Skip to main content

Abstract

Industrial effluent is one of the main causes of environmental pollution. Synthetic azo dyes are widely used in different industries like food, paper, or textile industry. In textile industry, unbound synthetic dyes are released through effluent, which shows awfully sharp effect on the health of different organisms including humans and the entire ecosystem. Though coloured textile industrial effluent has adverse effect on all types of biological network, it has direct effect on water ecosystem because of the general industrial sewage released in nearby water bodies. However, there are different types of physical and chemical waste treatment methods, but those consume huge amount of capital and energy. Microbial processing of waste effluent has capability to trim down drawbacks of chemical methods. In addition, microbial remediation is also environment-friendly and cost-effective. Microorganisms can adapt under any adverse condition due to a huge diversity of enzymes. There are only a few enzymes responsible for dye degradation. Other than that, some common metabolic enzymes may function specially in decolourisation process as well. All these enzymes may be used as beneficial substitute to chemical process. Microbial enzymes are easy to harvest through simple downstream processing and may be easily mobilised. Recent research is going on production of nanoparticle-enzyme conjugate for more efficient remediation of industrial wastes. Until now this research is under laboratory scale, and industrialisation is challenging as well. This chapter deals with detailed information on adverse effect of synthetic dyes, possible microbial process, and future opportunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RLM (1971) The chemistry of azo dyes. In: Colour chemistry, Studies in modern chemistry. Springer, Boston

    Chapter  Google Scholar 

  • Anjaneyulu Y, Chary NS, Raj DSS (2005) Decolourization of industrial effluents–available methods and emerging technologies–a review. Rev Environ Sci Biotechnol 4(4):245–273

    Article  CAS  Google Scholar 

  • AntoÅ¡ovĂ¡ Z, HerkommerovĂ¡ K, PichovĂ¡ I, SychrovĂ¡ H (2018) Efficient secretion of three fungal laccases from Saccharomyces cerevisiae and their potential for decolorization of textile industry effluent—a comparative study. Biotechnol Prog 34(1):69–80

    Article  CAS  Google Scholar 

  • Ayed L, Bekir K, Achour S, Cheref A, Bakhrouf A (2017) Exploring bioaugmentation strategies for azo dye CI reactive violet 5 decolourization using bacterial mixture: dye response surface methodology. Water Environ J 31(1):80–89

    Article  CAS  Google Scholar 

  • Barathikannan K, Ramasamy KP, Manohar CS, Meena RM (2017) Diversity and decolorization potential of fungi isolated from the coral reef regions off Kavaratti, India. Indian J Geo-Mar Sci 46:497–503

    Google Scholar 

  • BarragĂ¡n BE, Costa C, MĂ¡rquez MC (2007) Biodegradation of azo dyes by bacteria inoculated on solid media. Dyes Pigments 75(1):73–81

    Article  CAS  Google Scholar 

  • Bell J, Plumb JJ, Buckley CA, Stuckey DC (2000) Treatment and decolorization of dyes in an anaerobic baffled reactor. J Environ Eng 126(11):1026–1032

    Article  CAS  Google Scholar 

  • Cao X, Wang H, Zhang S, Nishimura O, Li X (2018) Azo dye degradation pathway and bacterial community structure in biofilm electrode reactors. Chemosphere 208:219–225

    Article  CAS  Google Scholar 

  • Carmen Z, Daniela S (2012) Textile organic dyes–characteristics, polluting effects and separation/elimination procedures from industrial effluents–a critical overview. In: In Tech (ed) Croatia organic pollutants ten years after the Stockholm convention-environmental and analytical update. Intech, Rijeka, pp 55–81

    Google Scholar 

  • Chacko JT, Subramaniam K (2011) Enzymatic degradation of azo dyes-a review. Int J Environ Sci 1(6):1250

    Google Scholar 

  • Chanwala J, Kaushik G, Dar MA, Upadhyay S, Agrawal A (2019) Process optimization and enhanced decolorization of textile effluent by Planococcus sp. isolated from textile sludge. Environ Technol Innov 13:122–129

    Article  Google Scholar 

  • Costa AFS, Albuquerque CDC, Salgueiro AA, Sarubbo LA (2018) Color removal from industrial dyeing and laundry effluent by microbial consortium and coagulant agents. Process Saf Environ Prot 118:203–210

    Article  CAS  Google Scholar 

  • Dave SR, Patel TL, Tipre DR (2015) Bacterial degradation of Azo dye containing wastes. Microbial degradation of synthetic dyes in wastewaters. Springer, Cham, pp 57–83

    Book  Google Scholar 

  • Du LN, Li G, Zhao YH, Xu HK, Wang Y, Zhou Y, Wang L (2015) Efficient metabolism of the azo dye methyl orange by Aeromonas sp. strain DH-6: characteristics and partial mechanism. Int Biodeterior Biodegradation 105:66–72

    Article  CAS  Google Scholar 

  • Eslami H, Shariatifar A, Rafiee E, Shiranian M, Salehi F, Hosseini SS, Ebrahimi AA (2019) Decolorization and biodegradation of reactive Red 198 Azo dye by a new Enterococcus faecalis–Klebsiella variicola bacterial consortium isolated from textile wastewater sludge. World J Microbiol Biotechnol 35(3):38

    Article  CAS  Google Scholar 

  • Fathima PS, Priyatha CV, Chitra KC (2019) Ameliorating effect of vitamin C on acid Orange 7 induced oxidative stress in the gill of the fish, Anabas testudineus (Bloch, 1792). Res Rev J Toxicol 8(3):15–27

    Google Scholar 

  • Guadie A, Tizazu S, Melese M, Guo W, Ngo HH, Xia S (2017) Biodecolorization of textile azo dye using Bacillus sp. strain CH12 isolated from alkaline lake. Biotechnol Rep 15:92–100

    Article  Google Scholar 

  • Guan ZB, Song CM, Zhang N et al (2014) Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W3. J Mol Catal B Enzym 101:1–6

    Article  CAS  Google Scholar 

  • Haghshenas H, Kay M, Dehghanian F, Tavakol H (2016) Molecular dynamics study of biodegradation of azo dyes via their interactions with AzrC azoreductase. J Biomol Struct Dyn 34(3):453–462

    Article  CAS  Google Scholar 

  • HernĂ¡ndez-Zamora M, MartĂ­nez-JerĂ³nimo F (2019) Exposure to the azo dye direct blue 15 produces toxic effects on microalgae, cladocerans, and zebrafish embryos. Ecotoxicology 1–13

    Google Scholar 

  • Imran M, Negm F, Hussain S, Ashraf M, Ashraf M, Ahmad Z, Arshad M, Crowley DE (2016) Characterization and purification of membrane-bound Azoreductase from Azo dye degrading Shewanella sp. strain IFN4. CLEAN Soil Air Water 44(11):1523–1530

    Article  CAS  Google Scholar 

  • Ito T, Shimada Y, Suto T (2018) Potential use of bacteria collected from human hands for textile dye decolorization. Water Res Ind 20:46–53

    Article  Google Scholar 

  • Joseph JT, Mahalakshmia R, Revathy K, Panneerselvam K, Manikandan P, Shobana CS (2019) Effectiveness of application of lignolytic fungal strains, Cladosporium uredinicola GRDBF21 and Bipolaris maydis GRDBF23 in the treatment of tannery effluent. J Environ Biol 40(2):158–164

    Article  CAS  Google Scholar 

  • Kalyani DC, Telke AA, Surwase SN, Jadhav SB, Lee JK, Jadhav JP (2012) Effectual decolorization and detoxification of triphenylmethane dye malachite green (MG) by Pseudomonas aeruginosa NCIM 2074 and its enzyme system. Clean Techn Environ Policy 14(5):989–1001

    Article  CAS  Google Scholar 

  • Kanagaraj J, Senthilvelan T, Panda RC (2015) Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Techn Environ Policy 17(6):1443–1456

    Article  CAS  Google Scholar 

  • Kannan D, Devi R, Murugesan AG, Rajan S (2019) Studies on decolorization of textile dye by using Pseudomonas and bacillus sp from the contaminated effluent soil samples of Kovilpatti, Thoothukudi district of Tamil Nadu. J Appl Nat Sci 11(1):134–137

    Article  CAS  Google Scholar 

  • Karpagam P, Manikandan R, Selvakumar S (2019) Decolorization and bioremediation of textile dye effluent by bioreactors containing novel bacterial consortium (KDDBO4, KDDBO5, KDDBO8 and KDDB11) and its effect on Phytotoxicity. Res J Chem Environ 23:3

    Google Scholar 

  • Kashefi S, Borghei SM, Mahmoodi NM (2019) Covalently immobilized laccase onto graphene oxide nanosheets: preparation, characterization, and biodegradation of azo dyes in colored wastewater. J Mol Liq 276:153–162

    Article  CAS  Google Scholar 

  • Khan S, Abdul M (2015) Degradation of reactive black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1. Can J Microbiol 62(3):220–232

    Article  CAS  Google Scholar 

  • Kolekar YM, Konde PD, Markad VL et al (2013) Effective bioremoval and detoxification of textile dye mixture by Alishewanella sp. KMK6. Appl Microbiol Biotechnol 97(2):881–889

    Article  CAS  Google Scholar 

  • Krishnamoorthy R, Jose PA, Ranjith M, Anandha R, Suganya K, Prabhakaran J, Kumutha K (2018) Decolourisation and degradation of azo dyes by mixed fungal culture consisted of Dichotomomyces cejpii MRCH 1-2 and Phoma tropica MRCH 1-3. J Environ Chem Eng 6(1):588–595

    Article  CAS  Google Scholar 

  • Kurade MB, Waghmode TR, Xiong JQ, Govindwar SP, Jeon BH (2019) Decolorization of textile industry effluent using immobilized consortium cells in upflow fixed bed reactor. J Clean Prod 213:884–891. https://doi.org/10.1016/j.jclepro.2018.12.218

    Article  CAS  Google Scholar 

  • Lade H, Kadam A, Paul D, Govindwar S (2015) Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes. EXCLI J 14:158

    Google Scholar 

  • Li WY, Chen FF, Wang SL (2010) Binding of reactive brilliant red to human serum albumin: insights into the molecular toxicity of sulfonic azo dyes. Protein Pept Lett 17(5):621–629

    Article  CAS  Google Scholar 

  • Lucas MS, Peres JA (2006) Decolorization of the azo dye reactive black 5 by Fenton and photo-Fenton oxidation. Dyes Pigments 71(3):236–244

    Article  CAS  Google Scholar 

  • Madkour LH, Kaya S, Kaya C, Guo L (2016) Quantum chemical calculations, molecular dynamics simulation and experimental studies of using some azo dyes as corrosion inhibitors for iron. Part 1: Mono-azo dye derivatives. J Taiwan Inst Chem Eng 68:461–480

    Article  CAS  Google Scholar 

  • Mahmood S, Khalid A, Arshad M, Mahmood T, Crowley DE (2016) Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit Rev Biotechnol 36(4):639–651

    CAS  Google Scholar 

  • Mani A, Hameed SAS (2019) Improved bacterial-fungal consortium as an alternative approach for enhanced decolourisation and degradation of Azo dyes: a review. Nat Environ Pollut Technol 18(1):49–64

    CAS  Google Scholar 

  • Mansour HB, Ayed-Ajmi Y, Mosrati R, Corroler D, Ghedira K, Barillier D, Chekir-Ghedira L (2010) Acid violet 7 and its biodegradation products induce chromosome aberrations, lipid peroxidation, and cholinesterase inhibition in mouse bone marrow. Environ Sci Pollut Res 17(7):1371–1378

    Article  CAS  Google Scholar 

  • Masarbo RS, Niranjana SR, Monisha TR, Nayak AS, Karegoudar TB (2019) Efficient decolorization and detoxification of sulphonated azo dye Ponceau 4R by using single and mixed bacterial consortia. Biocatal Biotransformation 37:1–10

    Article  CAS  Google Scholar 

  • Mehta R, Singhal P, Singh H, Damle D, Sharma AK (2016) Insight into thermophiles and their wide-spectrum applications. 3Biotech 6(1):1–9

    Google Scholar 

  • Miran W, Nawaz M, Kadam A, Shin S, Heo J, Jang J, Lee DS (2015) Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation. Environ Sci Pollut Res 22(17):13477–13485

    Article  CAS  Google Scholar 

  • Mohammad-Salehi H, Hamadanian M, Safardoust-Hojaghan H (2019) Visible-light induced Photodegradation of methyl Orange via palladium nanoparticles anchored to chrome and nitrogen doped TiO2 nanoparticles. J Inorg Organomet Polym Mater 1–9

    Google Scholar 

  • Munir E, Priyani N, Suryanto D, Naimah Z (2017) Using biomass of basidiomycetous fungi in decolorization of wastewater of textile industry. J Pure Appl Microbiol 11(2):669–676

    Article  CAS  Google Scholar 

  • Ortiz-Monsalve S, Dornelles J, Poll E, Ramirez-Castrillon M, Valente P, Gutterres M (2017) Biodecolourisation and biodegradation of leather dyes by a native isolate of Trametes villosa. Process Saf Environ Prot 109:437–451

    Article  CAS  Google Scholar 

  • Ortiz-Monsalve S, Valente P, Poll E, Jaramillo-GarcĂ­a V, Henriques JAP, Gutterres M (2019) Biodecolourization and biodetoxification of dye-containing wastewaters from leather dyeing by the native fungal strain Trametes villosa SCS-10. Biochem Eng J 141:19–28

    Article  CAS  Google Scholar 

  • Puvaneswari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol 44(8):618–626

    CAS  Google Scholar 

  • Rekik H, Jaouadi NZ, Bouacem K, Zenati B, Kourdali S, Badis A, Jaouadi B (2019) Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. Int J Biol Macromol 125:514–525

    Article  CAS  Google Scholar 

  • RodrĂ­guez-Couto S (2019) Fungal Laccase: a versatile enzyme for biotechnological applications. In: Recent advancement in white biotechnology through Fungi. Springer, Cham, pp 429–457

    Chapter  Google Scholar 

  • Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66(4):1429–1434

    Article  CAS  Google Scholar 

  • Santos A, Mendes S, Brissos V, Martins LO (2014) New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. Appl Microbiol Biotechnol 98:2053–2065. https://doi.org/10.1007/s00253-013-5041-4

    Article  CAS  Google Scholar 

  • Sarkar S, Banerjee A, Halder U, Biswas R, Bandopadhyay R (2017) Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conserv Sci Eng 2(4):121–131

    Article  Google Scholar 

  • Sayahi E, Ladhari N, Mechichi T, Sakli F (2016) Azo dyes decolourization by the laccase from Trametes trogii. J Text Ins 107(11):1478–1482

    Article  CAS  Google Scholar 

  • Sen SK, Raut S, Bandyopadhyay P, Raut S (2016) Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev 30(3):112–133

    Article  Google Scholar 

  • Sha Y, Mathew I, Cui Q, Clay M, Gao F, Zhang XJ, Gu Z (2016) Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere 144:1530–1535

    Article  CAS  Google Scholar 

  • Siddique R, Alif FA (2018) Isolation and identification of orange M2R and green GS dye decolourizing Bacteria from textile sludge (soil) samples and determination of their optimum decolourization conditions. Ann Res Rev Biol 22:1–12

    Article  Google Scholar 

  • Singh P, Kumar R (2019) Critical review of microbial degradation of aromatic compounds and exploring potential aspects of Furfuryl alcohol degradation. J Polym Environ 27:1–16

    Article  CAS  Google Scholar 

  • Singh RL, Singh PK, Singh RP (2015) Enzymatic decolorization and degradation of azo dyes–a review. Int Biodeterior Biodegradation 104:21–31

    Article  CAS  Google Scholar 

  • SolĂ­s M, SolĂ­s A, PĂ©rez HI, Manjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47(12):1723–1748

    Article  CAS  Google Scholar 

  • Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66(3):319–329

    Article  CAS  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56(1–2):69–80

    Article  CAS  Google Scholar 

  • Sudha M, Saranya A, Selvakumar G, Sivakumar N (2014) Microbial degradation of azo dyes: a review. Int J Curr Microbiol App Sci 3(2):670–690

    CAS  Google Scholar 

  • Tochhawng L, Mishra VK, Passari AK, Singh BP (2019) Endophytic Fungi: role in dye Decolorization. In: Advances in Endophytic fungal research. Springer, Cham, pp 1–15

    Google Scholar 

  • Vantamuri AB, Kaliwal BB (2016) Purification and characterization of laccase from Marasmius species BBKAV79 and effective decolorization of selected textile dyes. Biotech 6(3):189

    CAS  Google Scholar 

  • Verma K, Saha G, Kundu LM, Dubey VK (2019) Biochemical characterization of a stable azoreductase enzyme from Chromobacterium violaceum: application in industrial effluent dye degradation. Int J Biol Macromol 121:1011–1018

    Article  CAS  Google Scholar 

  • Wang Q, Huang L, Quan X, Puma GL (2019) Sequential anaerobic and electro-Fenton processes mediated by W and Mo oxides for degradation/mineralization of azo dye methyl orange in photo assisted microbial fuel cells. Appl Catal B Environ 245:672–680

    Article  CAS  Google Scholar 

  • Wong Y, Yu J (1999) Laccase-catalyzed decolorization of synthetic dyes. Water Res 33(16):3512–3520

    Article  CAS  Google Scholar 

  • Wuhrmann K, Mechsner KL, Kappeler TH (1980) Investigation on rate—determining factors in the microbial reduction of azo dyes. Appl Microbiol Biotechnol 9(4):325–338

    Article  CAS  Google Scholar 

  • Zhang Y, Dong W, Lv Z, Liu J, Zhang W, Zhou J, Jiang M (2018) Surface display of bacterial Laccase CotA on Escherichia coli cells and its application in industrial dye Decolorization. Mol Biotechnol 60(9):681–689

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, S., Chakraborty, P., Bandopadhyay, R. (2020). Microbial Treatment for Removing Synthetic Dyes from Industrial Effluents. In: Shah, M., Banerjee, A. (eds) Combined Application of Physico-Chemical & Microbiological Processes for Industrial Effluent Treatment Plant. Springer, Singapore. https://doi.org/10.1007/978-981-15-0497-6_4

Download citation

Publish with us

Policies and ethics