Skip to main content

Inverse Problems Involving PDEs with Applications to Imaging

  • Chapter
  • First Online:
Mathematical Modelling, Optimization, Analytic and Numerical Solutions

Part of the book series: Industrial and Applied Mathematics ((INAMA))

  • 1094 Accesses

Abstract

In this chapter, we introduce the general idea of inverse problems particularly with applications to imaging. We use two well-known imaging modalities namely electrical impedance and diffuse optical tomography to introduce and describe inverse problems involving PDEs. We also discuss the mathematical difficulties and challenges for image reconstruction in practice. We describe both deterministic and statistical regularization techniques including Gauss–Newton method, Bayesian inversion, and sparsity approaches to provide a broad exposure to the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H.T. Banks, K. Kunisch, Estimation Techniques for Distributed Parameter Systems (Birkhauser, Basel, 2001)

    Google Scholar 

  2. M. Cheney, D. Isaacson, J.C. Newell, Electrical impedance tomography. SIAM Rev. 41(1), 85–101 (1999)

    Article  MathSciNet  Google Scholar 

  3. L. Borcea, Electrical impedance tomography. Inverse Probl. 18(6), R99–R136 (2002)

    Article  MathSciNet  Google Scholar 

  4. M. Hanke, M. Brühl, Recent progress in electrical impedance tomography. Inverse Probl. 19(6), S65–S90 (2003)

    Article  MathSciNet  Google Scholar 

  5. W. Daily, A. Ramirez, D. LaBrecque, J. Nitao, Electrical resistivity tomography of vadose water movement. Water Resour. Res. 28(5), 1429–1442 (1992)

    Article  Google Scholar 

  6. O. Isaksen, A.S. Dico, E.A. Hammer, A capacitance-based tomography system for interface measurement in separation vessels. Meas. Sci. Technol. 5(10), 1262 (1994)

    Article  Google Scholar 

  7. D.S. Holder (ed.), Electrical Impedance Tomography: Methods, History and Applications (Institute of Physics Publishing, Bristol, 2005)

    Google Scholar 

  8. R.H. Bayford, Bioimpedance tomography (electrical impedance tomography). Annu. Rev. Biomed. Eng. 8, 63–91 (2006)

    Article  Google Scholar 

  9. V.P. Palamodov, Gabor analysis of the continuum model for impedance tomography. Arkiv för Matematik 40(1), 169–187 (2002)

    Article  MathSciNet  Google Scholar 

  10. R. Chandrasekhar, Radiation Transfer (Clarendon, Oxford, 1950)

    MATH  Google Scholar 

  11. A. Ishimaru, Single Scattering and Transport Theory (Wave Propogation and Scattering in Random Media I) (Academic, New York, 1978)

    Google Scholar 

  12. H.W. Lewis, Multiple scattering in an infinite medium. Phys. Rev. 78, 526–529 (1950)

    Article  MathSciNet  Google Scholar 

  13. H. Bremmer, Random volume scattering. Radiat. Sci. J. Res. 680, 967–981 (1964)

    MathSciNet  Google Scholar 

  14. S.R. Arridge, J.C. Hebden, Optical imaging in medicine: 2. Modelling and reconstruction. Phys. Med. Biol. 42, 841–853 (1997)

    Article  Google Scholar 

  15. S.R. Arridge, Optical tomography in medical imaging: topical review. Inverse Probl. 15, R41–R93 (1999)

    Article  Google Scholar 

  16. T. Strauss, Statistical inverse problems in electrical impedance and diffuse optical tomography. Doctoral dissertation, Clemson University (2015)

    Google Scholar 

  17. T. Strauss, T. Khan, Statistical inversion in electrical impedance tomography using mixed total variation and non-convex \(\ell _p\) regularization prior. J. Inverse Ill-Posed Probl. 23(5), 529–542 (2015)

    Article  MathSciNet  Google Scholar 

  18. T. Strauss, X. Fan, S. Sun, T. Khan, Statistical inversion of absolute permeability in single-phase darcy flow. Proc. Comput. Sci. 51, 1188–1197 (2015)

    Article  Google Scholar 

  19. B. Jin, P. Maass, An analysis of electrical impedance tomography with applications to Tikhonov regularization. ESAIM: Control, Optim. Calc. Variat. 18(04), 1027–1048 (2012)

    Google Scholar 

  20. B. Jin, T. Khan, P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization. Int. J. Numer. Methods Eng. 89(3), 337–353 (2012)

    Article  MathSciNet  Google Scholar 

  21. T. Khan, A. Smirnova, 1D inverse problem in diffusion based optical tomography using iteratively regularized Gauss-Newton algorithm. Appl. Math. Comput. 161(1), 149–170 (2005)

    MathSciNet  MATH  Google Scholar 

  22. A. Kirsh, N. Grinberg, The Factorization Method for Inverse Problems (Oxford University Press, Oxford, 2008)

    Google Scholar 

  23. D. Isaacson, J.L. Mueller, J.C. Newell, S. Siltanen, Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography. IEEE Trans. Med. Imaging 23(7), 821–828 (2004)

    Article  Google Scholar 

  24. J.P. Kaipio, V. Kolehmainen, E. Somersalo, M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography. Inverse Probl. 16(5), 1487 (2000)

    Article  MathSciNet  Google Scholar 

  25. J.P. Kaipio, A. Seppänen, E. Somersalo, H. Haario, Posterior covariance related optimal current patterns in electrical impedance tomography. Inverse Probl. 20(3), 919 (2004)

    Article  MathSciNet  Google Scholar 

  26. A. Nissinen, L.M. Heikkinen, J.P. Kaipio, The Bayesian approximation error approach for electrical impedance tomography experimental results. Meas. Sci. Technol. 19(1), 015501 (2008)

    Article  Google Scholar 

  27. A. Nissinen, L.M. Heikkinen, V. Kolehmainen, J.P. Kaipio, Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography. Meas. Sci. Technol. 20(10), 105504 (2009)

    Article  Google Scholar 

  28. J.M. Bardsley, MCMC-based image reconstruction with uncertainty quantification. SIAM J. Sci. Comput. 34(3), A1316–A1332 (2012)

    Article  MathSciNet  Google Scholar 

  29. B. Jin, P. Maass, Sparsity regularization for parameter identification problems. Inverse Probl. 28(12), 123001 (2012)

    Article  MathSciNet  Google Scholar 

  30. A. Smirnova, R.A. Renaut, T. Khan, Convergence and application of a modified iteratively regularized Gauss-Newton algorithm. Inverse Probl. 23, 1547–1563 (2007)

    Article  MathSciNet  Google Scholar 

  31. A.B. Bakushinsky, A. Smirnova, On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems. Numer. Funct. Anal. Optim. 26, 35–48 (2005)

    Article  MathSciNet  Google Scholar 

  32. J. Nocedal, S.J. Wright, Numerical Optimization (Springer, New York, 1999)

    Book  Google Scholar 

  33. S. Chib, E. Greenberg, Understanding the metropolis-hastings algorithm. Am. Stat. 49(4), 327–335 (1995)

    Google Scholar 

Download references

Acknowledgements

The author would like to thanks the organizers of ISIAM particularly Professor Pammy Manchanda and Professor Abul Hasan Siddiqi for editing the book chapters and with the opportunity to attend the conference at Amritsar that brought together both pure and applied mathematicians to help provide the platform to discuss various ideas for applied math research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taufiquar Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, T. (2020). Inverse Problems Involving PDEs with Applications to Imaging. In: Manchanda, P., Lozi, R., Siddiqi, A. (eds) Mathematical Modelling, Optimization, Analytic and Numerical Solutions. Industrial and Applied Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-0928-5_9

Download citation

Publish with us

Policies and ethics