Skip to main content

Flower Crop Response to Biotic and Abiotic Stresses

  • Chapter
  • First Online:
  • 1040 Accesses

Abstract

Production of flower crops round the year in India is a nature’s blessing, since the country is having varied agro-climatic conditions. Flower cultivation has been practiced in both open and protected conditions. Flowers like rose, gerbera, carnation, tuberose, gladiolus, etc. are important cut flower crops used in flower arrangements, in making bouquets, petunia as hanging baskets, garden display and in beautifying any landscape, whereas marigold is greatly used as loose flower in making garlands, decorating rangoli, temple offering, etc. However, various stress factors are associated with any flower crop that directly and indirectly hampers the growth of plant and results in poor quality flower, deprived yield and low income. Both higher and lower levels of abiotic stresses lead to decrease in flower quality and adversely affect the yield. Whereas, biotic stresses including diseases associated with fungus, bacterial, etc. can cause severe losses from seedling death to drastic decrease in the yield of flower to the growers. Thus, a brief knowledge of these stress conditions, their control measures and response of flower crops towards them is utmost important for successful cultivation of ornamental flower crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahir MP, Singh A, Patil SJ (2017) Response of different salinity levels on growth and yield of tuberose cv. Prajwal. Int J Chem Stud 5(6):2150–2152

    Google Scholar 

  • Antonello LM, Espindola MCG (2008) Effect of salt stress on the germination of calendula (Calendula officinalis L.) seeds. Rev Bras Plantas Med 10:117–120

    CAS  Google Scholar 

  • Auge RM, Foster JG, Loescher WH, Stodola AJW (1992) Symplastic molality of free amino acids and sugars in Rosa roots with regard to VA mycorrhizae and drought. Symbiosis 12:1–17

    CAS  Google Scholar 

  • Bahadoran M, Salehi H (2015) Growth and flowering of two tuberose (Polianthes tuberosa L.) cultivars under deficit irrigation by saline water. J Agric Sci Technol 17:415–426

    Google Scholar 

  • Baniasadi F, Saffari VR, Moud AAM (2018) Physiological and growth responses of Calendula officinalis L. plants to the interaction effects of polyamines and salt stress. Sci Hortic 234(14):312–317

    Article  CAS  Google Scholar 

  • Bachrach A (1972) The effect of light intensity and temperature on the bullhead phenomenon in the Baccara rose. M.Sc. Thesis, The Hebrew University of Jerusalem, Rehovot

    Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci U S A 102:15144–15148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera RI (2003) Demarcating salinity tolerance in greenhouse rose production. Acta Hortic 609:51–57

    Article  Google Scholar 

  • Cai X, Niu G, Starman T, Hall C (2014) Response of six garden roses (Rosa×hybrida L.) to salt stress. Sci Hortic 168:27–32

    Article  CAS  Google Scholar 

  • Cha-Um S, Kirdmanee C (2010) In vitro flowering of miniature roses (Rosa×hybrida L. “Red Imp”) in response to salt stress. Eur J Hortic Sci 75(6):239–245

    CAS  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Kang Y, Wan S, Chu L, Li X (2015) Chinese rose (Rosa chinensis) cultivation in Bohai Bay, China, using an improved drip irrigation method to reclaim heavy coastal saline soils. Agric Water Manag 158:99–111

    Article  Google Scholar 

  • Chimonidou-Pavlidou D (1996) Effect of drought stress at different stages of rose development. Acta Hortic 424:45–51

    Article  Google Scholar 

  • Chimonidou-Pavlidou D (1999) Irrigation and sensitive stages of development. Acta Hortic 481:393–401

    Article  Google Scholar 

  • Chimonidou-Pavlidou D (2001) Effect of irrigation and shading at the stage of flower bud appearance. Acta Hortic 547:245–251

    Article  Google Scholar 

  • Chimonidou-Pavlidou D (2004) Malfunction of roses due to drought stress. Sci Hortic 99:79–87

    Article  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Demirel K, Camoglu G, Akcal A (2019) Effect of water stress on four varieties of gladiolus. Fresenius Environ Bull 27(12):9300–9307

    Google Scholar 

  • Fahramand M, Mahmoody M, Keykha A, Noori M, Rigi K (2014) Influence of abiotic stress on proline, photosynthetic enzymes and growth. Int Res J Appl Basic Sci 8(3):257–265

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Gharineh MH, Khoddami HR, Rafieian-Kopaei M (2013) The influence of different levels of salt stress on germination of marigold (Calendula officinalis L.). Int J Agric Crop Sci 5:1581–1584

    Google Scholar 

  • Gruber H, Heijde M, Heller W, Albert A, Seidlitz HK, Ulm R (2009) Negative feedback regulation of UV-B–induced photomorphogenesis and stress acclimation in Arabidopsis. Plant Mol Biol 70:581–601

    Article  CAS  Google Scholar 

  • Halevy AH, Zieslin N (1969) The development and causes of petal blackening and malformation of Baccara rose flowers. Acta Hortic 14:149–157

    Google Scholar 

  • Hamayun M, Sohn EY, Khan SA, Shinwari ZK, Khan AL, Lee IJ (2010) Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pak J Bot 42(3):1713–1722

    CAS  Google Scholar 

  • Hattori T, Inanaga S, Araki H, Ping A, Mortia S, Luxova M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant 123:459–466

    Article  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of delta (1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Kadam GB, Singh KP, Singh MP (2013) Effect of different temperature regimes on morphological and flowering characteristics in gladiolus (Gladiolus (Tourn) L.). Indian J Plant Physiol 18(1):49–54

    Article  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozminska A, Hassan MA, Kumar D, Oprica L, Martinelli F, Grigore MN, Vicente O, Boscaiu M (2017) Characterizing the effects of salt stress in Calendula officinalis L. J Appl Bot Food Qual 90:323–329

    CAS  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17(11):3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Kang Y, Wan S, Chen X, Xu J (2015) Effect of drip-irrigation with saline water on Chinese rose (Rosa chinensis) during reclamation of very heavy coastal saline soil in a field trial. Sci Hortic 186:163–171

    Article  CAS  Google Scholar 

  • Lorenzo H, Cid MC, Siverio JM, Ruano MC (2000) Effects of sodium on mineral nutrition in rose plants. Ann Appl Biol 137:65–72

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud IS, Abdelnabi F, Mohammad M, El-Zuraiqi S, Al-Hadidi L, Ibrahim B (2005) Effect of treated saline water on flower yield and quality of roses Rosa hybrida and carnation Dianthus caryophyllus. Sci Asia 31:335–339

    Article  Google Scholar 

  • Niu G, Rodriguez DS, Aguiniga L (2008) Effect of saline water irrigation on growth and physiological responses of three rose rootstocks. HortScience 43(5):1479

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu G, Rodriguez DS (2009) Growth and physiological responses of four rose rootstocks to drought stress. J Am Soc Hort Sci 134(2):202–209

    Article  Google Scholar 

  • Oki LR, Lieth JH (2004) Effect of changes in substrate salinity on the elongation of Rosa Hybrida L. “Kardinal” stems. Sci Hortic 101:103–119

    Article  CAS  Google Scholar 

  • Paiva PDO, Simoes FC, Vieira FA, Fuini MG, Paiva R (1999) Cultura do Gladíolo. UFLA—Departamento de Agricultura, Lavras. 28p

    Google Scholar 

  • Pedrotti A, Chagas RM, Ramos VC, Prata AP, Lucas AAT, Santos PB (2015) Causas e consequências do processo de salinização dos solos, Eletrônica em Gestão. Educação e Tecnologia Ambiental 19(2):1308–1132

    Google Scholar 

  • Pinior A, Stocker GG, Alten HR, Strasser J (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15:596–605

    Article  CAS  PubMed  Google Scholar 

  • Rajendiran K, Ramanujam MP (2004) Improvement of biomass partitioning, flowering and yield by triadimefon in UV-B stressed Vigna radiata (L.) Wilczek. Biol Plant 48(1):145–148

    Article  CAS  Google Scholar 

  • Riaz A, Younis A, Hameed M, Kiran S (2010) Morphological and biochemical responses of turf grasses to water deficit condition. Pak J Bot 42(5):3441–3448

    Google Scholar 

  • Riseman A, Jensen C, Williams M (2001) Stomatal conductivity and osmotic adjustment during acclimation to multiple cycles of drought stress in potted miniature rose (Rosa hybrida). J Hortic Sci Biotechnol 76:138–144

    Article  Google Scholar 

  • Sapeta H, Costa JM, Lourenço T, van der Maroco J, Linde P, Oliveira MM (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84

    Article  CAS  Google Scholar 

  • Semeniuk P (1964) The effect of temperature on development and differentiation of rose flowers. Am Hort Mag 43:177–180

    Google Scholar 

  • Schroter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJ, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  CAS  PubMed  Google Scholar 

  • Shanan NT, Sadek ZHE (2017) Influence of silicon on tuberose plants under drought conditions. Middle East J Agric Res 6(2):348–360

    Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331(3):215–225

    Article  PubMed  Google Scholar 

  • Shillo R, Halevy AH (1976) The effect of various environmental factors on flowering of gladiolus. II. Length of the day. Sci Hortic 4(2):139–146

    Article  Google Scholar 

  • Shillo R, Halevy AH (1981) Flower and corm development in gladiolus as affected by photoperiod. Sci Hortic 15(2):187–196

    Article  Google Scholar 

  • Sharp RG, Else MA, Cameron RW, Davies WJ (2009) Water deficits promote flowering in rhododendron via regulation of pre and post initiation development. Sci Hortic 120:511–517

    Article  Google Scholar 

  • Shi L, Wang Z, Kim WS (2019) Effect of drought stress on shoot growth and physiological response in the cut rose charming black at different developmental stages. Hortic Environ Biotechnol 60:1–8

    Article  CAS  Google Scholar 

  • Singh AK, Sisodia A (2017) Textbook of floriculture and landscaping. New Delhi: New India Publishing Agency, 432p

    Google Scholar 

  • Singh RS, Motilal VS, Singh LB (1974) Studies on salt tolerance of tuberose Polianthes tuberosa. Plant Sci 6:80–88

    Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Thompson DI, Mtshali NP, Ascough GD, Erwin JE, Van Staden J (2001) Flowering control in Watsonia: effects of corm size, temperature, photoperiod and irradiance. Sci Hortic 129:493–502

    Article  Google Scholar 

  • Torbaghan ME (2012) Effect of salt stress on germination and some growth parameters of marigold (Calendula officinalis L.). Plant Sci J 1:7–19

    Google Scholar 

  • Villarino GH, Mattson NS (2011) Assessing tolerance to sodium chloride salinity in fourteen floriculture species. HortTechnology 21(5):539–545

    Article  CAS  Google Scholar 

  • Villarino GH, Bombarely A, Giovannoni JJ, Scanlon MJ, Mattson NS (2014) Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing. PLoS One 9(4):e94651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan X, Zhou Q, Wang Y, Wang W, Bao M, Zhang J (2015) Identification of heat-responsive genes in carnation (Dianthus caryophyllus L.) by RNA-seq. Front Plant Sci 6:519

    PubMed  PubMed Central  Google Scholar 

  • Wery J, Silim SN, Knights EJ, Malhotra RS, Cousin R (1994) Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica 73(1):73–83

    Article  Google Scholar 

  • Whittle CA, Malik MR, Li R, Krochko JE (2010) Comparative transcript analyses of the ovule, microspore, and mature pollen in Brassica napus. Plant Mol Biol 72(3):279–299

    Article  CAS  PubMed  Google Scholar 

  • Williams M, Rosenqvist E, Buchhave M (1999) Response of potted miniature roses (Rosa hybrida) to reduced water availability during production. J Hortic Sci Biotechnol 74:301–308

    Article  Google Scholar 

  • Williams M, Rosenqvist E, Buchhave M (2000) The effect of reducing production water availability on the post-production quality of potted miniature roses (Rosa hybrida). J Hortic Sci Biotechnol 18:143–150

    Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Yuyan A, Liang Z, Han R, Liu G (2007) Effects of soil drought on seedling growth and water metabolism of three common shrubs in Loess Plateau, Northwest China. Front Forest China 2(4):410–416

    Article  Google Scholar 

  • Zaprianova N, Ivanova I (2017) Effects of water deficit on growth, development and physiological indicators of gladiolus. J Mt Agric Balk 20(4):427–439

    Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

  • Zieslin N (1966) The causes of malformation and blackening in Baccara roses in Israel in the winter season. M.Sc. Thesis, The Hebrew University of Jerusalem, Rehovot

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sisodia, A., Singh, A.K., Padhi, M., Hembrom, R. (2020). Flower Crop Response to Biotic and Abiotic Stresses. In: Rakshit, A., Singh, H., Singh, A., Singh, U., Fraceto, L. (eds) New Frontiers in Stress Management for Durable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-1322-0_25

Download citation

Publish with us

Policies and ethics