Skip to main content

General Discussion on Neurogenic Hypertension

  • Chapter
  • First Online:
Secondary Hypertension
  • 776 Accesses

Abstract

The nervous system is closely related to blood pressure regulation. A variety of central and peripheral systemic lesions can lead to hypertension. The mechanism is mainly related to the increase of intracranial pressure, which increases the sympathetic nervous system impulse and autonomic dysfunction in the vasomotor center. Early intracranial lesions It manifests as an increase in reflex or compensatory blood pressure, and once brain damage is aggravated, especially in the medullary cardiovascular center failure, blood pressure drops rapidly and life is threatened.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang W. Neurology. Beijing: People’s Medical Publishing House; 2013.

    Google Scholar 

  2. Harary M, Dolmans RGF, Gormley WB. Intracranial pressure monitoring—review and avenues for development. Sensors. 2018;18(2):465.

    Article  Google Scholar 

  3. Sheehan JR, Liu X, Donnelly J, et al. Clinical application of non-invasive intracranial pressure measurements. Br J Anaesth. 2018;121(2):500–1.

    Article  CAS  PubMed  Google Scholar 

  4. Donnelly J, Czosnyka M, Harland S, et al. Increased ICP and its cerebral haemodynamic sequelae. Acta Neurochir Suppl. 2018;126:47.

    Article  PubMed  Google Scholar 

  5. Khaja AM. Diagnosis and management of ischemic stroke. 2011.

    Google Scholar 

  6. Willenborg K, Nacimiento W. Characteristic neurological features, differential diagnostic criteria and medicinal treatment of idiopathic intracranial hypertension. Ophthalmologe. 2015;112(10):814–20.

    Article  CAS  PubMed  Google Scholar 

  7. Chinese Medical Association Neurology Branch, Chinese Medical Association Neuropathy Snow Branch Cerebrovascular Disease Group. Guidelines for the diagnosis and treatment of acute ischemic stroke in China 2018. Chin J Neurol. 2018;51(9):666–82.

    Google Scholar 

  8. Winstein CJ, Stein J, Arena R, et al. Guidelines for adult stroke rehabilitation and recovery. Stroke. 2016;47(6):e98.

    Article  PubMed  Google Scholar 

  9. Anderson CS, Huang Y, Arima H, et al. Effects of early intensive blood pressure lowering treatment on the growth of hematoma and perihematomal edema in acute intracerebral hemorrhage: the Intensive Blood Pressure Reduction in Acute. Cerebral Haemorhage Trial (INTERACT). Stroke. 2010;41(2):307–12.

    Article  PubMed  Google Scholar 

  10. Sacco TL, Delibert SA. Management of intracranial pressure: part I: pharmacologic interventions. Dimens Crit Care Nurs DCCN. 2018;37(3):120.

    Article  PubMed  Google Scholar 

  11. Yuan C, Hanghuang J, Yong J. Research progress of hypertonic saline in the treatment of brain edema and intracranial hypertension after craniocerebral trauma. Zhejiang J Clin Med. 2018;3:574–6.

    Google Scholar 

  12. Dong F, Cui Z, Feng X. Clinical comparative analysis of hypertonic saline and mannitol in the treatment of cerebral edema in patients with acute cerebral hemorrhage. 2015;5(27):173–4.

    Google Scholar 

  13. Han X, Ren J, Xu H, et al. Meta-analysis of 3% hypertonic sodium chloride solution versus mannitol in reducing intracranial hypertension. Chin J Neurosurg. 2016;32(10):1054–60.

    Google Scholar 

  14. Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15.

    PubMed  Google Scholar 

  15. Lazaridis C, Robertson CS. Hypothermia for increased intracranial pressure: is it dead? Curr Neurol Neurosci Rep. 2016;16(9):78.

    Article  PubMed  Google Scholar 

  16. Polderman KH, Tjong TJR, Peerdeman SM, et al. Effects of therapeutic hypothermia on intracranial pressure and outcome in patients with severe head injury. Intensive Care Med. 2002;28(11):1563–73.

    Article  PubMed  Google Scholar 

  17. Injuries/Epidemiology B. The Brain Trauma Foundation. The American Association of Neurological Surgeons. The joint section on neurotrauma and critical care. Role of antiseizure prophylaxis following head injury. J Neurotrauma. 2000;17(6–7):493.

    Google Scholar 

  18. Zhai WW, Sun L, Yu ZQ, et al. Hyperbaric oxygen therapy in experimental and clinical stroke. Med Gas Res. 2016;6(2):111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dai L, Hu-Yin Y. Effects of hyperbaric oxygen on serum inflammatory factors, oxidative stress, endothelin and intracranial pressure in patients with severe head injury. J Hainan Med Univ. 2017;23(5).

    Google Scholar 

  20. Wang J, Mao W, Wang Z. Relationship between antihypertensive therapy and short-term prognosis in acute phase of ischemic stroke. Chin J Pract Nervous Dis. 2016;19(15):127–8.

    Google Scholar 

  21. Ntaios G, Dziedzic T, Michel P, et al. European Stroke Organisation (ESO) guidelines for the management of temperature in patients with acute ischemic stroke. Int J Stroke. 2015;10(6):941–9.

    Article  PubMed  Google Scholar 

  22. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018:STR0000000000000158.

    Google Scholar 

  23. Department of Neurology, Chinese Medical Association, Department of Cerebral Vascular Diseases, Chinese Medical Association, Wang M. Guidelines for the diagnosis and treatment of acute ischemic stroke in China 2018. Chin J Neurol. 2018;51(9):666.

    Google Scholar 

  24. Montagna P. Fatal familial insomnia: a model disease in sleep physiopathology. Sleep Med Rev. 2005;9(5):339–53.

    Article  PubMed  Google Scholar 

  25. Yu S, Zhang Y, Li S, et al. Early onset fatal familial insomnia with rapid progression in a Chinese family line. J Neurol. 2007;254(9):1300–1.

    Article  PubMed  Google Scholar 

  26. Shi Q, Chen C, Gao C, et al. Clinical and familial characteristics of ten chinese patients with fatal family insomnia. Biomed Environ Sci. 2012;25(4):471–5.

    PubMed  Google Scholar 

  27. Khan Z, Bollu PC. Insomnia, fatal familial. StatPearls [internet]. Treasure Island, FL: StatPearls Publishing; 2018.

    Google Scholar 

  28. Goldfarb LG, Petersen RB, Tabaton M, et al. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science. 1992;258(5083):806–8.

    Article  CAS  PubMed  Google Scholar 

  29. Wu LY, Zhan SQ, Huang ZY, et al. Expert consensus on clinical diagnostic criteria for fatal familial insomnia. Chin Med J (Engl). 2018;131(13):1613–7.

    Article  Google Scholar 

  30. Tinuper P, Montagna P, Medori R, et al. The thalamus participates in the regulation of the sleep-waking cycle. A clinico-pathological study in fatal familial thalamic degeneration. Electroencephalogr Clin Neurophysiol. 1989;73(2):117–23.

    Article  CAS  PubMed  Google Scholar 

  31. Reder AT, Mednick AS, Brown P, et al. Clinical and genetic studies of fatal familial insomnia. Neurology. 1995;45(6):1068–75.

    Article  CAS  PubMed  Google Scholar 

  32. Al-Shekhlee A, Hachwi RN, Preston DC, et al. New criteria for early electrodiagnosis of acute inflammatory demyelinating polyneuropathy. Muscle Nerve. 2005;32(1):66–72.

    Article  PubMed  Google Scholar 

  33. Chanson JB, Echaniz-Laguna A. Early electrodiagnostic abnormalities in acute inflammatory demyelinating polyneuropathy: a retrospective study of 58 patients. Clin Neurophysiol. 2014;125(9):1900–5.

    Article  PubMed  Google Scholar 

  34. Nguyen TP, Taylor RS. Guillain Barre syndrome. StatPearls [internet]. Treasure Island, FL: StatPearls Publishing; 2018.

    Google Scholar 

  35. Chinese Society of Neurology. Guidelines for diagnosis and treatment of Guillain-Barre syndrome. Chin J Neurol. 2010;43(8):583–6.

    Google Scholar 

  36. Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68(10):988–1001.

    Article  CAS  PubMed  Google Scholar 

  37. Sperling MR. Autonomic seizures [M]. Atlas of epilepsies. Berlin: Springer; 2010. p. 467–70.

    Book  Google Scholar 

  38. Moseley B, Bateman L, Millichap JJ, et al. Autonomic epileptic seizures, autonomic effects of seizures and SUDEP. Epilepsy Behav. 2013;33:375–85.

    Article  Google Scholar 

  39. Zhou Y, Wu J, Zhang Y, Lu YD, Jin T. A case report of autonomic epilepsy in adults with paroxysmal hypertension induced by thalamic hemorrhage. J Stroke Neurol Dis. 2014;31(4):361–2.

    Google Scholar 

  40. Zhao JB, Wecht JM, Zhang YF, et al. iNOS expression in rat aorta is increased after spinal cord transection: a possible cause of orthostatic hypotension in man. Neurosci Lett. 2007;415:210–4.

    Article  CAS  PubMed  Google Scholar 

  41. Shen D. A preliminary study on the diagnosis and treatment of neurogenic postural hypotension [D]. Guangzhou: Southern Medical University; 2013.

    Google Scholar 

  42. Gibbons CH, Schmidt P, Biaggioni I, et al. The recommendations of a consensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension. J Neurol. 2017;264:1567–82.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shatz O, Willner D, Hasharoni A, et al. Acute spinal cord injury: Part I cardiovascular and pulmonary effects and complications. Contemp Crit Care. 2005;3:1–10.

    Google Scholar 

  44. Xu D, Verma A, Garg A, et al. Significant role of the cardio-postural interaction in blood pressure regulation during standing. Am J Physiol Heart Circ Physiol. 2017;313(3):H568.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xiong Z, Han Z, Zhang X, et al. Correlation between serum nitric oxide and endothelial nitric oxide synthase and the incidence of erect intolerance [C]//annual meeting of Henan Academy of pediatrics. 2015.

    Google Scholar 

  46. Kahwaji MCI, Vaziri ND, Purdy RE. Effects of simulated micro-gravity on arterial nitric oxide synthase and nitrate and nitrite con-tent. J Appl Physiol. 2003;94:83–92.

    Article  PubMed  Google Scholar 

  47. Sangha DS, Vaziri ND, Ding Y, et al. Vascular hyporesponsiveness in simulated microgravity: role of nitric oxide-dependent mechanisms. J Appl Physiol. 2000;88:507–17.

    Article  CAS  PubMed  Google Scholar 

  48. Vaziri ND, Ding Y, Sangha DS, et al. Upregulation of NOS by simulated microgravity, potential cause of orthostatic intolerance. J Appl Physiol. 2000;89:338–44.

    Article  CAS  PubMed  Google Scholar 

  49. Oldenburg O, Kribben A, Baumgart D, et al. Treatment of orthostatic hypotension. Curr Opin Pharmacol. 2002;2:740–7.

    Article  CAS  PubMed  Google Scholar 

  50. The Consensus Committee of the American Autonomic Society and the American Academy of Neurology. Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy. Neurology. 1996;46:1470.

    Article  Google Scholar 

  51. Robertson D, Davis TD. Recent advances in the treatment of orthostatic hypotension. Neurology. 1995;45(suppl 5):s26–31.

    CAS  PubMed  Google Scholar 

  52. Shibao C, Lipsitz LA, Biaggioni I. Evaluation and treatment of orthostatic hypotension. Am Fam Physician. 2013;7(4):317–24.

    Google Scholar 

  53. Ma S, Feng X, Song L. Clinical observation on the treatment of postural hypotension after spinal cord injury with heavy moxibustion at baihui acupoint. Chin Folk Ther. 2017;8:18–9.

    Google Scholar 

  54. Ramirez CE, Okamoto LE, Arnold AC, et al. Efficacy of ATOMOXETINE versus MIDODRINE for the treatment of orthostatic hypotension in autonomic failure. Hypertension. 2014;64(6):1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hale GM, Valdes J, Brenner MA. Review of the treatment of primary Orthostatic hypotension. Ann Pharmacother. 2017;51(5):1060028016689264.

    Article  CAS  Google Scholar 

  56. Ricci F, Caterina RD, Fedorowski A. Orthostatic hypotension: epidemiology, prognosis, and treatment. J Am Coll Cardiol. 2015;66(7):848–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abulikemu, S., Li, S., He, Y., Tuersun, T. (2020). General Discussion on Neurogenic Hypertension. In: Li, N. (eds) Secondary Hypertension. Springer, Singapore. https://doi.org/10.1007/978-981-15-0591-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0591-1_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0590-4

  • Online ISBN: 978-981-15-0591-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics