Skip to main content

Ecophysiological Adaptation of Soybeans to Latitudes Through Photoperiodic and Growth Habit Genes

  • Chapter
  • First Online:
  • 1221 Accesses

Abstract

Photoperiodic genes in soybean affect latitudinal adaptation, plant growth, and overall productivity of the crop. Soybean adapts to large latitudinal zones from 50°N to 40°S, but its individual accessions adapt to a very narrow latitudinal band. For its worldwide production, major considerations are its photoperiodic and growth habit genes. Inheritance of the photoperiodic genes and role of these genes regulate early or late flowering and also regulate early or late maturity of the crop. In this chapter, we have summarized the photoperiodic and growth habit genes and their role in soybean flowering and maturity. We have also discussed their mapping, mechanism, quantitative trait loci (QTL) study, and linked markers. Major photoperiodic genes include E1 gene, E2 gene, E3 gene, E4 gene, E5 gene, E7 gene, E8 gene, and E10 gene, and genes responsible for growth habit, Dt1 and Dt2, interact with each other and are involved in the functions of flowering, maturity, and plant architecture. Specific combinations of these genes have been found to confer adaptation to specific zones of the world. Therefore, such study will be useful in the development of varieties adapted in adverse conditions of photoperiod in different zones of the country. Plant photoperiodic response provides the synchronization of their growth pattern with the seasonal events and, therefore, their better adaptation. At the same time, high photoperiodic sensitivity can retard the dispersal of important agricultural crops. These problems are solved with various breeding strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe J, Xu D, Miyano A, Komatsu K, Kanazawa A, Shimamoto Y (2003) Photoperiod insensitive Japanese soybean landracesdiffer at two maturity loci. Crop Sci 43:1300–1304

    Article  Google Scholar 

  • Akkaya MS, Shoemaker RC, Specht JE, Bhagwat AA, Cregan PB (1995) Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci 35:1439–1445

    Article  CAS  Google Scholar 

  • Bernard RL (1971) Two genes for time of flowering in soybeans. Crop Sci 11:242–244

    Article  Google Scholar 

  • Bernard RL (1972) Two genes affecting stem termination in soybeans. Crop Sci 12:235–239

    Article  Google Scholar 

  • Bonato ER, Vello NA (1999) E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol 22:229–232

    Article  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  CAS  PubMed  Google Scholar 

  • Buzzell RI (1971) Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol 13:703

    Article  Google Scholar 

  • Buzzell RI, Voldeng HD (1980) Inheritance of insensitivity to long day length. Soybean Genet Newsl 7:26–29

    Google Scholar 

  • Chang JF, Green DE, Shibles R (1982) Yield and agronomic performance of semi-determinate and indeterminate soybean stem types. Crop Sci 22:97–101

    Article  Google Scholar 

  • Cober ER, Tanner JW (1996) Performance of related indeterminate and tall determinate soybean lines in short-season areas. Crop Sci 35:361–364

    Article  Google Scholar 

  • Cober ER, Voldeng HD (2001) A new soybean maturity and photoperiod-sensitivity locus linked to E1 and. T Crop Sci 41:698–701

    Article  Google Scholar 

  • Cober ER, Voldeng HD (2001a) A new soybean maturity andphotoperiod-sensitivity locus linked to E1 and. T Crop Sci 41:698–701

    Article  Google Scholar 

  • Cober ER, Voldeng HD (2001b) Low R: FR light quality delaysflowering of E7E7 soybean lines. Crop Sci 41:1823–1826

    Article  Google Scholar 

  • Cober ER, Tanner JW, Voldeng HD (1996) Genetic control of photoperiod response in early-maturing, near-isogenic soybean lines. Crop Sci 36:601–605

    Article  Google Scholar 

  • Cober ER, Molnar SJ, Charette M, Voldeng HD (2010) A new locus for early maturity in soybean. Crop Sci 50:524–527

    Article  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, Van Toai TT, Lohnes DG, Chung J, Spetch JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    Article  CAS  Google Scholar 

  • Dissanayaka A, Rodriguez TO, Di S, Yan F, Githiri SM, Rodas FR, Abe J, Takahashi R (2016) Quantitative trait locus mapping of soybean maturity gene E5. Breed Sci 66(3):407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Zhao L, Liu B, Wang Z, Jin Z, Sun H (2004) The genetic diversity of cultivated soybean grown in China. Theor Appl Genet 108:931–936

    Article  CAS  PubMed  Google Scholar 

  • Fehr WR (1987) Breeding methods for cultivar. Development:249–293

    Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda Y (1933) Cytogenetical studies on the wild and cultivated Manchurian soybeans (Glycine L.). Jpn J Bot 6:489–506

    Google Scholar 

  • Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M (2005) Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet 111:851–861

    Article  CAS  PubMed  Google Scholar 

  • Gai J (1996) Soybean breeding. In: Gai J (ed) Plant breeding-crop science. China Agriculture Press, Beijing, China

    Google Scholar 

  • Goldblatt P (1981) Cytology and the phylogeny of Leguminosae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, part 2. Royal Botanic Gardens, Kew, United Kingdom, pp 427–463

    Google Scholar 

  • Guo J, Wang Y, Song C, Zhou J, Qiu L, Huang H, Wang Y (2010) A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences. Ann Bot 106:505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haley SD, Afanador LK, Miklas PN, Stavely JR, Kelly JD (1994) Heterogeneous inbred populations are useful as sources of near isogenic lines for RAPD marker localization. Theor Appl Genet 88:337–342

    Article  CAS  PubMed  Google Scholar 

  • Han YP, Zhao X, Liu DY, Li YH, Lightfoot DA, Yang ZJ, Zhao L, Zhou G, Wang ZK, Huang L, Zhang Z, Qiu L, Zheng H, Li W (2016) Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol 209:871–884

    Article  CAS  PubMed  Google Scholar 

  • Hayama R, Agashe B, Luley E, King R, Coupland G (2007) A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 19:2988–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heatherly LG, Elmore RW (2004) Managing inputs for peak production. In: Soybeans: improvement, production and uses eds by Boerma HR and Specht JE. 3rd Agronomy N-16, ASA, CSSA, SSSA, Madison, 451–536

    Google Scholar 

  • Heatherly LG, Smith JR (2004) Effect of soybean stem growth habit on height and node number after beginning bloom in the midSouthern USA. Crop Sci 44:1855–1858

    Article  Google Scholar 

  • Ho P-T (1975) Cradle of the East: an enquiry into the indigenous origins of techniques and ideas of neolithic and early historic China, 5000–1000 B.C. Chinese University of Hong Kong, Hong Kong, China

    Google Scholar 

  • Hsu CY, Liu Y, Luthe DS, Yuceer C (2006) Poplar FT2 shortensthe juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hymowitz T (1970) On the domestication of the soybean. Econ Bot 24:408–421

    Article  Google Scholar 

  • Hymowitz T, Kaizuma N (1981) Soybean protein electrophoresis profiles from 15 Asian countries or rwegions: hypothesis on paths of dissemination of the soybean from China. Econ Bot 35:10–23

    Article  CAS  Google Scholar 

  • Hyten DL, Song Q, Zhu Y, Choi I-Y, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Nat Acad Sci U S A 103:16666–16671

    Article  CAS  Google Scholar 

  • Igasaki T, Watanabe Y, Nishiguchi M, Kotoda N (2008) The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar. Plant Cell Physiol 49:291–300

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573

    Article  CAS  PubMed  Google Scholar 

  • Kim MY, Lee S, Van K, Kim T-H, Jeong S-C, Choi I-Y, Kim D-S, Lee Y-S, Park D, Ma J (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. And Zucc.) genome. Proc Nat Acad Sci U S A 107:22032–22037

    Article  CAS  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Blankestijn-de Vries H, CHanhartand CJ, Peeters AJ (1998) Genetic interactions among late-flowering mutants of Arabidopsis. Genetics 148:885–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Park T (2006) Origin of legumes cultivation in Korean peninsula by view point of excavated grain remains and genetic diversity of legumes. Korean Agric Hist Assoc 5:1–31

    CAS  Google Scholar 

  • Lee G-A, Crawford GW, Liu L, Sasaki Y, Chen X (2011) Archaeological soybean (Glycine max) in East Asia. PLoS One 6:e26720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy YY, Dean C (1998) The transition to flowering. Plant Cell 10:1973–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Niwa M (1996) Microsatellite Dna markers linked to a gene controlling days to flowering in soybean (Glycine max) under short day conditions. Breed Sci 46:81–84

    CAS  Google Scholar 

  • Li YH, Li W, Zhang C, Yang L, Chang RZ, Gaut BS, Qiu LJ (2010) Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytol 188:242–253

    Article  CAS  PubMed  Google Scholar 

  • Li Y-h, Zhao S-c, Ma J-x, Li D, Yan L, Li J, Qi X-t, Guo X-s, Zhang L, He W-m (2013) Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genom 14:579

    Article  CAS  Google Scholar 

  • Li Y-h, Zhou G, Ma J, Jiang W, Jin L-g, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FTortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci U S A 103:6398–6403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Abe J (2010) QTL mapping for photoperiod insensitivity of a Japanese soybean landrace Sakamotowase. J Hered 101:251–256

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Fujita T, Yan ZH, Sakamoto S, Xu DH, Abe J (2007) QTL mapping of domestication related traits in soybean (Glycine max). Ann Bot (Lond) 100:1027–1038

    Article  CAS  Google Scholar 

  • Liu B, Kanazawa A, Matsumura H, Takahash R, Harada K, Abe J (2008) Genetic redundancy in soybean photo responses associated with duplication of the phytochrome a gene. Genetics 180:995–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J (2010) The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol 153:198–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansur LM, Lark KG, Kross H, Oliveira A (1993) Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet 86:907–913

    Article  CAS  PubMed  Google Scholar 

  • McBlain BA, Bernard RL (1987) A new gene affecting the timeof flowering and maturity in soybean. J Hered 78:160–162

    Article  Google Scholar 

  • Miyasaka S, Vernetti FJ, Sediyama T, Medina JC (1981) Titulo do capitulo? A Soja no Brasil. ITAL, Campinas, pp 261–278

    Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinctroles of GIGANTEA in promoting flowering and regulatingcircadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnar SJ, Rai S, Charette M, Cober ER (2003) Simple sequence repeat (SSR) markers linked to E1, E3, E4, and E7 maturity genes in soybean. Genome 46:1024–1036

    Article  CAS  PubMed  Google Scholar 

  • Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits: I Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651

    Article  Google Scholar 

  • Parvez AQ, Gardner FP (1987) Daylength and sowing date responses of soybean lines with “juvenile” trait. Crop Sci 27:305–310

    Article  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Ping J, Liu Y, Sun L, Zhao M, Li Y, She M, Sui Y, Lin F, Liu X, Tang Z, Nguyen H, Tian Z, Qiu L, Nelson RL, Clemente TE, Specht JE, Ma J (2014) Dt2 is a gain-of-function MADS-domain factor gene that specifies semi determinacy in soybean. Plant Cell 26:2831–2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saindon G, Voldeng HD, Beversdorf WD, Buzzell RI (1989) Genetic control of long daylength response in soybean. Crop Sci 29:1436–1439

    Article  Google Scholar 

  • Saindon G, Voldeng HD, Beversdorf WD, Buzzell RI (1989b) Genetic control of long daylength response in soybean. Crop Sci 29:1436–1439

    Article  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  CAS  PubMed  Google Scholar 

  • Samanfar B, Molnar SJ, Charette M, Schoenrock A, Dehne F, Golshani A, Belzile F, Cober ER (2017) Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean Theor Appl genet. 2017. Feb 130(2):377–390

    CAS  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimamoto Y, Abe J, Gao Z, Gai JY, Thseng FS (2000) Characterizing the cytoplasmic diversity and phyletic relationship of Chinese landraces of soybean, Glycine max, based on RFLPs of chloroplast and mitochondrial DNA. Genet Resour Crop Evol 47:611–617

    Article  Google Scholar 

  • Shultz JL, Kurunam D, Shopinski K, Iqbal MJ, Kazi S, Zobrist K, Bashir R, Yaegashi S, Lavu N, Afzal AJ, Yesudas CR, Kassem MA, Wu C, Zhang HB, Town CD, Meksem K, Lightfood DA (2006) The soybean genome database (SoyGD): a browser for display of duplicated polyploid, regions and sequence tagged site on the integrated physical and genetic maps of Glycine max. Nucl Acids Res 34(Database iss):D758–D765

    Article  CAS  PubMed  Google Scholar 

  • Shultz JL, Kazi S, Bashir R, Afzal AJ, Lightfood DA (2007) The development of BAC-end sequence based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water: A QTL analysis of drought tolerance. Crop Sci 41:493–509

    Article  CAS  Google Scholar 

  • Stewart DW, Cober ER, Bernard RL (2003) Modeling genetic effects on the photothermal response of soybean phonological development. Agron J 95:65–70

    Article  Google Scholar 

  • Thakare D, Kumudini S, Dinkins RD (2011) The alleles at the E1locus impact the expression pattern of two soybean FT-like genesshown to induce flowering in Arabidopsis. Planta 234:933

    Article  CAS  PubMed  Google Scholar 

  • Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, McClean PE, Qiu L, Ma J (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci U S A 107:8563–8568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsubokura Y, Watanabe S, Xia Z, Kanamori H, Yamagata H, Kaga A, Harada K (2013) Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot 113:429–441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsubokura Y, Watanabe S, Xia Z, Kanamori H, Yamagata H, Kaga A, Katayose Y, Abe J, Ishimoto M, Harada K (2014) Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot (Lond) 113:429–441

    Article  CAS  Google Scholar 

  • Valliyodan B, Dan Q, Patil G, Zeng P, Huang J, Dai L, Chen C, Li Y, Joshi T, Song L, Vuong Tri D, Musket T, Xu D, Shannon G, Shifeng C, Liu X, Nguyen HT (2016) Landscape of genomic diversity and trait discovery in soybean. Sci Rep 6:23598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang J (1992) Soybean genetics and breeding. Science press, Beijing, China

    Google Scholar 

  • Watanabe S, Tajuddin T, Yamanaka N, Hayashi M, Harada K (2004) Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed Sci 54:399–407

    Article  CAS  Google Scholar 

  • Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K (2011) A map based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodworth CM (1932) Genetics and breeding in the improvement of the soybean

    Google Scholar 

  • Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lu S, Wu H, Tabata S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl AcadSci USA 109:E2155

    Article  CAS  Google Scholar 

  • Xu D, Abe J, Gai J, Shimamoto Y (2002) Diversity of chloroplast DNASSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. Theor Appl Genet 105:645–653

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, Xia Z, Harada K, Kanazawa A, Yamada T, Abe J (2013) Genetic variation in four maturity genes affects. BMC Plant Biol 13:91. https://doi.org/10.1186/1471-2229-13-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, Kanazawa A, Yoshikawa N, Liu B, Yamada T, Abe J (2015) The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS Torthologs. Plant Physiol 168:1735–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K (2001) An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res 8:61–72

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K (2005) Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous linederived from a recombinant inbred line. Theor Appl Genet 110:634–639

    Article  CAS  PubMed  Google Scholar 

  • Zhai H, Lü S, Liang S, Wu H, Zhang X, Liu B, Kong F, Yuan X, Li J, Xia Z (2014a) GmFT4, a homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS One 9:e89030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhai H, Lu S, Wang Y, Chen X, Ren H, Yang J, Cheng W, Zong C, Gu H, Qiu H, Wu H, Zhang X, Cui T, Xia Z (2014b) Allelic variations at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars. PLoS One 9(5):e97636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y (2015) Resequencing 302 wild and cultivated accessions identifies genes related todomestication and improvement in soybean. Nat Biotechnol 33:408–414

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, R., Agrawal, N., Jain, M., Gupta, S. (2020). Ecophysiological Adaptation of Soybeans to Latitudes Through Photoperiodic and Growth Habit Genes. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I. Springer, Singapore. https://doi.org/10.1007/978-981-15-2156-0_24

Download citation

Publish with us

Policies and ethics