Skip to main content

Bioinspired Engineering of Organ-on-Chip Devices

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1174))

Abstract

The human body can be viewed as an organism consisting of a variety of cellular and non-cellular materials interacting in a highly ordered manner. Its complex and hierarchical nature inspires the multi-level recapitulation of the human body in order to gain insights into the inner workings of life. While traditional cell culture models have led to new insights into the cellular microenvironment and biological control in vivo, deeper understanding of biological systems and human pathophysiology requires the development of novel model systems that allow for analysis of complex internal and external interactions within the cellular microenvironment in a more relevant organ context. Engineering organ-on-chip systems offers an unprecedented opportunity to unravel the complex and hierarchical nature of human organs. In this chapter, we first highlight the advances in microfluidic platforms that enable engineering of the cellular microenvironment and the transition from cells-on-chips to organs-on-chips. Then, we introduce the key features of the emerging organs-on-chips and their proof-of-concept applications in biomedical research. We also discuss the challenges and future outlooks of this state-of-the-art technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADMET:

Adsorption, distribution, metabolism, elimination and toxicity

BBB:

Blood-brain-barrier

EBs:

Embryonic body

ECM:

Extracellular matrix

ECs:

Endothelial cells

EMT:

Epithelial-to mesenchymal

ESCs:

Embryonic stem cells

FSS:

Fluidic shear stress

iPSCs:

Induced pluripotent stem cells

MEMS:

Micro-electromechanical system

MSC:

Mesenchymal stem cells

PDMS:

Polydimethylsiloxane

PK/PD:

Pharmacokinetics and pharmacodynamics

TEER:

Trans-epithelial electrical resistance

References

  1. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110

    Article  CAS  PubMed  Google Scholar 

  2. Chin LK et al (2016) Imaging live cells at high spatiotemporal resolution for lab-on-a-chip applications. Lab Chip 16:2014–2024

    Article  CAS  PubMed  Google Scholar 

  3. Young EW, Beebe DJ (2010) Fundamentals of microfluidic cell culture in controlled microenvironments. ChemSoc Rev 39:1036–1048

    CAS  Google Scholar 

  4. Tehranirokh M et al (2013) Microfluidic devices for cell cultivation and proliferation. Biomicrofluidics 7:51502

    Article  PubMed  CAS  Google Scholar 

  5. Young EW, Simmons CA (2010) Macro- and microscale fluid flow systems for endothelial cell biology. Lab Chip 10:143–160

    Article  CAS  PubMed  Google Scholar 

  6. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772

    Article  CAS  PubMed  Google Scholar 

  7. Sung JH et al (2013) Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 13:1201–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tseng P et al (2014) Research highlights: microtechnologies for engineering the cellular environment. Lab Chip 14:1226–1229

    Article  CAS  PubMed  Google Scholar 

  9. Williamson A (2013) The future of the patient-specific body-on-a-chip. Lab Chip 13:3471–3480

    Article  CAS  PubMed  Google Scholar 

  10. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 1998:153–184

    Article  Google Scholar 

  11. Mcdonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499

    Article  CAS  PubMed  Google Scholar 

  12. Effenhauser CS et al (1997) Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips. Anal Chem 69:3451–3457

    Article  CAS  PubMed  Google Scholar 

  13. Duffy DC et al (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  CAS  PubMed  Google Scholar 

  14. Mcdonald JC et al (2000) Fabrication of microfluidic Systems in Poly(dimethylsiloxane). Electrophoresis 21:27–40

    Article  CAS  PubMed  Google Scholar 

  15. Wu HK et al (2003) Fabrication of complex three- dimensional microchannel systems in PDMS. J Am Chem Soc 125:554–559

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Q et al (2012) A microfluidic-base device for study of transendothelial invasion of tumor aggregates in realtiem. Lab Chip 12(16):2837–2842

    Article  CAS  PubMed  Google Scholar 

  17. Unger MA et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116

    Article  CAS  PubMed  Google Scholar 

  18. Balagadde FK et al (2005) Long-term monitoring of Bacteria undergoing programmed population control in a microchemostat. Science 309:137–140

    Article  CAS  PubMed  Google Scholar 

  19. Huang B (2007) Counting low-copy number proteins in a single cell. Science 315:81–84

    Article  CAS  PubMed  Google Scholar 

  20. Wen H et al (2015) A droplet microchip with substance exchange capability for the developmental study of C. elegans. Lab Chip 15(8):1905–1911

    Article  CAS  PubMed  Google Scholar 

  21. Gao X et al (2009) Microvalves actuated sandwich immunoassay on an integrated microfluidic system. Electrophoresis 30(14):2481–2487

    Article  CAS  PubMed  Google Scholar 

  22. Shi W et al (2010) Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditiselegans. Lab Chip 10(21):2855–2863

    Article  CAS  PubMed  Google Scholar 

  23. Ni M et al (2009) Cell culture on MEMS platforms: a review. Int J Mol Sci 10(12):5411–5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma LA et al (2010) A porous 3D cell culture micro device for cell migration study. Biomed Microdevices 12(4):753–760

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shi Y et al (2015) Hypoxia combined with spheroid culture improves cartilage specific function in chondrocytes. Integr Biol (Camb) 7(3):289–297

    Article  CAS  Google Scholar 

  26. Gottwald E et al (2007) A chip-based platform for the in vitro generation of tissues in three-dimensional organization. Lab Chip 7(6):777–785

    Article  CAS  PubMed  Google Scholar 

  27. Toh YC et al (2009) A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip 9(14):2026–2035

    Article  CAS  PubMed  Google Scholar 

  28. Choi J et al (2011) Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system. Biomaterials 32(29):7013–7022

    Article  CAS  PubMed  Google Scholar 

  29. Cate DM et al (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87(1):19–41

    Article  CAS  PubMed  Google Scholar 

  30. Wang L et al (2015) Human induced pluripotent stem cell-derived beating cardiac tissues on paper. Lab Chip 15(22):4283–4290

    Article  CAS  PubMed  Google Scholar 

  31. Mosadegh B et al (2014) Three-dimensional paper-based model for cardiac ischemia. Adv Healthc Mater 3(7):1036–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Derda R et al (2011) Multizone paper platform for 3D cell cultures. PLoS One 6(5):e18940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park HJ et al (2014) Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering. Biomaterials 35(37):9811–9823

    Article  CAS  PubMed  Google Scholar 

  34. Mosadegh B et al (2015) A paper-based invasion assay: assessing chemotaxis of cancer cells in gradients of oxygen. Biomaterials 52:262–271

    Article  CAS  PubMed  Google Scholar 

  35. Walker GM et al (2004) Microenvironment design consideration for cellular scale studies. Lab Chip 4(2):91–97

    Article  CAS  PubMed  Google Scholar 

  36. Chung BG et al (2011) Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12(1):45–59

    Article  PubMed  Google Scholar 

  37. Ota H et al (2011) Microfluidic experimental platform for producing size-controlled three-dimensional spheroids. Sensors Actuators A Phys 169(2):266–273

    Article  CAS  Google Scholar 

  38. Ma J et al (2016) Patterning hypoxic multicellular spheroids in a 3D matrix-a promising method for anti-tumor drug screening. Biotechnology 11(SI):127–134

    CAS  Google Scholar 

  39. Hardelauf H et al (2011) Microarrays for the scalable production of metabolically relevant tumour spheroids: a tool for modulating chemosensitivity traits. Lab Chip 11:419–428

    Article  CAS  PubMed  Google Scholar 

  40. Ruppen J et al (2015) Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Lab Chip 15:3076–3085

    Article  CAS  PubMed  Google Scholar 

  41. Kim C et al (2012) On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Lab Chip 12:4135–4142

    Article  CAS  PubMed  Google Scholar 

  42. Tekin H et al (2010) Stimuli-responsive microwells for formation and retrieval of cell aggregates. Lab Chip 10:2411–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Karimi M et al (2016) Microfluidic systems for stem cell-based neural tissue engineering. Lab Chip 16:2551–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. No DY et al (2015) 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 15:3822–3837

    Article  CAS  Google Scholar 

  45. Lee J et al (2016) A 3D alcoholic liver disease model on a chip. Integr Biol 8:302–308

    Article  CAS  Google Scholar 

  46. Kim C et al (2011) 3-dimensional cell culture for on-chip differentiation of stem cells in embryoid body. Lab Chip 11:874–882

    Article  CAS  PubMed  Google Scholar 

  47. Khademhosseini A, Nichol JW (2009) Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5(7):1312–1319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Chung BG et al (2012) Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12:45–59

    Article  CAS  PubMed  Google Scholar 

  49. Yamada M et al (2015) Cell-sized condensed collagen microparticles for preparing microengineered composite spheroids of primary hepatocytes. Lab Chip 15:3941–3951

    Article  CAS  PubMed  Google Scholar 

  50. Yu Y et al (2014) Flexible fabrication of biomimetic bamboo-like hybrid microfibers. Adv Mater 26(16):2494–2499

    Article  CAS  PubMed  Google Scholar 

  51. Yue Y et al (2016) Simple spinning of heterogeneous hollow microfiber on Chip. Adv Mater 28(31):6649–6655

    Article  CAS  Google Scholar 

  52. Zhang X et al (2015) Flexible fabrication of shape-controlled collagen building blocks for self-assembly of 3D microtissues. Small 11(30):3666–3675

    Article  CAS  PubMed  Google Scholar 

  53. Goldbrunner RH et al (1999) Cell-extracellular matrix interaction in glioma invasion. Acta Neurochir (Wien) 141(3):295–305

    Article  CAS  Google Scholar 

  54. Ingber DE, Folkman J (1989) Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 109:317–330

    Article  CAS  PubMed  Google Scholar 

  55. Baker BM et al (2013) Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 13(16):3246–3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Choi NW et al (2007) Microfluidic scaffolds for tissue engineering. Nat Mater 6(11):908–915

    Article  CAS  PubMed  Google Scholar 

  57. Haessler U et al (2009) An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies for 3D chemotaxis studies. Biomed Microdevices 11(4):827–835

    Article  CAS  PubMed  Google Scholar 

  58. Joanne Wang C et al (2008) A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. Lab Chip 8(2):227–237

    Article  CAS  PubMed  Google Scholar 

  59. Lanfer B et al (2008) Aligned fibrillar collagen matrices obtained by shear flow deposition. Biomaterials 29(28):3888–3895

    Article  CAS  PubMed  Google Scholar 

  60. Lanfer B et al (2009) The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices. Biomaterials 30(30):5950–5958

    Article  CAS  PubMed  Google Scholar 

  61. Chin VI et al (2004) Microfabricated platform for studying stem cell fates. Biotechnol Bioeng 88(3):399–415

    Article  CAS  PubMed  Google Scholar 

  62. Ma H et al (2012) Probing the role of mesenchymal stem cells in salivary gland cancer on biomimeticmicrodevices. Integr Biol (Camb) 4(5)):522–530

    Article  CAS  Google Scholar 

  63. Zhang Q et al (2012) A microfluidic-based device for study of transendothelialinvasion of tumor aggregates in real-time. Lab Chip 12(16):2837–2842

    Article  CAS  PubMed  Google Scholar 

  64. Tong Z et al (2014) Engineering a functional neuro-muscular junction model in a chip. RSC Adv 4:54788–54797

    Article  CAS  Google Scholar 

  65. Chung BG et al (2006) A microfluidic multi-injector for gradient generation. Lab Chip 6:764–768

    Article  CAS  PubMed  Google Scholar 

  66. Kim S et al (2010) Biological applications of microfluidic gradient devices. Integr Biol 2:584–603

    Article  CAS  Google Scholar 

  67. Ye N et al (2007) Cell-based high content screening using an integrated microfluidic device. Lab Chip 7(12):1696–1704

    Article  CAS  PubMed  Google Scholar 

  68. Jeon NL et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316

    Article  CAS  Google Scholar 

  69. Li Y et al (2010) The effects of insulin-like growth factor-1 and basic fibroblast growth factor on the proliferation of chondrocytes embedded in the collagen gel using an integrated microfluidic device. Tissue Eng Part C Methods 16(6):1267–1275

    Article  CAS  PubMed  Google Scholar 

  70. Jeon NL et al (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20:826–830

    Article  CAS  Google Scholar 

  71. Han S et al (2012) A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Lab Chip 12(20):3861–3865

    Article  CAS  PubMed  Google Scholar 

  72. Shin Y et al (2011) In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab Chip 11:2175–2181

    Article  CAS  PubMed  Google Scholar 

  73. Jeong GS et al (2011) Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Anal Chem 83:8454–8459

    Article  CAS  PubMed  Google Scholar 

  74. Torisawa YS et al (2010) Microfluidic platform for chemotaxis in gradients formed by CXCL2 source-sink cells. Integr Biol 2:680–686

    Article  CAS  Google Scholar 

  75. Dings J et al (1998) Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery 43:1082–1095

    Article  CAS  PubMed  Google Scholar 

  76. Evans SM et al (2004) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10:8177–8184

    Article  CAS  PubMed  Google Scholar 

  77. Lo JF et al (2010) Oxygen gradient for open well cellular culture via microfluidic substrates. Lab Chip 10(18):2394–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang L et al (2013) Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell–drug interactions in a dynamic hypoxia microenvironment. Lab Chip 13(4):695–705

    Article  CAS  PubMed  Google Scholar 

  79. Oppegard SC, Eddington DT (2013) A microfabricated platform for establishing oxygen gradients in 3-D constructs. Biomed Microdevices 15(3):407–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang W et al (2015) A novel microfluidic platform for studying mammalian cell chemotaxis in different oxygen environments under zero-flow conditions. Biomicrofluidics 9(4):044121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Chen YA et al (2011) Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemicalreactions. Lab Chip 1(21):3626–3633

    Article  CAS  Google Scholar 

  82. Derda R et al (2009) Paper-supported 3D cell culture for tissue-based bioassays. Proc Natl Acad Sci USA 106:18457–18462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Widmaier EP et al (2004) In: Fox SI (ed) Human physiology, 9th edn. McGraw-Hill, New York, pp 375–466

    Google Scholar 

  84. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    Article  CAS  PubMed  Google Scholar 

  85. Kim L et al (2006) Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip 6:394–406

    Article  CAS  PubMed  Google Scholar 

  86. Lu H et al (2004) Microfluidic shear devices for quantitative analysis of cell adhesion. Anal Chem 76:5257–5264

    Article  CAS  PubMed  Google Scholar 

  87. van der Meer AD et al (2009) Microfluidic technology in vascular research. J Biomed Biotechnol:823148

    Google Scholar 

  88. Zhong W et al (2013) Mesenchymal stem cell and chondrocyte fates in a multishear microdevice are regulated by yes-associated protein. Stem Cells Dev 22(14):2083–2093

    Article  CAS  PubMed  Google Scholar 

  89. Wang L et al (2016) Human induced pluripotent stem cells derived endothelial cells mimicking vascular inflammatory response under flow. Biomicrofluidics 10(1):014106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. McCue S et al (2004) Shear-induced reorganization of endothelial cell cytoskeleton and adhesion complexes. Trends Cardiovasc Med 14(4):143–151

    Article  CAS  PubMed  Google Scholar 

  91. Jang KJ et al (2011) Fluid-shearstress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr Biol 3:134–141

    Article  CAS  Google Scholar 

  92. Jang KJ et al (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10:36–42

    Article  CAS  PubMed  Google Scholar 

  93. Zhou M et al (2014) Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices. Biomaterials 35(5):1390–1401

    Article  CAS  PubMed  Google Scholar 

  94. Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci USA 108(37):15342–15347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Douville NJ et al (2011) Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip 11:609–619

    Article  CAS  PubMed  Google Scholar 

  96. Vlahakis NE et al (1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol 277:L167–L173

    Article  CAS  Google Scholar 

  97. Tschumperlin DJ et al (2000) Deformationinduced injury of alveolar epithelial cells: effect of frequency, duration, and amplitude. Am J Respir Crit Care Med 162:357–362

    Article  CAS  PubMed  Google Scholar 

  98. Bilek AM et al (2003) Mechanisms of surface-tensioninduced epithelial cell damage in a model of pulmonary airway reopening. J Appl Physiol 94:770–783

    Article  PubMed  Google Scholar 

  99. Huh D et al (2007) Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci USA 104:18886–18891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hubatsch I et al (2007) Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2(9):2111–2119

    Article  CAS  PubMed  Google Scholar 

  101. Kimura H et al (2008) An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip 8(5):741–746

    Article  CAS  PubMed  Google Scholar 

  102. Imura Y et al (2009) A microfluidic system to evaluate intestinal absorption. Anal Sci 25(12):1403–1407

    Article  CAS  PubMed  Google Scholar 

  103. Kim HJ et al (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174

    Article  CAS  PubMed  Google Scholar 

  104. Kim HJ, Ingber DE (2013) Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (Camb) 5:1130–1140

    Article  CAS  Google Scholar 

  105. Gao X et al (2011) A simple elastic membrane-based microfluidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress. Electrophoresis 32(23):3431–3436

    Article  CAS  PubMed  Google Scholar 

  106. Oleaga C et al (2016) Multi-organ toxicity demonstration in a functional human in vitro system system composed of four organs. Sci Rep 6:20030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  CAS  PubMed  Google Scholar 

  108. El-Ali J et al (2006) Cells in chips. Nature 442(7101):403–411

    Article  CAS  PubMed  Google Scholar 

  109. Huh D et al (2012) Microengineered physiological biomimicry: organs-on-Chip. Lab Chip 12(12):2156–2164

    Article  CAS  PubMed  Google Scholar 

  110. van der Meer AD, van den Berg A (2012) Organs-on-chips: breaking the in vitro impasse. Integr Biol (Camb) 4(5):461–470

    Article  CAS  Google Scholar 

  111. Ghaemmaghami AM et al (2012) Biomimetic tissues on a chip for drug discovery. Drug Discov Today 17(3–4):173–181

    Article  CAS  PubMed  Google Scholar 

  112. Huh D et al (2011) From three-dimensional cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Steimer A et al (2005) Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J Aerosol Med 18(2):137–182

    Article  CAS  PubMed  Google Scholar 

  114. Tavana H et al (2001) Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed Microdevices 13(4):731–742

    Article  Google Scholar 

  115. Huh D et al (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huh D et al (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4(159):159ra147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  117. Fagerholm U et al (1996) Comparison between permeability coefficients in rat and human jejunum. Pharm Res 13(9):1336–1342

    Article  CAS  PubMed  Google Scholar 

  118. Kim SH et al (2013) A microfluidic device with 3-d hydrogel villi scaffold to simulate intestinal absorption. J Nanosci Nanotechnol 13(11):7220–7228

    Article  CAS  PubMed  Google Scholar 

  119. Gan LSL, Thakker DR (1997) Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv Drug Deliv Rev 23:77–98

    Article  CAS  Google Scholar 

  120. Ramadan Q et al (2013) NutriChip: nutrition analysis meets microfluidics. Lab Chip 13(2):196–203

    Article  CAS  PubMed  Google Scholar 

  121. Sung JH et al (2011) Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11(3):389–392

    Article  CAS  PubMed  Google Scholar 

  122. Li L et al (2012) A microfluidic in vitro system for the quantitative study of the stomach mucus barrier function. Lab Chip 12(20):4071–4079

    Article  CAS  PubMed  Google Scholar 

  123. Yoon ND et al (2015) 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 15(19):3822–3837

    Article  CAS  Google Scholar 

  124. Bhise NS et al (2016) A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8(1):014101

    Article  PubMed  CAS  Google Scholar 

  125. Lee J et al (2014) Fabrication and characterization of microfluidic liver-on-a-chip using microsomal enzymes. Lab Chip 14(17):3290–3299

    Article  Google Scholar 

  126. Lee PJ et al (2007) An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng 97(5):1340–1346

    Article  CAS  PubMed  Google Scholar 

  127. Kang IK et al (2004) Co-culture of hepatocytes and fibroblasts by micropatterned immobilization of beta-galactose derivatives. Biomaterials 25(18):4225–4232

    Article  CAS  PubMed  Google Scholar 

  128. Zinchenko YS, Coger RN (2005) Engineering micropatterned surfaces for the coculture of hepatocytes and Kupffer cells. J Biomed Mater Res A 75(1):242–248

    Article  PubMed  CAS  Google Scholar 

  129. Ho CT et al (2013) Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab Chip 13(18):3578–3587

    Article  CAS  PubMed  Google Scholar 

  130. Ho CT et al (2006) Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip 6(6):724–734

    Article  CAS  PubMed  Google Scholar 

  131. Malinen MM et al (2014) Differentiation of liver progenitor cell line to functional organotypiccultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35(19):5110–5121

    Article  CAS  PubMed  Google Scholar 

  132. Lee KH et al (2011) Diffusion-mediated in situ alginate encapsulation of cell spheroids using microscale concave well and nanoporous membrane. Lab Chip 11(6):1168–1167

    Article  CAS  PubMed  Google Scholar 

  133. Gieseck RL 3rd et al (2014) Maturation of induced pluripotent stem cell derived hepatocytes by 3D-culture. PLoS One 9(1):e86372

    Article  PubMed  CAS  Google Scholar 

  134. Achilli TM et al (2012) Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 12(10):1347–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jun Y et al (2013) 3D co-culturing model of primary pancreatic islets and hepatocytes in hybrid spheroid to overcome pancreatic cell shortage. Biomaterials 34(15):3784–3794

    Article  CAS  PubMed  Google Scholar 

  136. Wong SF et al (2011) Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model. Biomaterials 32(32):8087–8096

    Article  CAS  PubMed  Google Scholar 

  137. Goral VN et al (2010) Perfusion-based microfluidic device for three-dimensional dynamic primary human hepatocyte cell culture in the absence of biological or synthetic matrices or coagulants. Lab Chip 10(24):3380–3386

    Article  CAS  PubMed  Google Scholar 

  138. Miki T et al (2011) Hepatic differentiation of human embryonic stem cells is promoted by three-dimensional dynamic perfusion culture conditions. Tissue Eng Part C Methods 17(5):557–568

    Article  PubMed  Google Scholar 

  139. Lee SA et al (2013) Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab Chip 13(18):3529–3537

    Article  CAS  PubMed  Google Scholar 

  140. Dash A et al (2013) Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro. Am J Physiol Cell Physiol 304(11):C1053–C1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Trietsch SJ et al (2013) Microfluidic titer plate for stratified 3D cell culture. Lab Chip 13(18):3548–3554

    Article  CAS  PubMed  Google Scholar 

  142. Nakao Y et al (2011) Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics 5(2):22212

    Article  PubMed  CAS  Google Scholar 

  143. Esch MB et al (2015) Multi-cellular 3D human primary liver cell culture elevates metabolic activity under fluidic flow. Lab Chip 15(10):2269–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tanaka Y et al (2007) A micro-spherical heart pump powered by cultured cardiomyocytes. Lab Chip 7:207–212

    Article  CAS  PubMed  Google Scholar 

  145. Aung A et al (2016) 3D cardiac μtissues within a microfluidic device with real-time contractile stress readout. Lab Chip 16(1):153–162

    Article  CAS  PubMed  Google Scholar 

  146. Morimoto Y et al (2016) Human induced pluripotent stem cell-derived fiber-shaped cardiac tissue on a chip. Lab Chip 16(12):2295–2301

    Article  CAS  PubMed  Google Scholar 

  147. Khademhosseini A et al (2007) Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed Microdevices 9(2):149–157

    Article  PubMed  Google Scholar 

  148. Visone R et al (2016) Cardiac meets skeletal: what’s new in microfluidic models for muscle tissue engineering. Molecules 21(9):piiE1128

    Article  CAS  Google Scholar 

  149. Radisic M et al (2007) Biomimetic approach to cardiac tissue engineering. Philos Trans R Soc Lond Ser B Biol Sci 362:1357–1136

    Article  CAS  Google Scholar 

  150. Grosberg A et al (2011) Ensembles of engineered cardiac tissues for physiological and engineered cardiac tissues for physiological and pharmacological study heart on a chip. Lab Chip 11(24):4165–4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Effron MB et al (1987) Changes in myosin isoenzymes, ATPase activity, and contraction duration in rat cardiac muscle with aging can be modulated by thyroxine. Circ Res 60(2):238–245

    Article  CAS  PubMed  Google Scholar 

  152. Agarwal A et al (2013) Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13:3599–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Serena E et al (2012) Micro-arrayed human embryonic stem cells-derived cardiomyocytes for in vitro functional assay. PLoS One 7(11):e48483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kensah G et al (2013) Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 34:1134–1146

    Article  CAS  PubMed  Google Scholar 

  155. Bergstrom G et al (2015) Stem cell derived in vivo-like human cardiac bodies in a microfluidic device for toxicity testing by beating frequency imaging. Lab Chip 15:3242–3249

    Article  PubMed  CAS  Google Scholar 

  156. Aung A et al (2016) 3D cardiac mutissues within a microfluidic device with real-time contractile stress readout. Lab Chip 16:153–162

    Article  CAS  PubMed  Google Scholar 

  157. Mathur A et al (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5:8883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mathur A et al (2016) In vitro cardiac tissue models: current status and future prospects. Adv Drug Deliv Rev 96:203–213

    Article  CAS  PubMed  Google Scholar 

  159. Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (mBBB). Lab Chip 12:1784–1792

    Article  CAS  PubMed  Google Scholar 

  160. Achyuta AK et al (2013) A modular approach to create a neurovascular unit-on-a-chip. Lab Chip 13:542–553

    Article  CAS  PubMed  Google Scholar 

  161. Wikswo JP et al (2013) Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13:3496–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Abaci HE, Shuler ML (2015) Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr Biol (Camb) 7(4):383–391

    Article  Google Scholar 

  163. vanMidwoud PM et al (2010) A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip 10:2778–2786

    Article  CAS  Google Scholar 

  164. Wagner I et al (2013) A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13(18):3538–3547

    Article  CAS  PubMed  Google Scholar 

  165. Materne EM et al (2015) A multi-organ chip co-culture of neurospheres and liver equivalentsfor long-term substance testing. J Biotechnol 205:36–46

    Article  CAS  PubMed  Google Scholar 

  166. Sung JH, Shuler ML (2009) A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9(10):1385–1394

    Article  CAS  PubMed  Google Scholar 

  167. Esch MB et al (2014) Body-on-a chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 14(16):3081–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Maschmeyer I et al (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15(12):2688–2699

    Article  CAS  PubMed  Google Scholar 

  169. Zhang C et al (2009) Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 9:3185–3192

    Article  CAS  PubMed  Google Scholar 

  170. Odijk M et al (2015) Measuring direct current trans-epithelial electrical resistance in organ-on microsystem. Lab Chip 15(3):745–752

    Article  CAS  PubMed  Google Scholar 

  171. Benam KH et al (2016) Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 13(2):151–157

    Article  CAS  PubMed  Google Scholar 

  172. Park J et al (2015) Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 15(1):141–150

    Article  CAS  PubMed  Google Scholar 

  173. Ma H et al (2013) Biomimetic tumor microenvironment on a microfluidic platform. Biomicrofluidics 7(1):11501

    Article  PubMed  CAS  Google Scholar 

  174. Kuo CT et al (2014) Modeling of cancer metastasis and drug resistance via biomimeticnanocilial and microfluidics. Biomaterials 35(5):1562–1571

    Article  CAS  PubMed  Google Scholar 

  175. Choi Y et al (2015) A microengineered pathophysiological model of early-stage breast cancer. Lab Chip 15(16):3350–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Xu H et al (2015) Activation of hypoxia signaling induces phenotypic transformation of glioma cells: implications for bevacizumab antiangiogenic therapy. Oncotarget 6(14):11882–11893

    Article  PubMed  PubMed Central  Google Scholar 

  177. Li CY et al (2013) Flow-based pipeline for systematic modulation and analysis of 3D tumor microenvironments. Lab Chip 13:1969–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zervantonakis IK et al (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci USA 109:13515–13520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Moya ML et al (2013) In vitro perfused human capillary networks. Tissue Eng Part C Methods 19:730–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Businaro L et al (2013) Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab Chip 13:229–239

    Article  CAS  PubMed  Google Scholar 

  181. Aref AR et al (2013) Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integr Biol (Camb) 5:381–389

    Article  CAS  Google Scholar 

  182. Vidi PA et al (2014) Disease-on-a-chip: mimicry of tumor growth in mammary ducts. Lab Chip 14:172–177

    Article  CAS  PubMed  Google Scholar 

  183. Tatosian DA, Shuler ML (2009) A novel system for evaluation of drug mixtures for potential efficacy in treating multidrug resistant cancers. Biotechnol Bioeng 103:187–198

    Article  CAS  PubMed  Google Scholar 

  184. Berdichevsky Y et al (2010) Building and manipulating neural pathways with microfluidics. Lab Chip 10:999–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Xu H et al (2016) A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci Rep 6:36670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lippmann ES et al (2012) Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 30:783–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Deracinois B et al (2013) Glial-cell-mediated re-induction of the blood-brain barrier phenotype in brain capillary endothelial cells: a differential gel electrophoresis study. Proteomics 13:1185–1199

    Article  CAS  PubMed  Google Scholar 

  188. Choucha-Snouber L et al (2013) Investigation of ifosfamide nephrotoxicity induced in a liver–kidney co-culture biochip. Biotechnol Bioeng 110:597–608

    Article  CAS  PubMed  Google Scholar 

  189. McCain ML et al (2013) Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc Natl Acad Sci USA 110:9770–9775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Thavandiran N et al (2013) Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc Natl Acad Sci USA 110:E4698–E4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. ChouchaSnouber L et al (2013) Metabolomics-on-a-chip of hepatotoxicity induced by anticancer drug flutamide and its active metabolite hydroxyflutamide using HepG2/ C3a microfluidic biochips. Toxicol Sci 132:8–20

    Article  CAS  Google Scholar 

  192. Shintu L et al (2012) Metabolomics-on-a-chip and predictive systems toxicology in microfluidic bioartificial organs. Anal Chem 84:1840–1848

    Article  CAS  PubMed  Google Scholar 

  193. Mahler GJ et al (2009) Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol Bioeng 104(1):193–205

    Article  CAS  PubMed  Google Scholar 

  194. Sung JH et al (2010) A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10(4):446–455

    Article  CAS  PubMed  Google Scholar 

  195. Li Z et al (2016) Assessment of metabolism-dependent drug efficacy and toxicity on a multilayer organs-on-a-chip. Integr Biol (Camb) 8(10):1022–1029

    Article  CAS  Google Scholar 

  196. Cong X et al (2015) Early life experience and gut microbiome: the brain-gut-microbiota signaling system. Adv Neonatal Care 5(5):314–323

    Article  Google Scholar 

  197. Dinan TG, Cryan JF (2012) Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37(9):1369–1378

    Article  CAS  PubMed  Google Scholar 

  198. Kim HJ et al (2016) Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth andinflammation in a human gut-on-a-chip. Proc Natl Acad Sci USA 113(1):E7–E15

    Article  CAS  PubMed  Google Scholar 

  199. Booth R, Kim H (2014) Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood-brain barrier model. Annals Biomed Engineering 42:2379–2391

    Article  CAS  Google Scholar 

  200. Deosarkar SP et al (2015) A novel dynamic neonatal blood- brain barrier on a Chip. PLoS One 10(11):e0142725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Wang G et al (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Med 20:616–623

    Article  CAS  PubMed  Google Scholar 

  202. Alford PW et al (2010) Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials 31(13):3613–3621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Punde TH et al (2015) A biologically inspired lung-on-a-chip device for the study of protein induced lung inflammation. IntegrBiol (Camb) 7(2):162–169

    Article  CAS  Google Scholar 

  204. Jang KJ et al (2013) Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. IntegrBiol (Camb). 5(9):1119–1129

    Article  CAS  Google Scholar 

  205. Zhou M et al (2016) Development of a functional Glomerulus at the organ level on a Chip to mimic hypertensive nephropathy. Sci Rep 6:31771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Zhou Q et al (2015) Liver injury-on-a-chip: microfluidic co-cultures with integrated biosensors for monitoring liver cell signaling during injury. Lab Chip 15(23):4467–4478

    Article  CAS  PubMed  Google Scholar 

  207. Kang YB et al (2015) Liver sinusoid on a chip: long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms. BiotechnolBioeng 112(12):2571–2582

    CAS  Google Scholar 

  208. Schimek K et al (2013) Integrating biological vasculature into a multi-organ-chip microsystem. Lab Chip 13(18):3588–3598

    Article  CAS  PubMed  Google Scholar 

  209. Hsu YH et al (2013) A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13(15):2990–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang X et al (2016) Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip 16(2):282–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Oleaga C et al (2016) Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep 6:20030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Frey O et al (2014) Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 5:4250

    Article  CAS  PubMed  Google Scholar 

  213. Loskill P et al (2015) μOrgano: a Lego®-like Plug & Play System for Modular Multi-Organ-Chips. PLoS One 10(10):e0139587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Rigat-Brugarolas LG et al (2014) A functional microengineered model of the human splenon-on-a-chip. Lab Chip 14(10):1715–1724

    Article  CAS  PubMed  Google Scholar 

  215. Adriani G et al (2017) A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as ablood-brain barrier. Lab Chip 17(3):448–459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16020900, XDPB0305), National Nature Science Foundation of China (No. 91543121, 31671038, 81573394, 81803492), National Key R&D Program of China (No. 2017YFB0405400), Key Program of the Chinese Academy of Sciences (KFZD-SW-213), Innovation Program of Science and Research from the DICP, CAS (DICP TMSR201601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., Li, Z., Xu, C., Qin, J. (2019). Bioinspired Engineering of Organ-on-Chip Devices. In: Perrett, S., Buell, A., Knowles, T. (eds) Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, vol 1174. Springer, Singapore. https://doi.org/10.1007/978-981-13-9791-2_13

Download citation

Publish with us

Policies and ethics