Harris MJ. Insights into the etiology of mammalian neural tube closure defects from developmental, genetic and evolutionary studies. J Dev Biol. 2018;6(3):22.

    Article  CAS  PubMed Central  Google Scholar 

  47. Kooistra MK, Leduc RY, Dawe CE, Fairbridge NA, Rasmussen J, Man JH, et al. Strain-specific modifier genes of Cecr2-associated exencephaly in mice: genetic analysis and identification of differentially expressed candidate genes. Physiol Genomics. 2012;44(1):35–46.

    Article  CAS  PubMed  Google Scholar 

  48. Korstanje R, Desai J, Lazar G, King B, Rollins J, Spurr M, et al. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects. Physiol Genomics. 2008;35(3):296–304.

    Article  CAS  PubMed  Google Scholar 

  49. Letts VA, Schork NJ, Copp AJ, Bernfield M, Frankel WN. A curly-tail modifier locus, mct1, on mouse chromosome 17. Genomics. 1995;29(3):719–24.

    Article  CAS  PubMed  Google Scholar 

  50. Neumann PE, Frankel WN, Letts VA, Coffin JM, Copp AJ, Bernfield M. Multifactorial inheritance of neural tube defects: localization of the major gene and recognition of modifiers in ct mutant mice. Nat Genet. 1994;6(4):357–62.

    Article  CAS  PubMed  Google Scholar 

  51. Kappen C. Modeling anterior development in mice: diet as modulator of risk for neural tube defects. Am J Med Genet C Semin Med Genet. 2013;163C(4):333–56.

    Article  PubMed  Google Scholar 

  52. Harris MJ, Juriloff DM. Maternal diet alters exencephaly frequency in SELH/Bc strain mouse embryos. Birth Defects Res A Clin Mol Teratol. 2005;73(8):532–40.

    Article  CAS  PubMed  Google Scholar 

  53. Juriloff DM, Macdonald KB, Harris MJ. Genetic analysis of the cause of exencephaly in the SELH/Bc mouse stock. Teratology. 1989;40(4):395–405.

    Article  CAS  PubMed  Google Scholar 

  54. Bentham J, Michell AC, Lockstone H, Andrew D, Schneider JE, Brown NA, et al. Maternal high-fat diet interacts with embryonic Cited2 genotype to reduce Pitx2c expression and enhance penetrance of left-right patterning defects. Hum Mol Genet. 2010;19(17):3394–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Greene ND, Copp AJ. Mouse models of neural tube defects: investigating preventive mechanisms. Am J Med Genet C Semin Med Genet. 2005;135C(1):31–41.

    Article  PubMed  Google Scholar 

  56. Zohn IE, Sarkar AA. The visceral yolk sac endoderm provides for absorption of nutrients to the embryo during neurulation. Birth Defects Res A Clin Mol Teratol. 2010;88(8):593–600.

    Article  CAS  PubMed  Google Scholar 

  57. Zeisel SH. Importance of methyl donors during reproduction. Am J Clin Nutr. 2009;89(2):673S–7S.

    Article  CAS  PubMed  Google Scholar 

  58. Gray JD, Ross ME. Mechanistic insights into folate supplementation from Crooked tail and other NTD-prone mutant mice. Birth Defects Res A Clin Mol Teratol. 2009;85(4):314–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Harris MJ. Insights into prevention of human neural tube defects by folic acid arising from consideration of mouse mutants. Birth Defects Res A Clin Mol Teratol. 2009;85(4):331–9.

    Article  CAS  PubMed  Google Scholar 

  60. Reece EA. Diabetes-induced birth defects: what do we know? What can we do? Curr Diab Rep. 2012;12(1):24–32.

    Article  CAS  PubMed  Google Scholar 

  61. Zabihi S, Loeken MR. Understanding diabetic teratogenesis: where are we now and where are we going? Birth Defects Res A Clin Mol Teratol. 2010;88(10):779–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cabrera RM, Hill DS, Etheredge AJ, Finnell RH. Investigations into the etiology of neural tube defects. Birth Defects Res C Embryo Today. 2004;72(4):330–44.

    Article  CAS  PubMed  Google Scholar 

  63. Lammer EJ, Sever LE, Oakley GP Jr. Teratogen update: valproic acid. Teratology. 1987;35(3):465–73.

    Article  CAS  PubMed  Google Scholar 

  64. Gelineau-van Waes J, Voss KA, Stevens VL, Speer MC, Riley RT. Maternal fumonisin exposure as a risk factor for neural tube defects. Adv Food Nutr Res. 2009;56:145–81.

    Article  CAS  PubMed  Google Scholar 

  65. Wang A, Holladay SD, Wolf DC, Ahmed SA, Robertson JL. Reproductive and developmental toxicity of arsenic in rodents: a review. Int J Toxicol. 2006;25(5):319–31.

    Article  PubMed  CAS  Google Scholar 

  66. Colas JF, Schoenwolf GC. Towards a cellular and molecular understanding of neurulation. Dev Dyn. 2001;221(2):117–45.

    Article  CAS  PubMed  Google Scholar 

  67. Morriss-Kay G, Wood H, Chen WH. Normal neurulation in mammals. Ciba Found Symp. 1994;181:51–63; discussion 63–9.

    CAS  PubMed  Google Scholar 

  68. Schoenwolf GC. Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat. 1984;169(4):361–76.

    Article  CAS  PubMed  Google Scholar 

  69. Schoenwolf GC, Delongo J. Ultrastructure of secondary neurulation in the chick embryo. Am J Anat. 1980;158(1):43–63.

    Article  CAS  PubMed  Google Scholar 

  70. Copp AJ, Greene ND, Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet. 2003;4(10):784–93.

    Article  PubMed  Google Scholar 

  71. Fleming A, Copp AJ. A genetic risk factor for mouse neural tube defects: defining the embryonic basis. Hum Mol Genet. 2000;9(4):575–81.

    Article  CAS  PubMed  Google Scholar 

  72. Juriloff DM, Harris MJ, Tom C, MacDonald KB. Normal mouse strains differ in the site of initiation of closure of the cranial neural tube. Teratology. 1991;44(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  73. Greene ND, Copp AJ. Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn. 2009;29(4):303–11.

    Article  CAS  PubMed  Google Scholar 

  74. Galea GL, Cho YJ, Galea G, Mole MA, Rolo A, Savery D, et al. Biomechanical coupling facilitates spinal neural tube closure in mouse embryos. Proc Natl Acad Sci U S A. 2017;114(26):E5177–E86.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dady A, Havis E, Escriou V, Catala M, Duband JL. Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci. 2014;34(39):13208–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lopez-Escobar B, Caro-Vega JM, Vijayraghavan DS, Plageman TF, Sanchez-Alcazar JA, Moreno RC, et al. The non-canonical Wnt-PCP pathway shapes the mouse caudal neural plate. Development. 2018;145(9).

    Google Scholar 

  77. Harrington MJ, Chalasani K, Brewster R. Cellular mechanisms of posterior neural tube morphogenesis in the zebrafish. Dev Dyn. 2010;239(3):747–62.

    Article  PubMed  Google Scholar 

  78. Davidson LA, Keller RE. Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension. Development. 1999;126(20):4547–56.

    CAS  PubMed  Google Scholar 

  79. Schroeder TE. Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy. J Embryol Exp Morphol. 1970;23(2):427–62.

    CAS  PubMed  Google Scholar 

  80. Jones EA, Crotty D, Kulesa PM, Waters CW, Baron MH, Fraser SE, et al. Dynamic in vivo imaging of postimplantation mammalian embryos using whole embryo culture. Genesis. 2002;34(4):228–35.

    Article  CAS  PubMed  Google Scholar 

  81. Massarwa R, Niswander L. In toto live imaging of mouse morphogenesis and new insights into neural tube closure. Development. 2013;140(1):226–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pyrgaki C, Trainor P, Hadjantonakis AK, Niswander L. Dynamic imaging of mammalian neural tube closure. Dev Biol. 2010;344(2):941–7.

    Article  CAS  PubMed  Google Scholar 

  83. Yamaguchi Y, Shinotsuka N, Nonomura K, Takemoto K, Kuida K, Yosida H, et al. Live imaging of apoptosis in a novel transgenic mouse highlights its role in neural tube closure. J Cell Biol. 2011;195(6):1047–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McDole K, Guignard L, Amat F, Berger A, Malandain G, Royer LA, et al. In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell. 2018;175(3):859–76.e33.

    Article  CAS  PubMed  Google Scholar 

  85. Ray HJ, Niswander LA. Dynamic behaviors of the non-neural ectoderm during mammalian cranial neural tube closure. Dev Biol. 2016;416(2):279–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ray HJ, Niswander LA. Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure. Development. 2016;143(7):1192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Massarwa R, Ray HJ, Niswander L. Morphogenetic movements in the neural plate and neural tube: mouse. Wiley Interdiscip Rev Dev Biol. 2014;3(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  88. Galea GL, Nychyk O, Mole MA, Moulding D, Savery D, Nikolopoulou E, et al. Vangl2 disruption alters the biomechanics of late spinal neurulation leading to spina bifida in mouse embryos. Dis Model Mech. 2018;11(3).

    Google Scholar 

  89. Wang S, Garcia MD, Lopez AL III, Overbeek PA, Larin KV, Larina IV. Dynamic imaging and quantitative analysis of cranial neural tube closure in the mouse embryo using optical coherence tomography. Biomed Opt Express. 2017;8(1):407–19.

    Article  PubMed  Google Scholar 

  90. Rolo A, Savery D, Escuin S, de Castro SC, Armer HE, Munro PM, et al. Regulation of cell protrusions by small GTPases during fusion of the neural folds. Elife. 2016;5:e13273.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R, et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature. 2000;405(6782):76–81.

    Article  CAS  PubMed  Google Scholar 

  92. Tada M, Smith JC. Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development. 2000;127(10):2227–38.

    CAS  PubMed  Google Scholar 

  93. Wallingford JB, Rowning BA, Vogeli KM, Rothbacher U, Fraser SE, Harland RM. Dishevelled controls cell polarity during Xenopus gastrulation. Nature. 2000;405(6782):81–5.

    Article  CAS  PubMed  Google Scholar 

  94. Vladar EK, Antic D, Axelrod JD. Planar cell polarity signaling: the developing cell’s compass. Cold Spring Harb Perspect Biol. 2009;1(3):a002964.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wallingford JB. Planar cell polarity and the developmental control of cell behavior in vertebrate embryos. Annu Rev Cell Dev Biol. 2012;28:627–53.

    Article  CAS  PubMed  Google Scholar 

  96. Wallingford JB, Harland RM. Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development. 2002;129(24):5815–25.

    Article  CAS  PubMed  Google Scholar 

  97. Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, et al. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development. 2006;133(9):1767–78.

    Article  CAS  PubMed  Google Scholar 

  98. Ybot-Gonzalez P, Savery D, Gerrelli D, Signore M, Mitchell CE, Faux CH, et al. Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development. 2007;134(4):789–99.

    Article  CAS  PubMed  Google Scholar 

  99. Kibar Z, Vogan KJ, Groulx N, Justice MJ, Underhill DA, Gros P. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet. 2001;28(3):251–5.

    Article  CAS  PubMed  Google Scholar 

  100. Murdoch JN, Doudney K, Paternotte C, Copp AJ, Stanier P. Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum Mol Genet. 2001;10(22):2593–601.

    Article  CAS  PubMed  Google Scholar 

  101. Wilson DB, Wyatt DP. Analysis of neurulation in a mouse model for neural dysraphism. Exp Neurol. 1994;127(1):154–8.

    Article  CAS  PubMed  Google Scholar 

  102. Smith LJ, Stein KF. Axial elongation in the mouse and its retardation in homozygous looptail mice. J Embryol Exp Morphol. 1962;10:73–87.

    CAS  PubMed  Google Scholar 

  103. Gerrelli D, Copp AJ. Failure of neural tube closure in the loop-tail (Lp) mutant mouse: analysis of the embryonic mechanism. Brain Res Dev Brain Res. 1997;102(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  104. Greene ND, Gerrelli D, Van Straaten HW, Copp AJ. Abnormalities of floor plate, notochord and somite differentiation in the loop-tail (Lp) mouse: a model of severe neural tube defects. Mech Dev. 1998;73(1):59–72.

    Article  CAS  PubMed  Google Scholar 

  105. Kirillova I, Novikova I, Auge J, Audollent S, Esnault D, Encha-Razavi F, et al. Expression of the sonic hedgehog gene in human embryos with neural tube defects. Teratology. 2000;61(5):347–54.

    Article  CAS  PubMed  Google Scholar 

  106. Hamblet NS, Lijam N, Ruiz-Lozano P, Wang J, Yang Y, Luo Z, et al. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development. 2002;129(24):5827–38.

    Article  CAS  PubMed  Google Scholar 

  107. Etheridge SL, Ray S, Li S, Hamblet NS, Lijam N, Tsang M, et al. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet. 2008;4(11):e1000259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Wang Y, Guo N, Nathans J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci. 2006;26(8):2147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Curtin JA, Quint E, Tsipouri V, Arkell RM, Cattanach B, Copp AJ, et al. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol. 2003;13(13):1129–33.

    Article  CAS  PubMed  Google Scholar 

  110. Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP, et al. Wnt5a functions in planar cell polarity regulation in mice. Dev Biol. 2007;306(1):121–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lu X, Borchers AG, Jolicoeur C, Rayburn H, Baker JC, Tessier-Lavigne M. PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature. 2004;430(6995):93–8.

    Article  CAS  PubMed  Google Scholar 

  112. Paudyal A, Damrau C, Patterson VL, Ermakov A, Formstone C, Lalanne Z, et al. The novel mouse mutant, chuzhoi, has disruption of Ptk7 protein and exhibits defects in neural tube, heart and lung development and abnormal planar cell polarity in the ear. BMC Dev Biol. 2010;10:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Gray RS, Abitua PB, Wlodarczyk BJ, Szabo-Rogers HL, Blanchard O, Lee I, et al. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol. 2009;11(10):1225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Copp AJ, Checiu I, Henson JN. Developmental basis of severe neural tube defects in the loop-tail (Lp) mutant mouse: use of microsatellite DNA markers to identify embryonic genotype. Dev Biol. 1994;165(1):20–9.

    Article  CAS  PubMed  Google Scholar 

  115. Heydeck W, Liu A. PCP effector proteins inturned and fuzzy play nonredundant roles in the patterning but not convergent extension of mammalian neural tube. Dev Dyn. 2011;240(8):1938–48.

    Article  CAS  PubMed  Google Scholar 

  116. Heydeck W, Zeng H, Liu A. Planar cell polarity effector gene Fuzzy regulates cilia formation and Hedgehog signal transduction in mouse. Dev Dyn. 2009;238(12):3035–42.

    Article  CAS  PubMed  Google Scholar 

  117. Zeng H, Hoover AN, Liu A. PCP effector gene Inturned is an important regulator of cilia formation and embryonic development in mammals. Dev Biol. 2010;339(2):418–28.

    Article  CAS  PubMed  Google Scholar 

  118. Yu H, Smallwood PM, Wang Y, Vidaltamayo R, Reed R, Nathans J. Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes. Development. 2010;137(21):3707–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Torban E, Patenaude AM, Leclerc S, Rakowiecki S, Gauthier S, Andelfinger G, et al. Genetic interaction between members of the Vangl family causes neural tube defects in mice. Proc Natl Acad Sci U S A. 2008;105(9):3449–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Murdoch JN, Damrau C, Paudyal A, Bogani D, Wells S, Greene ND, et al. Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice. Dis Model Mech. 2014;7(10):1153–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. De Castro SCP, Gustavsson P, Marshall AR, Gordon WM, Galea G, Nikolopoulou E, et al. Overexpression of Grainyhead-like 3 causes spina bifida and interacts genetically with mutant alleles of Grhl2 and Vangl2 in mice. Hum Mol Genet. 2018;27(24):4218–30.

    PubMed  PubMed Central  Google Scholar 

  122. Murdoch JN, Henderson DJ, Doudney K, Gaston-Massuet C, Phillips HM, Paternotte C, et al. Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Hum Mol Genet. 2003;12(2):87–98.

    Article  CAS  PubMed  Google Scholar 

  123. Carroll EA, Gerrelli D, Gasca S, Berg E, Beier DR, Copp AJ, et al. Cordon-bleu is a conserved gene involved in neural tube formation. Dev Biol. 2003;262(1):16–31.

    Article  CAS  PubMed  Google Scholar 

  124. Caddy J, Wilanowski T, Darido C, Dworkin S, Ting SB, Zhao Q, et al. Epidermal wound repair is regulated by the planar cell polarity signaling pathway. Dev Cell. 2010;19(1):138–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Merte J, Jensen D, Wright K, Sarsfield S, Wang Y, Schekman R, et al. Sec24b selectively sorts Vangl2 to regulate planar cell polarity during neural tube closure. Nat Cell Biol. 2010;12(1):41–6; sup pp 1–8.

    Article  CAS  PubMed  Google Scholar 

  126. Ross AJ, May-Simera H, Eichers ER, Kai M, Hill J, Jagger DJ, et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet. 2005;37(10):1135–40.

    Article  CAS  PubMed  Google Scholar 

  127. Escobedo N, Contreras O, Munoz R, Farias M, Carrasco H, Hill C, et al. Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity. Development. 2013;140(14):3008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shi Y, Ding Y, Lei YP, Yang XY, Xie GM, Wen J, et al. Identification of novel rare mutations of DACT1 in human neural tube defects. Hum Mutat. 2012;33(10):1450–5.

    Article  CAS  PubMed  Google Scholar 

  129. Bosoi CM, Capra V, Allache R, Trinh VQ, De Marco P, Merello E, et al. Identification and characterization of novel rare mutations in the planar cell polarity gene PRICKLE1 in human neural tube defects. Hum Mutat. 2011;32(12):1371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Allache R, De Marco P, Merello E, Capra V, Kibar Z. Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis. Birth Defects Res A Clin Mol Teratol. 2012;94(3):176–81.

    Article  CAS  PubMed  Google Scholar 

  131. De Marco P, Merello E, Rossi A, Piatelli G, Cama A, Kibar Z, et al. FZD6 is a novel gene for human neural tube defects. Hum Mutat. 2012;33(2):384–90.

    Article  PubMed  CAS  Google Scholar 

  132. Doudney K, Ybot-Gonzalez P, Paternotte C, Stevenson RE, Greene ND, Moore GE, et al. Analysis of the planar cell polarity gene Vangl2 and its co-expressed paralogue Vangl1 in neural tube defect patients. Am J Med Genet A. 2005;136(1):90–2.

    Article  CAS  PubMed  Google Scholar 

  133. Kibar Z, Salem S, Bosoi CM, Pauwels E, De Marco P, Merello E, et al. Contribution of VANGL2 mutations to isolated neural tube defects. Clin Genet. 2011;80(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  134. Kibar Z, Torban E, McDearmid JR, Reynolds A, Berghout J, Mathieu M, et al. Mutations in VANGL1 associated with neural-tube defects. N Engl J Med. 2007;356(14):1432–7.

    Article  CAS  PubMed  Google Scholar 

  135. Lei YP, Zhang T, Li H, Wu BL, Jin L, Wang HY. VANGL2 mutations in human cranial neural-tube defects. N Engl J Med. 2010;362(23):2232–5.

    Article  CAS  PubMed  Google Scholar 

  136. Robinson A, Escuin S, Doudney K, Vekemans M, Stevenson RE, Greene ND, et al. Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat. 2012;33(2):440–7.

    Article  CAS  PubMed  Google Scholar 

  137. Seo JH, Zilber Y, Babayeva S, Liu J, Kyriakopoulos P, De Marco P, et al. Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet. 2011;20(22):4324–33.

    Article  CAS  PubMed  Google Scholar 

  138. Lei Y, Zhu H, Duhon C, Yang W, Ross ME, Shaw GM, et al. Mutations in planar cell polarity gene SCRIB are associated with spina bifida. PLoS One. 2013;8(7):e69262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Reynolds A, McDearmid JR, Lachance S, De Marco P, Merello E, Capra V, et al. VANGL1 rare variants associated with neural tube defects affect convergent extension in zebrafish. Mech Dev. 2010;127(7-8):385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kharfallah F, Guyot MC, El Hassan AR, Allache R, Merello E, De Marco P, et al. Scribble1 plays an important role in the pathogenesis of neural tube defects through its mediating effect of Par-3 and Vangl1/2 localization. Hum Mol Genet. 2017;26(12):2307–20.

    Article  CAS  PubMed  Google Scholar 

  141. Chen Z, Lei Y, Cao X, Zheng Y, Wang F, Bao Y, et al. Genetic analysis of Wnt/PCP genes in neural tube defects. BMC Med Genomics. 2018;11(1):38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Beaumont M, Akloul L, Carre W, Quelin C, Journel H, Pasquier L, et al. Targeted panel sequencing establishes the implication of planar cell polarity pathway and involves new candidate genes in neural tube defect disorders. Hum Genet. 2019;138(4):363–74.

    Article  CAS  PubMed  Google Scholar 

  143. Lei Y, Zhu H, Yang W, Ross ME, Shaw GM, Finnell RH. Identification of novel CELSR1 mutations in spina bifida. PLoS One. 2014;9(3):e92207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Shi OY, Yang HY, Shen YM, Sun W, Cai CY, Cai CQ. Polymorphisms in FZD3 and FZD6 genes and risk of neural tube defects in a northern Han Chinese population. Neurol Sci. 2014;35(11):1701–6.

    Article  PubMed  Google Scholar 

  145. Wang L, Xiao Y, Tian T, Jin L, Lei Y, Finnell RH, et al. Digenic variants of planar cell polarity genes in human neural tube defect patients. Mol Genet Metab. 2018;124(1):94–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang M, De Marco P, Merello E, Drapeau P, Capra V, Kibar Z. Role of the planar cell polarity gene Protein tyrosine kinase 7 in neural tube defects in humans. Birth Defects Res A Clin Mol Teratol. 2015;103(12):1021–7.

    Article  CAS  PubMed  Google Scholar 

  147. Lei Y, Kim SE, Chen Z, Cao X, Zhu H, Yang W, et al. Variants identified in PTK7 associated with neural tube defects. Mol Genet Genomic Med. 2019;7:e584.

    Article  CAS  Google Scholar 

  148. Ishida M, Cullup T, Boustred C, James C, Docker J, English C, et al. A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly. Clin Genet. 2018;93(4):870–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Eom DS, Amarnath S, Agarwala S. Apicobasal polarity and neural tube closure. Dev Growth Differ. 2013;55(1):164–72.

    Article  PubMed  Google Scholar 

  150. Eom DS, Amarnath S, Fogel JL, Agarwala S. Bone morphogenetic proteins regulate hinge point formation during neural tube closure by dynamic modulation of apicobasal polarity. Birth Defects Res A Clin Mol Teratol. 2012;94(10):804–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Eom DS, Amarnath S, Fogel JL, Agarwala S. Bone morphogenetic proteins regulate neural tube closure by interacting with the apicobasal polarity pathway. Development. 2011;138(15):3179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Smith JL, Schoenwolf GC. Cell cycle and neuroepithelial cell shape during bending of the chick neural plate. Anat Rec. 1987;218(2):196–206.

    Article  CAS  PubMed  Google Scholar 

  153. Rolo A, Escuin S, Greene NDE, Copp AJ. Rho GTPases in mammalian spinal neural tube closure. Small GTPases. 2018;9(4):283–9.

    Article  CAS  PubMed  Google Scholar 

  154. Escuin S, Vernay B, Savery D, Gurniak CB, Witke W, Greene ND, et al. Rho-kinase-dependent actin turnover and actomyosin disassembly are necessary for mouse spinal neural tube closure. J Cell Sci. 2015;128(14):2468–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Haigo SL, Hildebrand JD, Harland RM, Wallingford JB. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr Biol. 2003;13(24):2125–37.

    Article  CAS  PubMed  Google Scholar 

  156. Hildebrand JD, Soriano P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell. 1999;99(5):485–97.

    Article  CAS  PubMed  Google Scholar 

  157. Lee JD, Silva-Gagliardi NF, Tepass U, McGlade CJ, Anderson KV. The FERM protein Epb4.1l5 is required for organization of the neural plate and for the epithelial-mesenchymal transition at the primitive streak of the mouse embryo. Development. 2007;134(11):2007–16.

    Article  CAS  PubMed  Google Scholar 

  158. Nishimura T, Takeichi M. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development. 2008;135(8):1493–502.

    Article  CAS  PubMed  Google Scholar 

  159. Kinoshita N, Sasai N, Misaki K, Yonemura S. Apical accumulation of Rho in the neural plate is important for neural plate cell shape change and neural tube formation. Mol Biol Cell. 2008;19(5):2289–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rolo A, Skoglund P, Keller R. Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB. Dev Biol. 2009;327(2):327–38.

    Article  CAS  PubMed  Google Scholar 

  161. Gray J, Ross ME. Neural tube closure in mouse whole embryo culture. J Vis Exp. 2011;(56).

    Google Scholar 

  162. Gray JD, Kholmanskikh S, Castaldo BS, Hansler A, Chung H, Klotz B, et al. LRP6 exerts non-canonical effects on Wnt signaling during neural tube closure. Hum Mol Genet. 2013;22(21):4267–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lanier LM, Gates MA, Witke W, Menzies AS, Wehman AM, Macklis JD, et al. Mena is required for neurulation and commissure formation. Neuron. 1999;22(2):313–25.

    Article  CAS  PubMed  Google Scholar 

  164. Menzies AS, Aszodi A, Williams SE, Pfeifer A, Wehman AM, Goh KL, et al. Mena and vasodilator-stimulated phosphoprotein are required for multiple actin-dependent processes that shape the vertebrate nervous system. J Neurosci. 2004;24(37):8029–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Plageman TF Jr, Chauhan BK, Yang C, Jaudon F, Shang X, Zheng Y, et al. A Trio-RhoA-Shroom3 pathway is required for apical constriction and epithelial invagination. Development. 2011;138(23):5177–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Plageman TF Jr, Chung MI, Lou M, Smith AN, Hildebrand JD, Wallingford JB, et al. Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination. Development. 2010;137(3):405–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lemay P, De Marco P, Traverso M, Merello E, Dionne-Laporte A, Spiegelman D, et al. Whole exome sequencing identifies novel predisposing genes in neural tube defects. Mol Genet Genomic Med. 2019;7(1):e00467.

    Article  PubMed  CAS  Google Scholar 

  168. Lemay P, Guyot MC, Tremblay E, Dionne-Laporte A, Spiegelman D, Henrion E, et al. Loss-of-function de novo mutations play an important role in severe human neural tube defects. J Med Genet. 2015;52(7):493–7.

    Article  CAS  PubMed  Google Scholar 

  169. Chen Z, Kuang L, Finnell RH, Wang H. Genetic and functional analysis of SHROOM1-4 in a Chinese neural tube defect cohort. Hum Genet. 2018;137(3):195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nishimura T, Honda H, Takeichi M. Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell. 2012;149(5):1084–97.

    Article  CAS  PubMed  Google Scholar 

  171. Mahaffey JP, Grego-Bessa J, Liem KF Jr, Anderson KV. Cofilin and Vangl2 cooperate in the initiation of planar cell polarity in the mouse embryo. Development. 2013;140(6):1262–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. McGreevy EM, Vijayraghavan D, Davidson LA, Hildebrand JD. Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure. Biol Open. 2015;4(2):186–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nikolopoulou E, Galea GL, Rolo A, Greene ND, Copp AJ. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development. 2017;144(4):552–66.

    Article  CAS  PubMed  Google Scholar 

  174. Sutherland AE. Tissue morphodynamics shaping the early mouse embryo. Semin Cell Dev Biol. 2016;55:89–98.

    Article  PubMed  Google Scholar 

  175. Williams M, Yen W, Lu X, Sutherland A. Distinct apical and basolateral mechanisms drive planar cell polarity-dependent convergent extension of the mouse neural plate. Dev Cell. 2014;29(1):34–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Butler MT, Wallingford JB. Spatial and temporal analysis of PCP protein dynamics during neural tube closure. Elife. 2018;7.

    Google Scholar 

  177. Shum AS, Copp AJ. Regional differences in morphogenesis of the neuroepithelium suggest multiple mechanisms of spinal neurulation in the mouse. Anat Embryol (Berl). 1996;194(1):65–73.

    Article  CAS  Google Scholar 

  178. Ybot-Gonzalez P, Cogram P, Gerrelli D, Copp AJ. Sonic hedgehog and the molecular regulation of mouse neural tube closure. Development. 2002;129(10):2507–17.

    CAS  PubMed  Google Scholar 

  179. Ybot-Gonzalez P, Gaston-Massuet C, Girdler G, Klingensmith J, Arkell R, Greene ND, et al. Neural plate morphogenesis during mouse neurulation is regulated by antagonism of Bmp signalling. Development. 2007;134(17):3203–11.

    Article  CAS  PubMed  Google Scholar 

  180. Panchision DM, Pickel JM, Studer L, Lee SH, Turner PA, Hazel TG, et al. Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev. 2001;15(16):2094–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Stottmann RW, Berrong M, Matta K, Choi M, Klingensmith J. The BMP antagonist Noggin promotes cranial and spinal neurulation by distinct mechanisms. Dev Biol. 2006;295(2):647–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 1998;12(10):1438–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A. Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development. 1999;126(8):1631–42.

    CAS  PubMed  Google Scholar 

  184. Solloway MJ, Robertson EJ. Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development. 1999;126(8):1753–68.

    CAS  PubMed  Google Scholar 

  185. Castranio T, Mishina Y. Bmp2 is required for cephalic neural tube closure in the mouse. Dev Dyn. 2009;238(1):110–22.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Stottmann RW, Klingensmith J. Bone morphogenetic protein signaling is required in the dorsal neural folds before neurulation for the induction of spinal neural crest cells and dorsal neurons. Dev Dyn. 2011;240(4):755–65.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Murdoch JN, Copp AJ. The relationship between sonic Hedgehog signaling, cilia, and neural tube defects. Birth Defects Res A Clin Mol Teratol. 2010;88(8):633–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wang Z, Wang L, Shangguan S, Lu X, Chang S, Wang J, et al. Association between PTCH1 polymorphisms and risk of neural tube defects in a Chinese population. Birth Defects Res A Clin Mol Teratol. 2013;97(6):409–15.

    Article  CAS  PubMed  Google Scholar 

  189. Wang Z, Shangguan S, Lu X, Chang S, Li R, Wu L, et al. Association of SMO polymorphisms and neural tube defects in the Chinese population from Shanxi Province. Int J Clin Exp Med. 2013;6(10):960–6.

    PubMed  PubMed Central  Google Scholar 

  190. Wu J, Lu X, Wang Z, Shangguan S, Chang S, Li R, et al. Association between PKA gene polymorphism and NTDs in high risk Chinese population in Shanxi. Int J Clin Exp Pathol. 2013;6(12):2968–74.

    PubMed  PubMed Central  Google Scholar 

  191. Kim SE, Lei Y, Hwang SH, Wlodarczyk BJ, Mukhopadhyay S, Shaw GM, et al. Dominant negative GPR161 rare variants are risk factors of human spina bifida. Hum Mol Genet. 2019;28(2):200–8.

    Article  CAS  PubMed  Google Scholar 

  192. Wallingford JB, Mitchell B. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev. 2011;25(3):201–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Eichers ER, Abd-El-Barr MM, Paylor R, Lewis RA, Bi W, Lin X, et al. Phenotypic characterization of Bbs4 null mice reveals age-dependent penetrance and variable expressivity. Hum Genet. 2006;120(2):211–26.

    Article  CAS  PubMed  Google Scholar 

  194. Caspary T, Larkins CE, Anderson KV. The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell. 2007;12(5):767–78.

    Article  CAS  PubMed  Google Scholar 

  195. Abdelhamed ZA, Wheway G, Szymanska K, Natarajan S, Toomes C, Inglehearn C, et al. Variable expressivity of ciliopathy neurological phenotypes that encompass Meckel-Gruber syndrome and Joubert syndrome is caused by complex de-regulated ciliogenesis, Shh and Wnt signalling defects. Hum Mol Genet. 2013;22(7):1358–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Weatherbee SD, Niswander LA, Anderson KV. A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and Hedgehog signaling. Hum Mol Genet. 2009;18(23):4565–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bay SN, Caspary T. What are those cilia doing in the neural tube? Cilia. 2012;1(1):19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Briscoe J, Therond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 2013;14(7):416–29.

    Article  PubMed  CAS  Google Scholar 

  199. Hackett DA, Smith JL, Schoenwolf GC. Epidermal ectoderm is required for full elevation and for convergence during bending of the avian neural plate. Dev Dyn. 1997;210(4):397–406.

    Article  CAS  PubMed  Google Scholar 

  200. Alvarez IS, Schoenwolf GC. Expansion of surface epithelium provides the major extrinsic force for bending of the neural plate. J Exp Zool. 1992;261(3):340–8.

    Article  CAS  PubMed  Google Scholar 

  201. Jacobson AG, Moury JD. Tissue boundaries and cell behavior during neurulation. Dev Biol. 1995;171(1):98–110.

    Article  CAS  PubMed  Google Scholar 

  202. Moury JD, Schoenwolf GC. Cooperative model of epithelial shaping and bending during avian neurulation: autonomous movements of the neural plate, autonomous movements of the epidermis, and interactions in the neural plate/epidermis transition zone. Dev Dyn. 1995;204(3):323–37.

    Article  CAS  PubMed  Google Scholar 

  203. Morita H, Kajiura-Kobayashi H, Takagi C, Yamamoto TS, Nonaka S, Ueno N. Cell movements of the deep layer of non-neural ectoderm underlie complete neural tube closure in Xenopus. Development. 2012;139(8):1417–26.

    Article  CAS  PubMed  Google Scholar 

  204. Sausedo RA, Smith JL, Schoenwolf GC. Role of nonrandomly oriented cell division in shaping and bending of the neural plate. J Comp Neurol. 1997;381(4):473–88.

    Article  CAS  PubMed  Google Scholar 

  205. Brouns MR, De Castro SC, Terwindt-Rouwenhorst EA, Massa V, Hekking JW, Hirst CS, et al. Over-expression of Grhl2 causes spina bifida in the axial defects mutant mouse. Hum Mol Genet. 2011;20(8):1536–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Auden A, Caddy J, Wilanowski T, Ting SB, Cunningham JM, Jane SM. Spatial and temporal expression of the Grainyhead-like transcription factor family during murine development. Gene Expr Patterns. 2006;6(8):964–70.

    Article  CAS  PubMed  Google Scholar 

  207. Gustavsson P, Greene ND, Lad D, Pauws E, de Castro SC, Stanier P, et al. Increased expression of Grainyhead-like-3 rescues spina bifida in a folate-resistant mouse model. Hum Mol Genet. 2007;16(21):2640–6.

    Article  CAS  PubMed  Google Scholar 

  208. Pyrgaki C, Liu A, Niswander L. Grainyhead-like 2 regulates neural tube closure and adhesion molecule expression during neural fold fusion. Dev Biol. 2011;353(1):38–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Rifat Y, Parekh V, Wilanowski T, Hislop NR, Auden A, Ting SB, et al. Regional neural tube closure defined by the Grainy head-like transcription factors. Dev Biol. 2010;345(2):237–45.

    Article  CAS  PubMed  Google Scholar 

  210. Ting SB, Wilanowski T, Auden A, Hall M, Voss AK, Thomas T, et al. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3. Nat Med. 2003;9(12):1513–9.

    Article  CAS  PubMed  Google Scholar 

  211. Werth M, Walentin K, Aue A, Schonheit J, Wuebken A, Pode-Shakked N, et al. The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex. Development. 2010;137(22):3835–45.

    Article  CAS  PubMed  Google Scholar 

  212. Yu Z, Lin KK, Bhandari A, Spencer JA, Xu X, Wang N, et al. The Grainyhead-like epithelial transactivator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4. Dev Biol. 2006;299(1):122–36.

    Article  CAS  PubMed  Google Scholar 

  213. Copp AJ, Brook FA, Roberts HJ. A cell-type-specific abnormality of cell proliferation in mutant (curly tail) mouse embryos developing spinal neural tube defects. Development. 1988;104(2):285–95.

    CAS  PubMed  Google Scholar 

  214. Lemay P, De Marco P, Emond A, Spiegelman D, Dionne-Laporte A, Laurent S, et al. Rare deleterious variants in GRHL3 are associated with human spina bifida. Hum Mutat. 2017;38(6):716–24.

    Article  CAS  PubMed  Google Scholar 

  215. Geelen JA, Langman J. Ultrastructural observations on closure of the neural tube in the mouse. Anat Embryol (Berl). 1979;156(1):73–88.

    Article  CAS  Google Scholar 

  216. Smithells RW, Sheppard S, Schorah CJ. Vitamin dificiencies and neural tube defects. Arch Dis Child. 1976;51(12):944–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Laurence KM, Carter CO, David PA. Major central nervous system malformations in South Wales. II. Pregnancy factors, seasonal variation, and social class effects. Br J Prev Soc Med. 1968;22(4):212–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Holmes-Siedle M, Lindenbaum RH, Galliard A. Recurrence of neural tube defect in a group of at risk women: a 10 year study of Pregnavite Forte F. J Med Genet. 1992;29(2):134–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Laurence KM, James N, Miller MH, Tennant GB, Campbell H. Double-blind randomised controlled trial of folate treatment before conception to prevent recurrence of neural-tube defects. Br Med J (Clin Res Ed). 1981;282(6275):1509–11.

    Article  CAS  Google Scholar 

  220. Seller MJ, Nevin NC. Periconceptional vitamin supplementation and the prevention of neural tube defects in south-east England and Northern Ireland. J Med Genet. 1984;21(5):325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Smithells RW, Sheppard S, Schorah CJ, Seller MJ, Nevin NC, Harris R, et al. Possible prevention of neural-tube defects by periconceptional vitamin supplementation. Lancet. 1980;1(8164):339–40.

    Article  CAS  PubMed  Google Scholar 

  222. Smithells RW, Sheppard S, Schorah CJ, Seller MJ, Nevin NC, Harris R, et al. Apparent prevention of neural tube defects by periconceptional vitamin supplementation. Arch Dis Child. 1981;56(12):911–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Vergel RG, Sanchez LR, Heredero BL, Rodriguez PL, Martinez AJ. Primary prevention of neural tube defects with folic acid supplementation: Cuban experience. Prenat Diagn. 1990;10(3):149–52.

    Article  CAS  PubMed  Google Scholar 

  224. Wald N, Sneddon J, Densem J, Frost C, Stone R, Group MVSR. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet. 1991;338(8760):131–7.

    Article  Google Scholar 

  225. Heseker HB, Mason JB, Selhub J, Rosenberg IH, Jacques PF. Not all cases of neural-tube defect can be prevented by increasing the intake of folic acid. Br J Nutr. 2009;102(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  226. Berry RJ, Li Z, Erickson JD, Li S, Moore CA, Wang H, et al. Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N Engl J Med. 1999;341(20):1485–90.

    Article  CAS  PubMed  Google Scholar 

  227. Honein MA, Paulozzi LJ, Mathews TJ, Erickson JD, Wong LY. Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. JAMA. 2001;285(23):2981–6.

    Article  CAS  PubMed  Google Scholar 

  228. Williams J, Mai CT, Mulinare J, Isenburg J, Flood TJ, Ethen M, et al. Updated estimates of neural tube defects prevented by mandatory folic acid fortification—United States, 1995-2011. MMWR Morb Mortal Wkly Rep. 2015;64(1):1–5.

    PubMed  PubMed Central  Google Scholar 

  229. Mosley BS, Cleves MA, Siega-Riz AM, Shaw GM, Canfield MA, Waller DK, et al. Neural tube defects and maternal folate intake among pregnancies conceived after folic acid fortification in the United States. Am J Epidemiol. 2009;169(1):9–17.

    Article  PubMed  Google Scholar 

  230. Blom HJ, Shaw GM, den Heijer M, Finnell RH. Neural tube defects and folate: case far from closed. Nat Rev Neurosci. 2006;7(9):724–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Rothenberg SP, da Costa MP, Sequeira JM, Cracco J, Roberts JL, Weedon J, et al. Autoantibodies against folate receptors in women with a pregnancy complicated by a neural-tube defect. N Engl J Med. 2004;350(2):134–42.

    Article  CAS  PubMed  Google Scholar 

  232. Cabrera RM, Shaw GM, Ballard JL, Carmichael SL, Yang W, Lammer EJ, et al. Autoantibodies to folate receptor during pregnancy and neural tube defect risk. J Reprod Immunol. 2008;79(1):85–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Boyles AL, Ballard JL, Gorman EB, McConnaughey DR, Cabrera RM, Wilcox AJ, et al. Association between inhibited binding of folic acid to folate receptor alpha in maternal serum and folate-related birth defects in Norway. Hum Reprod. 2011;26(8):2232–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Yang N, Wang L, Finnell RH, Li Z, Jin L, Zhang L, et al. Levels of folate receptor autoantibodies in maternal and cord blood and risk of neural tube defects in a Chinese population. Birth Defects Res A Clin Mol Teratol. 2016;106(8):685–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. van der Linden IJ, Afman LA, Heil SG, Blom HJ. Genetic variation in genes of folate metabolism and neural-tube defect risk. Proc Nutr Soc. 2006;65(2):204–15.

    Article  PubMed  CAS  Google Scholar 

  236. Denny KJ, Jeanes A, Fathe K, Finnell RH, Taylor SM, Woodruff TM. Neural tube defects, folate, and immune modulation. Birth Defects Res A Clin Mol Teratol. 2013;97(9):602–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Piedrahita JA, Oetama B, Bennett GD, van Waes J, Kamen BA, Richardson J, et al. Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development. Nat Genet. 1999;23(2):228–32.

    Article  CAS  PubMed  Google Scholar 

  238. Gelineau-van Waes J, Heller S, Bauer LK, Wilberding J, Maddox JR, Aleman F, et al. Embryonic development in the reduced folate carrier knockout mouse is modulated by maternal folate supplementation. Birth Defects Res A Clin Mol Teratol. 2008;82(7):494–507.

    Article  PubMed  CAS  Google Scholar 

  239. Zhao R, Russell RG, Wang Y, Liu L, Gao F, Kneitz B, et al. Rescue of embryonic lethality in reduced folate carrier-deficient mice by maternal folic acid supplementation reveals early neonatal failure of hematopoietic organs. J Biol Chem. 2001;276(13):10224–8.

    Article  CAS  PubMed  Google Scholar 

  240. Spiegelstein O, Mitchell LE, Merriweather MY, Wicker NJ, Zhang Q, Lammer EJ, et al. Embryonic development of folate binding protein-1 (Folbp1) knockout mice: effects of the chemical form, dose, and timing of maternal folate supplementation. Dev Dyn. 2004;231(1):221–31.

    Article  CAS  PubMed  Google Scholar 

  241. Zhao Q, Behringer RR, de Crombrugghe B. Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nat Genet. 1996;13(3):275–83.

    Article  CAS  PubMed  Google Scholar 

  242. Lin W, Zhang Z, Srajer G, Chen YC, Huang M, Phan HM, et al. Proper expression of the Gcn5 histone acetyltransferase is required for neural tube closure in mouse embryos. Dev Dyn. 2008;237(4):928–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Fleming A, Copp AJ. Embryonic folate metabolism and mouse neural tube defects. Science. 1998;280(5372):2107–9.

    Article  CAS  PubMed  Google Scholar 

  244. Barbera JP, Rodriguez TA, Greene ND, Weninger WJ, Simeone A, Copp AJ, et al. Folic acid prevents exencephaly in Cited2 deficient mice. Hum Mol Genet. 2002;11(3):283–93.

    Article  CAS  PubMed  Google Scholar 

  245. Carter M, Chen X, Slowinska B, Minnerath S, Glickstein S, Shi L, et al. Crooked tail (Cd) model of human folate-responsive neural tube defects is mutated in Wnt coreceptor lipoprotein receptor-related protein 6. Proc Natl Acad Sci U S A. 2005;102(36):12843–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Wlodarczyk BJ, Tang LS, Triplett A, Aleman F, Finnell RH. Spontaneous neural tube defects in splotch mice supplemented with selected micronutrients. Toxicol Appl Pharmacol. 2006;213(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  247. Sabatino JA, Stokes BA, Zohn IE. Prevention of neural tube defects in Lrp2 mutant mouse embryos by folic acid supplementation. Birth Defects Res. 2017;109(1):16–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Birn H, Spiegelstein O, Christensen EI, Finnell RH. Renal tubular reabsorption of folate mediated by folate binding protein 1. J Am Soc Nephrol. 2005;16(3):608–15.

    Article  CAS  PubMed  Google Scholar 

  249. Essien FB, Wannberg SL. Methionine but not folinic acid or vitamin B-12 alters the frequency of neural tube defects in Axd mutant mice. J Nutr. 1993;123(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  250. Seller MJ. Vitamins, folic acid and the cause and prevention of neural tube defects. Ciba Found Symp. 1994;181:161–73; discussion 73–9.

    CAS  PubMed  Google Scholar 

  251. Wong RL, Wlodarczyk BJ, Min KS, Scott ML, Kartiko S, Yu W, et al. Mouse Fkbp8 activity is required to inhibit cell death and establish dorso-ventral patterning in the posterior neural tube. Hum Mol Genet. 2008;17(4):587–601.

    Article  CAS  PubMed  Google Scholar 

  252. Chi H, Sarkisian MR, Rakic P, Flavell RA. Loss of mitogen-activated protein kinase kinase kinase 4 (MEKK4) results in enhanced apoptosis and defective neural tube development. Proc Natl Acad Sci U S A. 2005;102(10):3846–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Gray JD, Nakouzi G, Slowinska-Castaldo B, Dazard JE, Rao JS, Nadeau JH, et al. Functional interactions between the LRP6 WNT co-receptor and folate supplementation. Hum Mol Genet. 2010;19(23):4560–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Marean A, Graf A, Zhang Y, Niswander L. Folic acid supplementation can adversely affect murine neural tube closure and embryonic survival. Hum Mol Genet. 2011;20(18):3678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Christensen KE, Mikael LG, Leung KY, Levesque N, Deng L, Wu Q, et al. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. Am J Clin Nutr. 2015;101(3):646–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Bahous RH, Jadavji NM, Deng L, Cosin-Tomas M, Lu J, Malysheva O, et al. High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring. Hum Mol Genet. 2017;26(5):888–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Beaudin AE, Abarinov EV, Malysheva O, Perry CA, Caudill M, Stover PJ. Dietary folate, but not choline, modifies neural tube defect risk in Shmt1 knockout mice. Am J Clin Nutr. 2012;95(1):109–14.

    Article  CAS  PubMed  Google Scholar 

  258. Burgoon JM, Selhub J, Nadeau M, Sadler TW. Investigation of the effects of folate deficiency on embryonic development through the establishment of a folate deficient mouse model. Teratology. 2002;65(5):219–27.

    Article  CAS  PubMed  Google Scholar 

  259. Burren KA, Savery D, Massa V, Kok RM, Scott JM, Blom HJ, et al. Gene-environment interactions in the causation of neural tube defects: folate deficiency increases susceptibility conferred by loss of Pax3 function. Hum Mol Genet. 2008;17(23):3675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Burren KA, Scott JM, Copp AJ, Greene ND. The genetic background of the curly tail strain confers susceptibility to folate-deficiency-induced exencephaly. Birth Defects Res A Clin Mol Teratol. 2010;88(2):76–83.

    Article  CAS  PubMed  Google Scholar 

  261. De Castro SC, Leung KY, Savery D, Burren K, Rozen R, Copp AJ, et al. Neural tube defects induced by folate deficiency in mutant curly tail (Grhl3) embryos are associated with alteration in folate one-carbon metabolism but are unlikely to result from diminished methylation. Birth Defects Res A Clin Mol Teratol. 2010;88(8):612–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. Heid MK, Bills ND, Hinrichs SH, Clifford AJ. Folate deficiency alone does not produce neural tube defects in mice. J Nutr. 1992;122(4):888–94.

    Article  CAS  PubMed  Google Scholar 

  263. Kirke PN, Molloy AM, Daly LE, Burke H, Weir DG, Scott JM. Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. Q J Med. 1993;86(11):703–8.

    CAS  PubMed  Google Scholar 

  264. Beaudin AE, Abarinov EV, Noden DM, Perry CA, Chu S, Stabler SP, et al. Shmt1 and de novo thymidylate biosynthesis underlie folate-responsive neural tube defects in mice. Am J Clin Nutr. 2011;93(4):789–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Dunlevy LP, Chitty LS, Burren KA, Doudney K, Stojilkovic-Mikic T, Stanier P, et al. Abnormal folate metabolism in foetuses affected by neural tube defects. Brain. 2007;130(Pt 4):1043–9.

    PubMed  Google Scholar 

  266. Ernest S, Carter M, Shao H, Hosack A, Lerner N, Colmenares C, et al. Parallel changes in metabolite and expression profiles in crooked-tail mutant and folate-reduced wild-type mice. Hum Mol Genet. 2006;15(23):3387–93.

    Article  CAS  PubMed  Google Scholar 

  267. Carezani-Gavin M, Clarren SK, Steege T. Waardenburg syndrome associated with meningomyelocele. Am J Med Genet. 1992;42(1):135–6.

    Article  CAS  PubMed  Google Scholar 

  268. Begleiter ML, Harris DJ. Waardenburg syndrome and meningocele. Am J Med Genet. 1992;44(4):541.

    Article  CAS  PubMed  Google Scholar 

  269. Chatkupt S, Chatkupt S, Johnson WG. Waardenburg syndrome and myelomeningocele in a family. J Med Genet. 1993;30(1):83–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. da-Silva EO. Waardenburg I syndrome: a clinical and genetic study of two large Brazilian kindreds, and literature review. Am J Med Genet. 1991;40(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  271. de Saxe M, Kromberg JG, Jenkins T. Waardenburg syndrome in South Africa. Part I. An evaluation of the clinical findings in 11 families. S Afr Med J. 1984;66(7):256–61.

    PubMed  Google Scholar 

  272. Hol FA, Hamel BC, Geurds MP, Mullaart RA, Barr FG, Macina RA, et al. A frameshift mutation in the gene for PAX3 in a girl with spina bifida and mild signs of Waardenburg syndrome. J Med Genet. 1995;32(1):52–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Hoth CF, Milunsky A, Lipsky N, Sheffer R, Clarren SK, Baldwin CT. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet. 1993;52(3):455–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Kujat A, Veith VP, Faber R, Froster UG. Prenatal diagnosis and genetic counseling in a case of spina bifida in a family with Waardenburg syndrome type I. Fetal Diagn Ther. 2007;22(2):155–8.

    Article  PubMed  Google Scholar 

  275. Moline ML, Sandlin C. Waardenburg syndrome and meningomyelocele. Am J Med Genet. 1993;47(1):126.

    Article  CAS  PubMed  Google Scholar 

  276. Pantke OA, Cohen MM Jr. The Waardenburg syndrome. Birth Defects Orig Artic Ser. 1971;7(7):147–52.

    CAS  PubMed  Google Scholar 

  277. Shim SH, Wyandt HE, McDonald-McGinn DM, Zackai EZ, Milunsky A. Molecular cytogenetic characterization of multiple intrachromosomal rearrangements of chromosome 2q in a patient with Waardenburg’s syndrome and other congenital defects. Clin Genet. 2004;66(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  278. Beaudin AE, Stover PJ. Folate-mediated one-carbon metabolism and neural tube defects: balancing genome synthesis and gene expression. Birth Defects Res C Embryo Today. 2007;81(3):183–203.

    Article  CAS  PubMed  Google Scholar 

  279. Tibbetts AS, Appling DR. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr. 2010;30:57–81.

    Article  CAS  PubMed  Google Scholar 

  280. Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25(1):27–42.

    Article  CAS  PubMed  Google Scholar 

  281. Martin JB, Muccioli M, Herman K, Finnell RH, Plageman TF Jr. Folic acid modifies the shape of epithelial cells during morphogenesis via a Folr1 and MLCK dependent mechanism. Biol Open. 2019;8(1).

    Google Scholar 

  282. Balashova OA, Visina O, Borodinsky LN. Folate receptor 1 is necessary for neural plate cell apical constriction during Xenopus neural tube formation. Development. 2017;144(8):1518–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Toriyama M, Toriyama M, Wallingford JB, Finnell RH. Folate-dependent methylation of septins governs ciliogenesis during neural tube closure. FASEB J. 2017;31(8):3622–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Li H, Niswander L. Does DNA methylation provide a link between folate and neural tube closure? Epigenomics. 2018;10(10):1263–5.

    Article  CAS  PubMed  Google Scholar 

  285. Alata Jimenez N, Torres Perez SA, Sanchez-Vasquez E, Fernandino JI, Strobl-Mazzulla PH. Folate deficiency prevents neural crest fate by disturbing the epigenetic Sox2 repression on the dorsal neural tube. Dev Biol. 2018;444(Suppl 1):S193–201.

    Article  CAS  PubMed  Google Scholar 

  286. Finnell RH, Blom HJ, Shaw GM. Does global hypomethylation contribute to susceptibility to neural tube defects? Am J Clin Nutr. 2010;91(5):1153–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Lin S, Ren A, Wang L, Huang Y, Wang Y, Wang C, et al. Oxidative stress and apoptosis in benzo[a]pyrene-induced neural tube defects. Free Radic Biol Med. 2018;116:149–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Wei D, Loeken MR. Increased DNA methyltransferase 3b (Dnmt3b)-mediated CpG island methylation stimulated by oxidative stress inhibits expression of a gene required for neural tube and neural crest development in diabetic pregnancy. Diabetes. 2014;63(10):3512–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Oyama K, Sugimura Y, Murase T, Uchida A, Hayasaka S, Oiso Y, et al. Folic acid prevents congenital malformations in the offspring of diabetic mice. Endocr J. 2009;56(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  290. Juriloff DM, Harris MJ. Hypothesis: the female excess in cranial neural tube defects reflects an epigenetic drag of the inactivating X chromosome on the molecular mechanisms of neural fold elevation. Birth Defects Res A Clin Mol Teratol. 2012;94(10):849–55.

    Article  CAS  PubMed  Google Scholar 

  291. Poletta FA, Rittler M, Saleme C, Campana H, Gili JA, Pawluk MS, et al. Neural tube defects: sex ratio changes after fortification with folic acid. PLoS One. 2018;13(3):e0193127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Evans JA. Comment on changes in sex ratio in neural tube defects since food fortification with folic acid: re “hypothesis: the female excess in cranial neural tube defects reflects an epigenetic drag of the inactivating X chromosome on the molecular mechanisms of neural tube fold elevation”. Birth Defects Res A Clin Mol Teratol. 2012;94(11):958.

    Article  CAS  PubMed  Google Scholar 

  293. Taparia S, Gelineau-van Waes J, Rosenquist TH, Finnell RH. Importance of folate-homocysteine homeostasis during early embryonic development. Clin Chem Lab Med. 2007;45(12):1717–27.

    Article  CAS  PubMed  Google Scholar 

  294. Yang M, Li W, Wan Z, Du Y. Elevated homocysteine levels in mothers with neural tube defects: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2017;30(17):2051–7.

    Article  CAS  PubMed  Google Scholar 

  295. Denny KJ, Kelly CF, Kumar V, Witham KL, Cabrera RM, Finnell RH, et al. Autoantibodies against homocysteinylated protein in a mouse model of folate deficiency-induced neural tube defects. Birth Defects Res A Clin Mol Teratol. 2016;106(3):201–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Dong Y, Wang L, Lei Y, Yang N, Cabrera RM, Finnell RH, et al. Gene variants in the folate pathway are associated with increased levels of folate receptor autoantibodies. Birth Defects Res. 2018;110(12):973–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Zhang Q, Bai B, Mei X, Wan C, Cao H, Dan L, et al. Elevated H3K79 homocysteinylation causes abnormal gene expression during neural development and subsequent neural tube defects. Nat Commun. 2018;9(1):3436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Shah RH, Northrup H, Hixson JE, Morrison AC, Au KS. Genetic association of the glycine cleavage system genes and myelomeningocele. Birth Defects Res A Clin Mol Teratol. 2016;106(10):847–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Narisawa A, Komatsuzaki S, Kikuchi A, Niihori T, Aoki Y, Fujiwara K, et al. Mutations in genes encoding the glycine cleavage system predispose to neural tube defects in mice and humans. Hum Mol Genet. 2012;21(7):1496–503.

    Article  CAS  PubMed  Google Scholar 

  300. Pai YJ, Leung KY, Savery D, Hutchin T, Prunty H, Heales S, et al. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice. Nat Commun. 2015;6:6388.

    Article  CAS  PubMed  Google Scholar 

  301. Parle-McDermott A, Pangilinan F, O’Brien KK, Mills JL, Magee AM, Troendle J, et al. A common variant in MTHFD1L is associated with neural tube defects and mRNA splicing efficiency. Hum Mutat. 2009;30(12):1650–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Kim J, Lei Y, Guo J, Kim SE, Wlodarczyk BJ, Cabrera RM, et al. Formate rescues neural tube defects caused by mutations in Slc25a32. Proc Natl Acad Sci U S A. 2018;115(18):4690–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Martiniova L, Field MS, Finkelstein JL, Perry CA, Stover PJ. Maternal dietary uridine causes, and deoxyuridine prevents, neural tube closure defects in a mouse model of folate-responsive neural tube defects. Am J Clin Nutr. 2015;101(4):860–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Momb J, Lewandowski JP, Bryant JD, Fitch R, Surman DR, Vokes SA, et al. Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice. Proc Natl Acad Sci U S A. 2013;110(2):549–54.

    Article  CAS  PubMed  Google Scholar 

  305. Sudiwala S, De Castro SC, Leung KY, Brosnan JT, Brosnan ME, Mills K, et al. Formate supplementation enhances folate-dependent nucleotide biosynthesis and prevents spina bifida in a mouse model of folic acid-resistant neural tube defects. Biochimie. 2016;126:63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Bryant JD, Sweeney SR, Sentandreu E, Shin M, Ipas H, Xhemalce B, et al. Deletion of the neural tube defect-associated gene Mthfd1l disrupts one-carbon and central energy metabolism in mouse embryos. J Biol Chem. 2018;293(16):5821–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Greene ND, Leung KY, Copp AJ. Inositol, neural tube closure and the prevention of neural tube defects. Birth Defects Res. 2017;109(2):68–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Noventa M, Vitagliano A, Quaranta M, Borgato S, Abdulrahim B, Gizzo S. Preventive and therapeutic role of dietary inositol supplementation in periconceptional period and during pregnancy: a summary of evidences and future applications. Reprod Sci. 2016;23(3):278–88.

    Article  CAS  PubMed  Google Scholar 

  309. Khandelwal M, Reece EA, Wu YK, Borenstein M. Dietary myo-inositol therapy in hyperglycemia-induced embryopathy. Teratology. 1998;57(2):79–84.

    Article  CAS  PubMed  Google Scholar 

  310. Reece EA, Khandelwal M, Wu YK, Borenstein M. Dietary intake of myo-inositol and neural tube defects in offspring of diabetic rats. Am J Obstet Gynecol. 1997;176(3):536–9.

    Article  CAS  PubMed  Google Scholar 

  311. Greene ND, Copp AJ. Inositol prevents folate-resistant neural tube defects in the mouse. Nat Med. 1997;3(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  312. van Straaten HW, Copp AJ. Curly tail: a 50-year history of the mouse spina bifida model. Anat Embryol (Berl). 2001;203(4):225–37.

    Article  Google Scholar 

  313. Cockroft DL. Changes with gestational age in the nutritional requirements of postimplantation rat embryos in culture. Teratology. 1988;38(3):281–90.

    Article  CAS  PubMed  Google Scholar 

  314. Cockroft DL, Brook FA, Copp AJ. Inositol deficiency increases the susceptibility to neural tube defects of genetically predisposed (curly tail) mouse embryos in vitro. Teratology. 1992;45(2):223–32.

    Article  CAS  PubMed  Google Scholar 

  315. Cogram P, Tesh S, Tesh J, Wade A, Allan G, Greene ND, et al. D-chiro-inositol is more effective than myo-inositol in preventing folate-resistant mouse neural tube defects. Hum Reprod. 2002;17(9):2451–8.

    Article  CAS  PubMed  Google Scholar 

  316. Wang Y, Lian L, Golden JA, Morrisey EE, Abrams CS. PIP5KI gamma is required for cardiovascular and neuronal development. Proc Natl Acad Sci U S A. 2007;104(28):11748–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Wilson MP, Hugge C, Bielinska M, Nicholas P, Majerus PW, Wilson DB. Neural tube defects in mice with reduced levels of inositol 1,3,4-trisphosphate 5/6-kinase. Proc Natl Acad Sci U S A. 2009;106(24):9831–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Cavalli P, Copp AJ. Inositol and folate resistant neural tube defects. J Med Genet. 2002;39(2):E5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Cavalli P, Tedoldi S, Riboli B. Inositol supplementation in pregnancies at risk of apparently folate-resistant NTDs. Birth Defects Res A Clin Mol Teratol. 2008;82(7):540–2.

    Article  CAS  PubMed  Google Scholar 

  320. Cavalli P, Tonni G, Grosso E, Poggiani C. Effects of inositol supplementation in a cohort of mothers at risk of producing an NTD pregnancy. Birth Defects Res A Clin Mol Teratol. 2011;91(11):962–5.

    Article  CAS  PubMed  Google Scholar 

  321. Cavalli P, Ronda E. Myoinositol: the bridge (PONTI) to reach a healthy pregnancy. Int J Endocrinol. 2017;2017:5846286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  322. Greene ND, Leung KY, Gay V, Burren K, Mills K, Chitty LS, et al. Inositol for the prevention of neural tube defects: a pilot randomised controlled trial. Br J Nutr. 2016;115(6):974–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Groenen PM, Peer PG, Wevers RA, Swinkels DW, Franke B, Mariman EC, et al. Maternal myo-inositol, glucose, and zinc status is associated with the risk of offspring with spina bifida. Am J Obstet Gynecol. 2003;189(6):1713–9.

    Article  CAS  PubMed  Google Scholar 

  324. Lei Y, Finnell RH. New techniques for the study of neural tube defects. Adv Tech Biol Med. 2016;4(1).

    Google Scholar 

  325. Bassuk AG, Muthuswamy LB, Boland R, Smith TL, Hulstrand AM, Northrup H, et al. Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene. Hum Mol Genet. 2013;22(6):1097–111.

    Article  CAS  PubMed  Google Scholar 

  326. Chen Z, Lei Y, Zheng Y, Aguiar-Pulido V, Ross ME, Peng R, et al. Threshold for neural tube defect risk by accumulated singleton loss-of-function variants. Cell Res. 2018;28(10):1039–41.

    Article  PubMed  PubMed Central  Google Scholar 

  327. Wilde JJ, Petersen JR, Niswander L. Genetic, epigenetic, and environmental contributions to neural tube closure. Annu Rev Genet. 2014;48:583–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Van Allen MI, Kalousek DK, Chernoff GF, Juriloff D, Harris M, McGillivray BC, et al. Evidence for multi-site closure of the neural tube in humans. Am J Med Genet. 1993;47(5):723–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene E. Zohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zohn, I.E. (2020). Mouse Models of Neural Tube Defects. In: Liu, A. (eds) Animal Models of Human Birth Defects. Advances in Experimental Medicine and Biology, vol 1236. Springer, Singapore. https://doi.org/10.1007/978-981-15-2389-2_2

Download citation

Publish with us

Policies and ethics