Skip to main content

Heat Stress in Cotton: Responses and Adaptive Mechanisms

  • Chapter
  • First Online:
Cotton Production and Uses

Abstract

Cotton is vital cash besides fiber crop and plays pivotal role in economy in many countries. It thrives well under optimal temperature. Too high and too low temperatures affect badly its growth and yield. Too low temperature affects its germination and seedling establishment stages. Particularly, high temperatures influence many physiological and biochemical processes within cotton plant that result in poor seed cotton yield. Several researches in different agroecological zones employed different agronomic practices and modern breeding techniques to mitigate the heat stress for better cotton production. A bevy of literature regarding heat stress is presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APX:

Ascorbate peroxidase

ASC:

Ascorbate

B:

Boron

Ca:

Calcium

CAT:

Catalase

CER:

CO2 exchange rate

CICR:

Central Institute for Cotton Research

GDP:

Gross domestic product

GHG:

Greenhouse gas

GPX:

Glutathione peroxidase

GSH:

Glutathione

HSFs:

Heat shock factors

HSPs:

Heat shock proteins

K:

Potassium

LAI:

Leaf area index

LAR:

Leaf area ratio

LEA:

Late embryogenesis abundant

LEL:

Leaf electrolyte leakage

Mg:

Magnesium

Mn:

Manganese

N:

Nitrogen

NAR:

Net assimilation rate

POD:

Peroxidases

PRK:

Phosphoribulokinase

PSII:

Photosystem II

ROS:

Reactive oxygen species

RuBP:

Ribulose-1,5-biphosphate

SA:

Salicylic acid

Se:

Selenium

SOD:

Superoxide dismutase

References

  • Abbas Q, Ahmad S (2018) Effect of different sowing times and cultivars on cotton fiber quality under stable cotton-wheat cropping system in southern Punjab, Pakistan. Pak J Life Soc Sci 16:77–84

    Google Scholar 

  • Abiko M, Akibayashi K, Sakata T, Kimura M, Kihara M, Itoh K, Asamizu E, Sato S, Takahashi H, Higashitani A (2005) High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sex Plant Reprod 18:91–100

    Article  CAS  Google Scholar 

  • Abrol YP, Ingram KT (1996) Effects of higher day and night temperatures on growth and yields of some crop plants. In: Bazzaz F, Sombroek W (eds) Global climate change and agricultural production. Rome, FAO and Wiley, pp 123–140

    Google Scholar 

  • ADB (2009) Annual Report: Asian Development Bank, p 122

    Google Scholar 

  • Ahmad S, Raza I (2014) Optimization of management practices to improve cotton fiber quality under irrigated arid environment. J Food Agric Environ 2(2):609–613

    Google Scholar 

  • Ahmad A, Diwan H, Abrol YP (2010) Global climate change, stress and plant productivity. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genome foundation. Springer Science+Business Media B.V., New York, pp 503–531

    Google Scholar 

  • Ahmad S, Raza I, Ali H, Shahzad AN, Atiq-ur-Rehman, Sarwar N (2014) Response of cotton crop to exogenous application of glycinebetaine under sufficient and scarce water conditions. Braz J Bot 37(4):407–415

    Google Scholar 

  • Ahmad S, Abbas Q, Abbas G, Fatima Z, Atique-ur-Rehman, Naz S, Younis H, Khan RJ, Nasim W, Habib ur Rehman M, Ahmad A, Rasul G, Khan MA, Hasanuzzaman M (2017) Quantification of climate warming and crop management impacts on cotton phenology. Plants 6(7):1–16

    Google Scholar 

  • Ahmad S, Iqbal M, Muhammad T, Mehmood A, Ahmad S, Hasanuzzaman M (2018) Cotton productivity enhanced through transplanting and early sowing. Acta Sci Biol Sci 40:e34610

    Google Scholar 

  • Ahmed FE, Hall AE, DeMason DA (1992) Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). Am J Bot 79:784–791

    Article  Google Scholar 

  • Ahmed FE, Mutters RG, Hall AE (1993) Interactive effects of high temperature and light quality on floral bud development in cowpea. Aust J Plant Physiol 20:661–667

    Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15(12):664–674

    Article  CAS  PubMed  Google Scholar 

  • Aksoy E, Demirel U, Öztürk ZN, Çaliskan S, Çaliskan ME (2015) Recent advances in potato genomics, transcriptomics, and transgenics under drought and heat stresses: a review. Turk J Bot 39:920–940

    Article  CAS  Google Scholar 

  • Alexandrov VY (1964) Cytophysiological and cytoecological investigations of heat resistance of plant cells toward the action of high and low temperature. Q Rev Biol 39:35–77

    Article  Google Scholar 

  • Ali H, Afzal MN, Ahmad F, Ahmad S, Akhtar M, Atif R (2011) Effect of sowing dates, plant spacing and nitrogen application on growth and productivity on cotton crop. Int J Sci Eng Res 2(9):1–6

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013a) Integrated weed management in cotton cultivated in the alternate-furrow planting system. J Food Agric Environ 11(3&4):1664–1669

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013b) Impact of integrated weed management on flat-sown cotton (Gossypium hirsutum L.). J Anim Plant Sci 23(4):1185–1192

    CAS  Google Scholar 

  • Ali H, Hameed RA, Ahmad S, Shahzad AN, Sarwar N (2014a) Efficacy of different techniques of nitrogen application on American cotton under semi-arid conditions. J Food Agric Environ 12(1):157–160

    Google Scholar 

  • Ali H, Hussain GS, Hussain S, Shahzad AN, Ahmad S, Javeed HMR, Sarwar N (2014b) Early sowing reduces cotton leaf curl virus occurrence and improves cotton productivity. Cer Agron Moldova XLVII(4):71–81

    Google Scholar 

  • Amin A, Nasim W, Mubeen M, Nadeem M, Ali L, Hammad HM, Sultana SR, Jabran K, Habib ur Rehman M, Ahmad S, Awais M, Rasool A, Fahad S, Saud S, Shah AN, Ihsan Z, Ali S, Bajwa AA, Hakeem KR, Ameen A, Amanullah, Rehman HU, Alghabar F, Jatoi GH, Akram M, Khan A, Islam F, Ata-Ul-Karim ST, Rehmani MIA, Hussain S, Razaq M, Fathi A (2017) Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environ Sci Pollut Res 24(6):5811–5823

    CAS  Google Scholar 

  • Amin A, Nasim W, Mubeen M, Ahmad A, Nadeem M, Urich P, Fahad S, Ahmad S, Wajid A, Tabassum F, Hammad HM, Sultana SR, Anwar S, Baloch SK, Wahid A, Wilkerson CJ, Hoogenboom G (2018) Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan. Agric Syst 167:213–222

    Article  Google Scholar 

  • Andrews TJ, Hudson GS, Mate CJ, von Caemmerer S, Evans JR, Arvidsson YBC (1995) Rubisco: the consequences of altering its expression and activation in transgenic plants. J Exp Bot 46:1293–1300

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arevalo LM, Oosterhuis DM, Coker DL, Brown RS (2004) Effect of night temperatures on plant growth, boll development and yield. In: Beltwide cotton Conferences, San Antonio, Texas. National Cotton Council of America, Memphis, TN, p 1972

    Google Scholar 

  • Arevalo LM, Oosterhuis DM, Coker DL, Brown RS (2008) Physiological response of cotton to high night temperatures. Am J Plant Sci Biotechnol 2:63–68

    Google Scholar 

  • Arndt CH (1945) Temperature-growth relations of the roots and hypocotyls of cotton seedlings. Plant Physiol 20:200–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asha R, Ahamed ML (2013) Screening of cotton genotypes for heat tolerance via in vitro. Int J Bioresour Stress Manage 4:599–604

    Google Scholar 

  • Ashraf M, Saeed MM, Qureshi MJ (1994) Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environ and Exper Bot 34:275–283

    Article  Google Scholar 

  • Bange MP, Milroy SP (2004) Impact of short-term exposure to cold night temperatures on early development of cotton (Gossypium hirsutum L.). Aust J Agric Res 55:655–664

    Article  Google Scholar 

  • Bange MP, Caton SJ, Milroy SP (2008) Managing yields of high fruit retention in transgenic cotton (Gossypium hirsutum L.) using sowing date. Aust J Agric Res 59:733–741

    Article  Google Scholar 

  • Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol 152:1471–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Bellarby J, Foereid B, Hastings A, Smith P (2008) Cool farming: climate impacts of agriculture and mitigation potential. Greenpeace International, Amsterdam

    Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bibi AC, Oosterhuis DM, Brown RS, Gonias ED, Bourland FM (2003) The physiological response of cotton to high temperatures for germplasm screening, pp 87–93. Summaries of Arkansas Cotton Research 2003. AAES Research Series 521

    Google Scholar 

  • Bibi AC, Oosterhuis DM, Gonias ED (2008) Photosynthesis, quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. J Cotton Sci 12(12):150–159

    CAS  Google Scholar 

  • Binder BM, Patterson SE (2009) Ethylene-dependent and -independent regulation of abscission. Stewart Postharvest Rev 5:1–10

    Google Scholar 

  • Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci 21:43–47

    Article  Google Scholar 

  • Bowman DT, Gutiérrez OA (2003) Sources of fiber strength in the U.S. upland cotton crop from 1980 to 2000. J Cotton Sci 7:164–169

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Bradow JM, Davidonis GH (2000) Quantitation of fiber quality and the cotton production-processing interface: a physiologist’s perspective. J Cotton Sci 4:34–64

    Google Scholar 

  • Bradow JM, Davidonis GH (2010) Effects of environment on fiber quality. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of cotton. Springer, Dordrecht, pp 229–245

    Chapter  Google Scholar 

  • Bradow JM, Sassenrath-Cole GF, Hinojosa O, Wartelle LH (1996) Cotton fibre physical and physiological maturity variation in response to genotype and environment. In: Proceedings of the Beltwide cotton conference, vol 2. National Cotton Council, Memphis, TN, pp 1251–1254

    Google Scholar 

  • Bradow JM, Wartelle LH, Bauer PJ, Sassenrath-Cole GF (1997) Small-sample cotton fiber quality quantitation. J Cotton Sci 1:48–58

    Google Scholar 

  • Brown PW, Zeiher CA (1998) A model to estimate cotton canopy temperature in the desert southwest. In: Dugger CP, Richter DA (eds) Proceeding of the Beltwide cotton conferences. National Cotton Council of America, Memphis, TN, p 1734

    Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchannan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Brown PW (2001) Heat stress and cotton yields in Arizona. In: Cotton: a College of Agriculture Report. AZ1224. College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, p 7

    Google Scholar 

  • Brown PW (2008) Cotton heat stress. The University of Arizona Cooperative Extension, AZ1448. College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, 10 p

    Google Scholar 

  • Burke JJ (2001) Opportunities for improving cotton’s tolerance to high temperature. In: Proceedings of the Beltwide Cotton Conference. National Cotton Council, Memphis, TN, pp 1453–1454

    Google Scholar 

  • Burke JJ, Hatfield JL, Klein RR, Mullet JE (1985) Accumulation of heat shock proteins in field-grown cotton. Plant Physiol 78:394–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke JJ, Mahan JR, Hatfield JL (1988) Crop-specific thermal kinetic windows in relation to wheat and cotton biomass production. Agron J 80:553–556

    Article  Google Scholar 

  • Burke JJ, Velten J, Oliver MJ (2004) In vitro analysis of cotton pollen germination. Agron J 96:359–368

    Article  Google Scholar 

  • CCRI (2017) Central Cotton Research Institute, Annual summary progress report 2017. 158 p

    Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climate Change 81:7–30

    Article  Google Scholar 

  • CICR (2000) Abiotic stresses in cotton: a physiological approach. CICR Tech Bull 2:1–13

    Google Scholar 

  • Cottee NS, Wilson IW, Tan DKY, Bange MP (2014) Understanding the molecular events underpinning cultivar differences in the physiological performance and heat tolerance of cotton (Gossypium hirsutum). Funct Plant Biol 41:56–67

    Article  CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci U S A 97:13430–13435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crafts-Brandner SJ, Van De Loo FJ, Salvucci ME (1997) The two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase activase differ in sensitivity to elevated temperature. Plant Physiol 114:439–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dat JF, Lopez-delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirel U, Gür A, Can N, Memon AR (2014) Identification of heat responsive genes in cotton. Biol Plant 58(3):515–523

    Article  CAS  Google Scholar 

  • Eckardt A, Portis AR Jr (1997) Heat denaturation profiles of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) and rubisco activase and the inability of rubisco activase to restore activity of heat-denatured rubisco. Plant Physiol 113:243–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlers JD, Hall AE (1996) Genotypic classification of cowpea based on responses to heat and photoperiod. Crop Sci 36:673–679

    Article  Google Scholar 

  • Ehlig CF, LeMert RD (1973) Effects of fruit load, temperature, and relative humidity on boll retention of cotton. Crop Sci 13:168–171

    Article  Google Scholar 

  • Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M (2009) High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol 50:1911–1922

    Article  CAS  PubMed  Google Scholar 

  • Farooq J, Mahmood K, Akram MW, Rehman AU, Javaid MI, Petrescu-Mag IV, Nawaz B (2015) High temperature stress in cotton Gossypium hirsutum L. Extreme Life Biospeol Astrobiol 7:34–44

    Google Scholar 

  • Feaster CV, Turcotte EL (1985) Use of heat tolerance in cotton breeding. In: Dugger CP, Richter DA (eds) Proceeding of the Beltwide cotton conferences. National Cotton Council of America, Memphis, TN, pp 364–366

    Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60(13):3891–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647

    Article  CAS  PubMed  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Gipson JR, Joham HE (1969) Influence of night temperature on growth and development of cotton (Gossypium hirsutum L.). I. Fruiting and boll development. Agron J 60:292–295

    Article  Google Scholar 

  • Gipson JR, Ray LL (1969) Fiber elongation rates in five varieties of cotton (Gossypium hirsutum L.) as influenced by night temperature. Crop Sci 9:339–341

    Article  Google Scholar 

  • Gokani SJ, Thaker VS (2002) Physiological and biochemical changes associated with cotton fiber development. IX. Role of IAA and PAA. Field Crop Res 77:127–136

    Article  Google Scholar 

  • Gou JY, Wang LJ, Chen SP, Hu WL, Chen XY (2007) Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res 17:422–434

    Article  CAS  PubMed  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a flourescence. Aust J Plant Physiol 22:131–160

    CAS  Google Scholar 

  • Guinn G (1974) Abscission of cotton floral buds and bolls as influenced by factors affecting photosynthesis and respiration. Crop Sci 14:291–293

    Article  CAS  Google Scholar 

  • Gür A, Demirel U, Özden M, Kahraman A, Çopur O (2010) Diurnal gradual heat stress affects antioxidant enzymes, proline accumulation and some physiological components in cotton (Gossypium hirsutum L.). Afr J Biotechnol 9:1008–1015

    Article  Google Scholar 

  • Gurley WB, Caldana C, Grimbs S, Willmitzer L, Fernie AR, Nikoloski Z (2000) HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell 12(4):457–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy C (1999) Molecular responses of plants to cold shock and cold. J Mol Microbiol Biotechnol 1:231–242

    CAS  PubMed  Google Scholar 

  • Gwimbi P, Mundoga T (2010) Impact of climate change on cotton production under rainfed conditions: case of Gokwe. J Sustain Dev Afr 12:59–69

    Google Scholar 

  • Hall AE (2001) Crop response to environment. CRC Press, Boca Raton, FL

    Google Scholar 

  • Hanson RG, Ewing EC, Ewing EC Jr (1956) Effect of environmental factors on fiber properties and yield of deltapine cottons. Agron J 48:573–581

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Wolf DW, Ort D, Izaurralde RC, Thomson AM, Morgan JA, Polley HW, Fay PA, Mader T, Hahn GL (2008) Agriculture. In: The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC, USA, p 362

    Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • Havaux M, Tardy F, Ravenel J, Chanu D, Parot P (1996) Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content. Plant Cell Environ 19:1359–1368

    Article  CAS  Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36

    Article  CAS  PubMed  Google Scholar 

  • Hejnák V, Tatar Ö, Atasoy GD, Martinková J, Çelen AE, Hnilička F, Skalický M (2015) Growth and photosynthesis of upland and Pima cotton: response to drought and heat stress. Plant Soil Environ 62:507–514

    Google Scholar 

  • Hopf N, Plesofsky-Vig N, Brambl R (1992) The heat shock response of pollen and other tissues of maize. Plant Mol Biol 19:623–630

    Article  CAS  PubMed  Google Scholar 

  • Horváth I, Glatz A, Nakamoto H, Mishkind ML, Munnik T, Saidi Y, Goloubinoff P, Harwood JL, Vigh L (2012) Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res 51:208–220

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol 50(10):1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2007) Intergovernmental Panel on Climate Change, Fourth assessment report: climate change 2007, Synthesis report, p 76

    Google Scholar 

  • Iqbal MA, Ping Q, Abid M, Kazmi SMM, Rizwan M (2016) Assessing risk perceptions and attitude among cotton farmers: a case of Punjab province, Pakistan. Int J Disaster Risk Reduct 16:68–74

    Article  Google Scholar 

  • Jackson JE (1967) Studies on the sowing dates of cotton in the Sudan Gezira. J Agric Sci 69:305–315

    Article  Google Scholar 

  • Janjua PZ, Samad G, Khan NU (2010) Impact of climate change on wheat production: a case study of Pakistan. Pak Dev Rev 49:799–822

    Article  Google Scholar 

  • Jiao D, Benhua J (1996) Changes of the photosynthetic electron transport and photosyntheic enzyme activies of two rice varieties under photooxidation condition. Acta Agron Sin 22:43–49

    Google Scholar 

  • John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci U S A 93:12768–12773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RM, Bradow JM, Sassenrath-Cole GF (1997) Modeling of cotton fiber quality from environmental parameters. In: Digger CP, Richter CA (eds) Proceedings of the Beltwide cotton conference, vol 2. National Cotton Council, Memphis, TN, pp 1454–1455

    Google Scholar 

  • Kakani VG, Reddy KR, Koti S, Wallace TP, Prasad PV, Reddy VR, Zhao D (2005) Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot 96:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmakar R, Das I, Dutta D, Rakshit A (2016) Potential effects of climate change on soil properties: a review. Sci Int 4:51–73

    Article  CAS  Google Scholar 

  • Kaya H, Shibahara KI, Taoka KI, Iwabuchi M, Stillman B, Araki T (2001) FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104:131–142

    Article  CAS  PubMed  Google Scholar 

  • Khan AI, Khan IA, Sadaqat HA (2008) Heat tolerance is variable in cotton (Gossypium hirsutum L.) and can be exploited for breeding of better yielding cultivars under high temperature regimes. Pak J Bot 40(5):2053–2058

    Google Scholar 

  • Khan A, Najeeb U, Wang L, Tan DKY, Yang G, Munsif F, Ali S, Hafeez A (2017) Planting density and sowing date strongly influence growth and lint yield of cotton crops. Field Crop Res 209:129–135

    Article  Google Scholar 

  • Kobza J, Seemann JR (1989) Regulation of ribulose-1,5-bisphosphate carboxylase activity in response to diurnal changes in irradiance. Plant Physiol 89:918–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolupaev YE, Akinina GE, Mokrousov AV (2005) Induction of heat tolerance in wheat coleoptiles by calcium ions and its relation to oxidative stress. Russ J Plant Physiol 52:199–204

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Krieg DR, Sung JFM (1986) Source-sink relations as affected by water stress. In: Mauney JR, Stewart JM (eds) Cotton physiology. The Cotton Foundation, Memphis, TN, pp 73–77

    Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161(4):405–413

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E, Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law RD, Crafts-Brandner SJ (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 120:173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohar DP, Peat WE (1998) Floral characteristics of heat-tolerant and heat-sensitive tomato (Lycopersicon esculentum Mill.) cultivars at high temperature. Sci Hortic 73:53–60

    Article  Google Scholar 

  • Loka DA, Oosterhuis DM (2010) Effect of high night temperatures on cotton respiration, ATP levels and carbohydrate content. Environ Exp Bot 68:258–263

    Article  CAS  Google Scholar 

  • Lu Z, Percy RG, Qualset CO, Zeiger E (1998) Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures. J Exp Bot 49:453–460

    Article  Google Scholar 

  • Ludwig LJ, Saeki T, Evans LT (1965) Photosynthesis in artificial communities of cotton plants in relation to leaf area. I. Experiments with progressive defoliation of mature plants. Aust J Biol Sci 18:1103–1118

    Article  CAS  Google Scholar 

  • Luo Q (2011) Temperature thresholds and crop production: a review. Clim Chang 109:583–598

    Article  Google Scholar 

  • Luo Q, Bange M, Clancy L (2014) Cotton crop phenology in a new temperature regime. Ecol Model 285:22–29

    Article  Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    Article  CAS  PubMed  Google Scholar 

  • Magwanga RO, Lu P, Kirungu JN, Lu H, Wang X, Cai X, Zhou Z, Zhang Z, Salih H, Wang K, Liu F (2018) Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet 19:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauney JR (1966) Floral initiation of upland cotton Gossypium hirsutum L. in response to temperatures. J Exp Bot 17:452–459

    Article  Google Scholar 

  • Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min L, Zhu L, Tu L, Deng F, Yuan D, Zhang X (2013) Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase. Plant J 75:823–835

    Article  CAS  PubMed  Google Scholar 

  • Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y, Ding Y, Liu S, Yang X, Zhang X (2014) Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol 164:1293–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Mohamed HI, Abdel-Hamid AME (2013) Molecular and biochemical studies for heat tolerance on four cotton genotypes. Rom Biotechnol Lett 18:8823–8831

    CAS  Google Scholar 

  • Moreno AA, Orellana A (2011) The physiological role of the unfolded protein response in plants. Biol Res 44:75–80

    Article  CAS  PubMed  Google Scholar 

  • Moriarty T, West R, Small G, Rao D, Ristic Z (2002) Heterologous expression of maize chloroplast protein synthesis elongation factor (EF-Tu) enhances Escherichia coli viability under heat stress. Plant Sci 163:1075–1082

    Article  CAS  Google Scholar 

  • Nasim W, Ahmad A, Wajid A, Akhtar J (2011) Nitrogen effects on growth and development of sunflower hybrids under agro-climatic conditions of Multan. Pak J Bot 43:2083–2092

    Google Scholar 

  • Nasim W, Belhouchette H, Tariq M, Fahad S, Hammad HM, Mubeen M, Munis MF, Chaudhary HJ, Khan I, Mahmood F, Abbas T, Rasul F, Nadeem M, Bajwa AA, Ullah N, Alghabari F, Saud S, Mubarak H, Ahmad R (2016) Correlation studies on nitrogen for sunflower crop across the agroclimatic variability. Environ Sci Pollut Res 23:3658–3670

    Article  CAS  Google Scholar 

  • Nava GA, Dalmago GA, Bergamaschi H, Paniz R, dos Santos RP, Marodin GAB (2009) Effect of high temperatures in the pre-blooming and blooming periods on ovule formation, pollen grains and yield of ‘Granada’ peach. Sci Hortic 122:37–44

    Article  Google Scholar 

  • Oosterhuis DM (1997) Effect of temperature extremes on cotton yields in Arkansas. In: Oosterhuis DM (ed) Proceeding of cotton research meeting and research summaries. Agricultural Experiment Station special report. University of Arkansas, Fayetteville, pp 94–98

    Google Scholar 

  • Oosterhuis DM (1999) Yield response to environmental extremes in cotton. In: Oosterhuis DM (ed) Proceeding of the 1999 cotton research meeting and summaries of cotton research in progress, vol 193. Arkansas Agricultural Experiment Station, Fayetteville, pp 30–38

    Google Scholar 

  • Oosterhuis DM (2009) Summaries of Arkansas cotton research. Arkansas Agricultural Experiment Station, University of Arkansas Division of Agriculture, Fayetteville. 225 p

    Google Scholar 

  • Oosterhuis DM, Snider JL (2009) High temperature stress on floral development and yield of cotton. In: Stress physiology in cotton. The Cotton Foundation, Cordova, TN, pp 1–24

    Google Scholar 

  • Oosterhuis DM, Bourland FM, Bibi AC, Gonias ED, Loka D, Storch D (2009) Screening for temperature tolerance in cotton. Summaries of Arkansas cotton research in 2008. AAES Research Series 573:41

    Google Scholar 

  • Oshino T, Abiko M, Saito R, Ichiishi E, Endo M, Kawagishi-Kobayashi M, Higashitani A (2007) Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol Gen Genomics 278(1):31–42

    Article  CAS  Google Scholar 

  • Panchuk II, Volkov RA, Schoffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parish RW, Phan HA, Iacuone S, Li SF (2012) Tapetal development and abiotic stress: a centre of vulnerability. Funct Plant Biol 39:553–559

    Article  CAS  PubMed  Google Scholar 

  • Pearson RW, Ratliff LT, Taylor HM (1970) Effect of soil temperature, strength, and PH on cotton seedling root elongation. Agron J 62:243–246

    Article  Google Scholar 

  • Perry SW, Krieg DR, Hutmacher RB (1983) Photosynthetic rate control in cotton: photorespiration. Plant Physiol 73:662–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettigrew WT (2001) Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Sci 41:1108–1113

    Article  Google Scholar 

  • Pettigrew WT (2004) Physiological consequences of moisture deficit stress in cotton. Crop Sci 44:1265–1272

    Article  Google Scholar 

  • Pettigrew WT (2008) The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Sci 48:278–285

    Article  Google Scholar 

  • Portis AR Jr (1992) Regulation of ribulose 1,5 biphosphate carboxylase/oxygenase activity. Annu Rev Plant Physiol Plant Mol Biol 43:415–437

    Article  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MA (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169

    Article  PubMed  Google Scholar 

  • Pradhan GP, Prasad PVV, Fritz AK, Kirkham MB, Gill BS (2012) Response of Aegilops species to drought stress during reproductive stages of development. Funct Plant Biol 39:51–59

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W (2011) Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585(1):231–239

    Article  CAS  PubMed  Google Scholar 

  • Quinn PJ, Williams WP (1985) Environmentally induced changes in chloroplast membranes and their effects on photosynthetic function. In: Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier Science Publishers B.V., Amsterdam, pp 1–47

    Google Scholar 

  • Rahman HH (2005) Genetic analysis of stomatal conductance in upland cotton (Gossypium hirsutum L.) under contrasting temperature regimes. J Agric Sci 143:161–168

    Article  Google Scholar 

  • Rahman MH, Malik SA, Saleem M (2004) Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crop Res 85:149–158

    Article  Google Scholar 

  • Rahman MH, Murtaza N, Shah MKN (2007) Study of cotton fibre traits inheritance under different temperature regimes. J Agron Crop Sci 193:45–54

    Article  Google Scholar 

  • Rahman MH, Ahmad A, Wajid A, Hussain M, Rasul F, Ishaque W, Islam MA, Shelia V, Awais M, Ullah A, Wahid A, Sultana SR, Saud S, Khan S, Fahad S, Hussain M, Hussain S, Nasim W (2017) Application of CSM-CROPGRO-Cotton model for cultivars and optimum planting dates: evaluation in changing semi-arid climate. Field Crop Res 238:139–152

    Article  Google Scholar 

  • Rahman MH, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W, Awais M, Shelia V, Ahmad S, Fahad S, Alam M, Ullah H, Hoogenboom G (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric For Meteorol 253–254:94–113

    Article  Google Scholar 

  • Rasheed R (2009) Salinity and extreme temperature effects on sprouting buds of sugarcane (Saccharum officinarum L.): some histological and biochemical studies. University of Agriculture, Faisalabad

    Google Scholar 

  • Rawson HM (1992) Plant responses to temperature under conditions of elevated CO2. Aust J Bot 40(5):473–490

    Article  CAS  Google Scholar 

  • Reddy KR, Hodges HF (1995) Cotton crop responses to a changing environment. In: Rosenzweig C et al (eds) Climate change and agriculture: analysis of potential international impacts. American Society of Agronomy Special Publication no. 59. American Society of Agronomy, Madison, WI, pp 3–30

    Google Scholar 

  • Reddy KR, Zhao D (2005) Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton. Field Crop Res 94:201–213

    Article  Google Scholar 

  • Reddy VR, Baker DN, Hodges HF (1991) Temperature effects on cotton canopy growth, photosynthesis, and respiration. Agron J 83:699–704

    Article  Google Scholar 

  • Reddy KR, Hodges HF, McKinion JM, Wall GW (1992a) Temperature effects on Pima cotton growth and development. Agron J 84:237–243

    Article  Google Scholar 

  • Reddy KR, Hodges HF, Reddy VR (1992b) Temperature effects on cotton fruit retention. Agron J 84:26–30

    Article  Google Scholar 

  • Reddy KR, Reddy VR, Hodges HF (1992c) Temperature effects on early season cotton growth and development. Agron J 84:229–237

    Article  Google Scholar 

  • Reddy KR, Hodges HF, McKinion JM (1995) Carbon dioxide and temperature effects on pima cotton growth. Agric Ecosyst Environ 54:17–29

    Article  Google Scholar 

  • Reddy KR, Hodges HF, Mckinion JM (1996) Food and agriculture in the 21st century: a cotton example. World Resour Rev 8:80–97

    Google Scholar 

  • Reddy KR, Hodges HF, McKinion JM (1997a) A comparison of scenarios for the effect of global climate change on cotton growth and yield. Funct Plant Biol 24:703–713

    Article  Google Scholar 

  • Reddy KR, Hodges HF, McKinion JM (1997b) Crop modelling and application: a cotton example. Academic, California

    Google Scholar 

  • Reddy KR, Davidonis GH, Johnson AS, Vinyard BT (1999) Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agron J 91:851–858

    Article  Google Scholar 

  • Rehman H (2006) Number and weight of cotton lint fibres: variation due to high temperatures in the field. Aust J Agric Res 57:583–590

    Article  Google Scholar 

  • Reynolds MP, Nagarajan S, Razzaue MA, Ageeb OAA (eds) (1997) Using canopy temperature depression to select for yield potential of wheat in heat-stressed environmental. Wheat Special Report No 42:51 p CIMMYT, Mexico

    Google Scholar 

  • Riaz M, Farooq J, Mahmood A, Sadiq MA, Yaseen M (2013) Genotypic variability for root/shoot parameters under water stress in some advanced lines of cotton (Gossypium hirsutum L.). Genet Mol Res 12:552–561

    Article  CAS  PubMed  Google Scholar 

  • Roberts EM, Rao NR, Huang JY, Trolinder NL, Haigler CH (1992) Effects of cycling temperatures on fiber metabolism in cultured cotton ovules. Plant Physiol 100:979–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Garay B, Barrow JR (1988) Pollen selection for heat tolerance in cotton. Crop Sci 28:857–859

    Article  Google Scholar 

  • Rodríguez M, Canales E, Borrás-hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnología Aplicada 22:1–10

    Google Scholar 

  • Roy M, Ghosh B (1996) Polyamines, both common and uncommon, under heat stress in rice (Oryza sativa) callus. Physiol Plant 98:196–200

    Article  CAS  Google Scholar 

  • Ruan YL (2007) Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single-celled cotton fibre. Funct Plant Biol 34(1):10

    Article  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    Article  CAS  PubMed  Google Scholar 

  • Sable A, Rai KM, Choudhary A, Yadav VK, Agarwal SK, Sawant SV (2018) Inhibition of heat shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development. Sci Rep 8:3620

    Google Scholar 

  • Saha SR, Hossain MM, Rahman MM, Kuo CG, Abdullah S (2010) Effect of high temperature stress on the performance of twelve sweet pepper genotypes. Bangladesh J Agric Res 35(3):525–534

    Article  Google Scholar 

  • Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190:556–565

    Article  CAS  PubMed  Google Scholar 

  • Sakata T, Higashitani A (2008) Male sterility accompanied with abnormal anther development in plants – genes and environmental stresses with special reference to high temperature injury. Int J Plant Dev Biol 2:42–51

    Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Ogren WL (1996) The mechanism of Rubisco activase: insights from studies of the properties and structure of the enzyme. Photosynth Res 47:1–11

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Portis AR, Ogren WL (1986) Light and CO2 response of ribulose-1,5-bisphosphate carboxylase/oxygenase activation in Arabidopsis leaves. Plant Physiol 80:655–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Rodríguez E, Moreno DA, Ferreres F, Rubio-Wilhelmi Mdel M, Ruiz JM (2011) Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes. Phytochemistry 72:723–729

    Article  PubMed  CAS  Google Scholar 

  • Sarwar M, Saleem MF, Najeeb U, Shakeel A, Ali S, Bilal MF (2017) Hydrogen peroxide reduces heat-induced yield losses in cotton (Gossypium hirsutum L.) by protecting cellular membrane damage. J Agron Crop Sci 203:429–441

    Article  CAS  Google Scholar 

  • Scafaro AP, Haynes PA, Atwell BJ (2010) Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J Exp Bot 61(1):191–202

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Schlenker W, Hanemann WM, Fisher AC (2006) The impact of global warming on U.S. agriculture: an econometric analysis of optimal growing conditions. Rev Econ Stat 88:113–125

    Google Scholar 

  • Schlenkera W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci U S A 106:15594–15598

    Article  Google Scholar 

  • Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725–735

    Article  CAS  Google Scholar 

  • Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Döring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53:264–274

    Article  CAS  PubMed  Google Scholar 

  • Sekmen AH, Ozgur R, Uzilday B, Turkan I (2014) Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environ Exp Bot 99:141–149

    Article  CAS  Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277

    Article  CAS  Google Scholar 

  • Singh RP, Vara Prasad PV, Sunita K, Giri SN, Reddy KR (2007) Influence of high temperature and breeding for heat tolerance in cotton: a review. Adv Agron 93:313–385

    Article  CAS  Google Scholar 

  • Smertenko A, Dráber P, Viklický V, Opatrný Z (1997) Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant Cell Environ 20:1534–1542

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2007) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Biol Sci 363:789–813

    Article  CAS  Google Scholar 

  • Snider JL, Oosterhuis DM, Skulman BW, Kawakami EM (2009) Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiol Plant 137:125–138

    Article  CAS  PubMed  Google Scholar 

  • Snider JL, Oosterhuis DM, Kawakami EM (2010) Genotypic differences in thermotolerance are dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. Physiol Plant 138:268–277

    Article  CAS  PubMed  Google Scholar 

  • Snider JL, Oosterhuis DM, Kawakami EM (2011) Diurnal pollen tube growth rate is slowed by high temperature in field-grown Gossypium hirsutum pistils. J Plant Physiol 168:441–448

    Article  CAS  PubMed  Google Scholar 

  • Snipes CE, Baskin CC (1994) Influence of early defoliation on cotton yield, seed quality, and fiber properties. Field Crops Res 37:137–143

    Article  Google Scholar 

  • Steinfield H, Gerber P, Wassenar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. FAO, Rome

    Google Scholar 

  • Stewart JM (1986) Integrated events in the flower and fruit. In: Mauney JR, Stewart JMD (eds) Cotton physiology. The Cotton Foundation, Memphis, TN, pp 261–300

    Google Scholar 

  • Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res 52:147–155

    Article  CAS  Google Scholar 

  • Sullivan CY (1972) Mechanisms of heat and drought resistance in grain sorghum and method of measurements. In: Rao N, House L (eds) Sorghum in the seventies. pp. 247–264, New Delhi: Oxford and IBH Publishers

    Google Scholar 

  • Taha MA, Malik MNA, Chaudhry FL, Makhdum MI (1981) Heat-induced sterility in cotton sown during early April in West Punjab. Environ Sci 17:189–194

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Talanova VV, Akimova TV, Titov AF (2003) Effect of whole plant and local heating on the ABA content in cucumber seedling leaves and roots and on their heat tolerance. Russ J Plant Physiol 50:90–94

    Article  CAS  Google Scholar 

  • Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal MN, Hasanuzzaman M (2017) Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst 20:251–262

    Google Scholar 

  • Tariq M, Afzal MN, Muhammad D, Ahmad S, Shahzad AN, Kiran A, Wakeel A (2018) Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crop Res 229:37–43

    Article  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Thiaw S (2003) Association between slow leaf-electrolyte-leakage under heat stress and heat tolerance during reproductive development in cowpea. University of California, Riverside, USA

    Google Scholar 

  • Tian J, Hu Y, Gan X, Zhang Y, Hu X, Gou L, Lou H, Zhang W (2013) Effects of increased night temperature on cellulose synthesis and the activity of sucrose metabolism enzymes in cotton fiber. J Integ Agri 12:979–988

    Article  Google Scholar 

  • Tikhomirova EV (1985) Changes of nitrogen metabolism in millet at elevated temperatures. Field Crop Res 11:259–264

    Article  Google Scholar 

  • Ton P (2011) Cotton and climate change: impacts and options to mitigate and adapt. ITC, 2011. Technical paper, Doc. No. MAR-11-200.E Technical Report, Geneva, xii, 32 p

    Google Scholar 

  • Tsukaguchi T, Kawamitsu Y, Takeda H, Suzuki K, Egawa Y (2003) Water status of flower buds and leaves as affected by high temperature in heat-tolerant and heat-sensitive cultivars of snap bean (Phaseolus vulgaris L.). Plant Product Sci 6:24–27

    Article  Google Scholar 

  • Ulloa M, Cantrell RG, Percy RG, Zeiger E, Lu Z (2000) Breeding & genetics QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton. J Cotton Sci 4:10–18

    CAS  Google Scholar 

  • Usman M, Ahmad A, Ahmad S, Irshad M, Khaliq T, Wajid A, Hussain K, Nasim W, Chattha TM, Trethowan R, Hoogenboom G (2009) Development and application of crop water stress index for scheduling irrigation in cotton (Gossypium hirsutum L.) under semiarid environment. J Food Agric Environ 7(3&4):386–391

    Google Scholar 

  • van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738

    Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42(1):579–620

    Article  CAS  Google Scholar 

  • Wahid A, Shabbir A (2005) Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regul 46:133–141

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12:221–244

    Article  Google Scholar 

  • Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redona E, Singh RK, Heuer S (2009) Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:91–133

    Article  Google Scholar 

  • Weis E (1981) Reversible heat-inactivation of the Calvin cycle: a possible mechanism of the temperature regulation of photosynthesis. Planta 151:33–39

    Article  CAS  PubMed  Google Scholar 

  • Weis E, Berry JA (1988) Plants and high temperature stress. Symp Soc Exp Biol 42:329–346

    CAS  PubMed  Google Scholar 

  • Wells R, Meredith WR, Williford JR (1986) Canopy photosynthesis and its relationship to plant productivity in near-isogenic cotton lines differing in leaf morphology. Plant Physiol 82:635–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White SC, Raine SR (2008) A grower guide to plant based sensing for irrigation scheduling. Centre for Engineering in Agriculture Publication, Toowoomba, QLD

    Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724

    Article  CAS  Google Scholar 

  • Wright GC, Hubick KT, Farquhar GD, Rao RNC (1993) Genetics and environmental variation in transpiration efficiency and its correlation with carbon isotope discrimination and specific leaf area in peanut. In: Ehleninger JE, Hall AE, Farquhar GD, Saugier B (eds) Stable isotopes and plant carbon- water relations. Academic, New York, pp 247–267

    Chapter  Google Scholar 

  • Wullschleger SD, Oosterhuis DM (1990) Photosynthetic carbon production and use by developing cotton leaves and bolls. Crop Sci 30:1259–1264

    Article  CAS  Google Scholar 

  • Xie W, Trolinder NL, Haigler CH (1993) Cool temperature effects on cotton fiber initiation and elongation clarified using in vitro cultures. Crop Sci 33:1258–1264

    Article  Google Scholar 

  • Yfoulis A, Fasoulas A (1978) Role of minimum and maximum environmental temperature on maturation period of the cotton boll. Agron J 70:421–425

    Article  Google Scholar 

  • Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schöz F, Shinozaki F, Yamaguchi-Shinozaki K (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Gen Genomics 286:321–332

    Article  CAS  Google Scholar 

  • Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55:485–495

    Article  CAS  PubMed  Google Scholar 

  • Zafar SA, Noor MA, Waqas MA, Wang X, Shaheen T, Raza M, Mehboob-Ur-Rahman (2018) Temperature extremes in cotton production and mitigation strategies. In: Mehmoob-Ur-Rahman, Zafar Y (eds) Past, present and future trends in cotton breeding. IntechOpen, Croatia, pp 65–91

    Google Scholar 

  • Zahid KR, Ali F, Shah F, Younas M, Shah T, Shahwar D, Hassan W, Ahmad Z, Qi C, Lu Y, Iqbal A, Wu W (2016) Response and tolerance mechanism of cotton (Gossypium hirsutum L.) to elevated temperature stress: a review. Front Plant Sci 7:937

    Google Scholar 

  • Zeiher CA, Brown PW, Silvertooth JC, Matumba N, Mitton N (1994) The effect of night temperature on cotton reproductive development. Cotton: A college of agriculture report 370096:89–96

    Google Scholar 

  • Zhang Y, Mian MAR, Bouton JH (2006) Recent molecular and genomic studies on stress tolerance of forage and turf grasses. Crop Sci 46:497–511

    Article  Google Scholar 

  • Zhang K, Zhang J, Ma J, Tang S, Liu D, Teng Z, Liu D, Zhang Z (2012) Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.). Mol Breed 29:335–348

    Article  Google Scholar 

  • Zhang J, Srivastava V, Stewart JM, Underwood J (2016) Heat-tolerance in cotton is correlated with induced overexpression of heat-shock factors, heat-shock proteins, and general stress response genes. J Cotton Sci 20:253–262

    CAS  Google Scholar 

  • Zhao D, Reddy KR, Kakani VG, Koti S, Gao W (2005) Physiological causes of cotton fruit abscission under conditions of high temperature and enhanced ultraviolet-B radiation. Physiol Plant 124:189–199

    Article  CAS  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziska LH, Bunce JA (1997) Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynth Res 54:199–208

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, F. et al. (2020). Heat Stress in Cotton: Responses and Adaptive Mechanisms. In: Ahmad, S., Hasanuzzaman, M. (eds) Cotton Production and Uses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1472-2_20

Download citation

Publish with us

Policies and ethics