Skip to main content

Transition Metal Dichalcogenides for Biomedical Applications

  • Chapter
  • First Online:
Book cover Two Dimensional Transition Metal Dichalcogenides

Abstract

The intriguing properties of two-dimensional transition metal dichalcogenides (2D TMDs) have led to the rapid development of research on these emerging 2D inorganic graphene-like nanomaterials in various fields, such as electronic devices, sensors, catalysis, and energy storage. Recently, 2D TMDs exhibit great potentials and advantages in biological systems due to their tunable optical properties, tailorable electronic characteristics, ultrahigh surface area, versatile surface chemistry, and good biocompatibility. In this chapter, we summarize the latest progress of the use of 2D TMDs for biological applications, ranging from bioanalysis, antibacterial and wound repair, bioimaging, drug delivery, and cancer therapy to tissue engineering and medical devices. Specifically, the nanotoxicology and biosafety profiles of TMDs are reviewed to meet the concern of nanomedicine from the public and scientific community. Moreover, the current challenges and future perspectives on the development of 2D TMDs for biomedical applications are also outlined. It is expected that these promising 2D TMDs will have a great practical foundation and play an important role in next-generation biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

2D TMDs:

Two-dimensional transition metal dichalcogenides

·O2−:

Superoxide radical

·OH:

Hydroxyl radical

1O2:

Singlet oxygen

BBB:

Blood–brain barrier

BMSCs:

Bone marrow mesenchymal stem cells

BP:

Black phosphorus

BSA:

Bovine serum albumin

CCK-8:

Cell counting kit-8

Ce6:

Chlorin e6

CpG:

Cytosine-phosphate-guanine

CS:

Chitosan

CT:

Computed tomography

CurvIS:

Curved image sensor

CVD:

Chemical vapor deposition

DHE:

Dihydroethidine

DOX:

Doxorubicin

ECM-like:

Extracellular matrix-like

EMT:

Epithelial-mesenchymal transition

EPR:

Enhanced permeability and retention

FA:

Folic acid

FL:

Fluorescent imaging

GO:

Graphene oxide

GSH:

Glutathione

GT:

Gene therapy

HA:

Hyaluronic acid

HELFs:

Human embryonic lung fibroblasts

HSPs:

Heat shock proteins

HU:

Hounsfield units

i.t.:

Intratumorally

i.v.:

Intravenously

ICG:

Indocyanine green

MB:

Methylene blue

MRI:

Magnetic resonance imaging

MTT:

Methylthiazolyldiphenyltetrazolium bromide

MWT:

Microwave thermal therapy

NFs:

Nanoflowers

NIR:

Near-infrared

NMP:

N-methylpyrrolidone

NSC:

Neural stem cell

PANI:

Polyaniline

PAT:

Photoacoustic tomography

PDA:

Polydopamine

PEG:

Polyethylene glycol

PEI:

Polyetherimide

PET:

Positron emission tomography

PLGA:

Poly(lactic-co-glycolic acid)

PS:

Photosensitizer

PTT:

Photothermal therapy

PVP:

Polyvinylpyrrolidone

QDs:

Quantum dots

RES:

Reticuloendothelial system

rGO:

Reduced graphene oxide

ROS:

Reactive oxygen species

RSV:

Resveratrol

SH:

Sulfhydryl

SPECT:

Single-photon emission computed tomography

TBO:

Toluidine blue O

Tf-SH:

Thiol-functionalized transferrin

References

  1. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A (2017) 2D transition metal dichalcogenides. Nat Rev Mater 2:17033. https://doi.org/10.1038/natrevmats.2017.33

    Article  CAS  Google Scholar 

  2. Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117(9):6225–6331. https://doi.org/10.1021/acs.chemrev.6b00558

    Article  CAS  Google Scholar 

  3. Samadi M, Sarikhani N, Zirak M, Zhang H, Zhang H-L, Moshfegh AZ (2018) Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horiz 3(2):90–204. https://doi.org/10.1039/c7nh00137a

    Article  CAS  Google Scholar 

  4. Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano MS, Cooper VR, Liang L, Louie SG, Ringe E, Zhou W, Kim SS, Naik RR, Sumpter BG, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller JA, Schaak RE, Terrones M, Robinson JA (2015) Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12):11509–11539. https://doi.org/10.1021/acsnano.5b05556

    Article  CAS  Google Scholar 

  5. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5(4):263–275. https://doi.org/10.1038/nchem.1589

    Article  Google Scholar 

  6. Kolobov AV, Tominaga J (2016) Emerging applications of 2D TMDCs. In: Two-dimensional transition-metal dichalcogenides. Springer series in materials science, vol 239. Springer International Publishing, Cham, pp 473–512. https://doi.org/10.1007/978-3-319-31450-1_14

    Google Scholar 

  7. Chen Y, Tan C, Zhang H, Wang L (2015) Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev 44(9):2681–2701. https://doi.org/10.1039/c4cs00300d

    Article  CAS  Google Scholar 

  8. Chimene D, Alge DL, Gaharwar AK (2015) Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv Mater 27(45):7261–7284. https://doi.org/10.1002/adma.201502422

    Article  CAS  Google Scholar 

  9. Kurapati R, Kostarelos K, Prato M, Bianco A (2016) Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Adv Mater 28(29):6052–6074. https://doi.org/10.1002/adma.201506306

    Article  CAS  Google Scholar 

  10. Kalantar-zadeh K, Ou JZ, Daeneke T, Strano MS, Pumera M, Gras SL (2015) Two-dimensional transition metal dichalcogenides in biosystems. Adv Funct Mater 25(32):5086–5099. https://doi.org/10.1002/adfm.201500891

    Article  CAS  Google Scholar 

  11. Liu T, Liu Z (2018) 2D MoS2 nanostructures for biomedical applications. Adv Healthc Mater 7(8):1701158. https://doi.org/10.1002/adhm.201701158

    Article  CAS  Google Scholar 

  12. Yang B, Chen Y, Shi J (2018) Material chemistry of two-dimensional inorganic nanosheets in cancer theranostics. Chem 4(6):1284–1313. https://doi.org/10.1016/j.chempr.2018.02.012

    Article  CAS  Google Scholar 

  13. Li X, Shan J, Zhang W, Su S, Yuwen L, Wang L (2017) Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small 13(5):1602660. https://doi.org/10.1002/smll.201602660

    Article  CAS  Google Scholar 

  14. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017):568–571. https://doi.org/10.1126/science.1194975

    Article  CAS  Google Scholar 

  15. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340(6139). https://doi.org/10.1126/science.1226419

    Article  Google Scholar 

  16. Brent JR, Savjani N, O’Brien P (2017) Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Prog Mater Sci 89:411–478. https://doi.org/10.1016/j.pmatsci.2017.06.002

    Article  CAS  Google Scholar 

  17. Zhu S, Gong L, Xie J, Gu Z, Zhao Y (2017) Design, synthesis, and surface modification of materials based on transition-metal dichalcogenides for biomedical applications. Small Methods 1(12):1700220. https://doi.org/10.1002/smtd.201700220

    Article  CAS  Google Scholar 

  18. Yin F, Gu B, Lin Y, Panwar N, Tjin SC, Qu J, Lau SP, Yong K-T (2017) Functionalized 2D nanomaterials for gene delivery applications. Coord Chem Rev 347:77–97. https://doi.org/10.1016/j.ccr.2017.06.024

    Article  CAS  Google Scholar 

  19. Li Z, Wong SL (2017) Functionalization of 2D transition metal dichalcogenides for biomedical applications. Mater Sci Eng, C 70:1095–1106. https://doi.org/10.1016/j.msec.2016.03.039

    Article  CAS  Google Scholar 

  20. Cao F, Ju E, Zhang Y, Wang Z, Liu C, Li W, Huang Y, Dong K, Ren J, Qu X (2017) An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano 11(5):4651–4659. https://doi.org/10.1021/acsnano.7b00343

    Article  CAS  Google Scholar 

  21. Yin W, Yu J, Lv F, Yan L, Zheng LR, Gu Z, Zhao Y (2016) Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10(12):11000–11011. https://doi.org/10.1021/acsnano.6b05810

    Article  CAS  Google Scholar 

  22. Wang S, Qiu J, Guo W, Yu X, Nie J, Zhang J, Zhang X, Liu Z, Mou X, Li L, Liu H (2017) A nanostructured molybdenum disulfide film for promoting neural stem cell neuronal differentiation: toward a nerve tissue-engineered 3D scaffold. Adv Biosyst 1(5):1600042. https://doi.org/10.1002/adbi.201600042

    Article  CAS  Google Scholar 

  23. Wang X, Li T, Ma H, Zhai D, Jiang C, Chang J, Wang J, Wu C (2017) A 3D-printed scaffold with MoS2 nanosheets for tumor therapy and tissue regeneration. NPG Asia Mater 9(4):e376. https://doi.org/10.1038/am.2017.47

    Article  CAS  Google Scholar 

  24. Choi C, Choi MK, Liu S, Kim MS, Park OK, Im C, Kim J, Qin X, Lee GJ, Cho KW, Kim M, Joh E, Lee J, Son D, Kwon SH, Jeon NL, Song YM, Lu N, Kim DH (2017) Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat Commun 8(1):1664. https://doi.org/10.1038/s41467-017-01824-6

    Article  CAS  Google Scholar 

  25. Gong L, Yan L, Zhou R, Xie J, Wu W, Gu Z (2017) Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy. J Mater Chem B 5(10):1873–1895. https://doi.org/10.1039/c7tb00195a

    Article  CAS  Google Scholar 

  26. Chen Y, Wang LZ, Shi JL (2016) Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today 11(3):292–308. https://doi.org/10.1016/j.nantod.2016.05.009

    Article  CAS  Google Scholar 

  27. Chen H, Liu T, Su Z, Shang L, Wei G (2018) 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz 3(2):74–89. https://doi.org/10.1039/c7nh00158d

    Article  CAS  Google Scholar 

  28. Lusic H, Grinstaff MW (2013) X-ray-computed tomography contrast agents. Chem Rev 113(3):1641–1666. https://doi.org/10.1021/cr200358s

    Article  CAS  Google Scholar 

  29. Gong LJ, Xie JN, Zhu S, Gu ZJ, Zhao YL (2018) Application of multifunctional nanomaterials in tumor radiosensitization. Acta Phys Chim Sin 34(2):140–167. https://doi.org/10.3866/pku.Whxb201707174

    Article  CAS  Google Scholar 

  30. Wang L, Xiong Q, Xiao F, Duan H (2017) 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosens Bioelectron 89(Pt 1):136–151. https://doi.org/10.1016/j.bios.2016.06.011

    Article  CAS  Google Scholar 

  31. Peng B, Zhang X, Aarts D, Dullens RPA (2018) Superparamagnetic nickel colloidal nanocrystal clusters with antibacterial activity and bacteria binding ability. Nat Nanotechnol 13(6):478–482. https://doi.org/10.1038/s41565-018-0108-0

    Article  CAS  Google Scholar 

  32. Zheng H, Ma R, Gao M, Tian X, Li Y-Q, Zeng L, Li R (2018) Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety. Sci Bull 63(2):133–142. https://doi.org/10.1016/j.scib.2017.12.012

    Article  CAS  Google Scholar 

  33. Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10(3):339–354. https://doi.org/10.1016/j.nantod.2015.04.002

    Article  CAS  Google Scholar 

  34. Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52(6):1636–1653. https://doi.org/10.1002/anie.201205923

    Article  CAS  Google Scholar 

  35. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874. https://doi.org/10.3390/molecules20058856

    Article  CAS  Google Scholar 

  36. Yang X, Li J, Liang T, Ma C, Zhang Y, Chen H, Hanagata N, Su H, Xu M (2014) Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 6(17):10126–10133. https://doi.org/10.1039/c4nr01965b

    Article  CAS  Google Scholar 

  37. Pandit S, Karunakaran S, Boda SK, Basu B, De M (2016) High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl Mater Interfaces 8(46):31567–31573. https://doi.org/10.1021/acsami.6b10916

    Article  CAS  Google Scholar 

  38. Zhang W, Shi S, Wang Y, Yu S, Zhu W, Zhang X, Zhang D, Yang B, Wang X, Wang J (2016) Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy. Nanoscale 8(22):11642–11648. https://doi.org/10.1039/c6nr01243d

    Article  CAS  Google Scholar 

  39. Shang E, Niu J, Li Y, Zhou Y, Crittenden JC (2017) Comparative toxicity of Cd, Mo, and W sulphide nanomaterials toward E. coli under UV irradiation. Environ Pollut 224:606–614. https://doi.org/10.1016/j.envpol.2017.02.044

    Article  CAS  Google Scholar 

  40. Bang GS, Cho S, Son N, Shim GW, Cho BK, Choi SY (2016) DNA-assisted exfoliation of tungsten dichalcogenides and their antibacterial effect. ACS Appl Mater Interfaces 8(3):1943–1950. https://doi.org/10.1021/acsami.5b10136

    Article  CAS  Google Scholar 

  41. Navale GR, Rout CS, Gohil KN, Dharne MS, Late DJ, Shinde SS (2015) Oxidative and membrane stress-mediated antibacterial activity of WS2 and rGO-WS2 nanosheets. RSC Adv 5(91):74726–74733. https://doi.org/10.1039/c5ra15652a

    Article  CAS  Google Scholar 

  42. Liu X, Duan G, Li W, Zhou Z, Zhou R (2017) Membrane destruction-mediated antibacterial activity of tungsten disulfide (WS2). RSC Adv 7(60):37873–37880. https://doi.org/10.1039/c7ra06442j

    Article  CAS  Google Scholar 

  43. Awasthi GP, Adhikari SP, Ko S, Kim HJ, Park CH, Kim CS (2016) Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. J Alloys Compd 682:208–215. https://doi.org/10.1016/j.jallcom.2016.04.267

    Article  CAS  Google Scholar 

  44. Chen CS, Yu WW, Liu TG, Cao SY, Tsang YH (2017) Graphene oxide/WS2/Mg-doped ZnO nanocomposites for solar-light catalytic and anti-bacterial applications. Sol Energy Mater Sol Cells 160:43–53. https://doi.org/10.1016/j.solmat.2016.10.020

    Article  CAS  Google Scholar 

  45. Pal A, Jana TK, Roy T, Pradhan A, Maiti R, Choudhury SM, Chatterjee K (2018) MoS2-TiO2 nanocomposite with excellent adsorption performance and high antibacterial activity. Chemistryselect 3(1):81–90. https://doi.org/10.1002/slct.201702618

    Article  CAS  Google Scholar 

  46. Huang X-W, Wei J-J, Liu T, Zhang X-L, Bai S-M, Yang H-H (2017) Silk fibroin-assisted exfoliation and functionalization of transition metal dichalcogenide nanosheets for antibacterial wound dressings. Nanoscale 9(44):17193–17198. https://doi.org/10.1039/c7nr06807g

    Article  CAS  Google Scholar 

  47. Feng Z, Liu X, Tan L, Cui Z, Yang X, Li Z, Zheng Y, Yeung KWK, Wu S (2018) Electrophoretic deposited stable chitosan@MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation. Small 14(21):1704347. https://doi.org/10.1002/smll.201704347

    Article  CAS  Google Scholar 

  48. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599):1759–1762. https://doi.org/10.1126/science.1077194

    Article  CAS  Google Scholar 

  49. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976. https://doi.org/10.1038/nbt994

    Article  CAS  Google Scholar 

  50. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544. https://doi.org/10.1126/science.1104274

    Article  CAS  Google Scholar 

  51. Bruns OT, Bischof TS, Harris DK, Franke D, Shi Y, Riedemann L, Bartelt A, Jaworski FB, Carr JA, Rowlands CJ, Wilson MWB, Chen O, Wei H, Hwang GW, Montana DM, Coropceanu I, Achorn OB, Kloepper J, Heeren J, So PTC, Fukumura D, Jensen KF, Jain RK, Bawendi MG (2017) Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng 1:0056. https://doi.org/10.1038/s41551-017-0056

    Article  Google Scholar 

  52. Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL (2016) Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat Nanotechnol 11(5):479–486. https://doi.org/10.1038/nnano.2015.338

    Article  CAS  Google Scholar 

  53. Yang G, Gong H, Liu T, Sun X, Cheng L, Liu Z (2015) Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 60:62–71. https://doi.org/10.1016/j.biomaterials.2015.04.053

    Article  CAS  Google Scholar 

  54. Song C, Yang C, Wang F, Ding D, Gao Y, Guo W, Yan M, Liu S, Guo C (2017) MoS2-Based multipurpose theranostic nanoplatform: realizing dual-imaging-guided combination phototherapy to eliminate solid tumor via a liquefaction necrosis process. J Mater Chem B 5(45):9015–9024. https://doi.org/10.1039/c7tb02648j

    Article  CAS  Google Scholar 

  55. Dai W, Dong H, Fugetsu B, Cao Y, Lu H, Ma X, Zhang X (2015) Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging. Small 11(33):4158–4164. https://doi.org/10.1002/smll.201500208

    Article  CAS  Google Scholar 

  56. Gu W, Yan Y, Cao X, Zhang C, Ding C, Xian Y (2016) A facile and one-step ethanol-thermal synthesis of MoS2 quantum dots for two-photon fluorescence imaging. J Mater Chem B 4(1):27–31. https://doi.org/10.1039/c5tb01839k

    Article  CAS  Google Scholar 

  57. Chen SC, Lin CY, Cheng TL, Tseng WL (2017) 6-mercaptopurine-induced fluorescence quenching of monolayer MoS2 nanodots: applications to glutathione sensing, cellular imaging, and glutathione-stimulated drug delivery. Adv Funct Mater 27(41):1702452. https://doi.org/10.1002/adfm.201702452

    Article  CAS  Google Scholar 

  58. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462. https://doi.org/10.1126/science.1216210

    Article  CAS  Google Scholar 

  59. Cheng L, Liu J, Gu X, Gong H, Shi X, Liu T, Wang C, Wang X, Liu G, Xing H, Bu W, Sun B, Liu Z (2014) PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv Mater 26(12):1886–1893. https://doi.org/10.1002/adma.201304497

    Article  CAS  Google Scholar 

  60. Chen JQ, Liu CB, Hu DH, Wang F, Wu HW, Gong XJ, Liu X, Song L, Sheng ZH, Zheng HR (2016) Single-layer MoS2 nanosheets with amplified photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors. Adv Funct Mater 26(47):8715–8725. https://doi.org/10.1002/adfm.201603758

    Article  CAS  Google Scholar 

  61. Liu T, Wang C, Cui W, Gong H, Liang C, Shi X, Li Z, Sun B, Liu Z (2014) Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. Nanoscale 6(19):11219–11225. https://doi.org/10.1039/c4nr03753g

    Article  CAS  Google Scholar 

  62. Liu T, Shi S, Liang C, Shen S, Cheng L, Wang C, Song X, Goel S, Barnhart TE, Cai W, Liu Z (2015) Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 9(1):950–960. https://doi.org/10.1021/nn506757x

    Article  CAS  Google Scholar 

  63. Chen L, Zhou X, Nie W, Feng W, Zhang Q, Wang W, Zhang Y, Chen Z, Huang P, He C (2017) Marriage of albumin-gadolinium complexes and MoS2 nanoflakes as cancer theranostics for dual-modality magnetic resonance/photoacoustic imaging and photothermal therapy. ACS Appl Mater Interfaces 9(21):17786–17798. https://doi.org/10.1021/acsami.7b04488

    Article  CAS  Google Scholar 

  64. Liu CB, Chen JQ, Zhu Y, Gong XJ, Zheng RQ, Chen NB, Chen D, Yan HX, Zhang P, Zheng HR, Sheng ZH, Song L (2018) Highly sensitive MoS2-indocyanine green hybrid for photoacoustic imaging of orthotopic brain glioma at deep site. Nano-Micro Lett 10(3):48. https://doi.org/10.1007/s40820-018-0202-8

    Article  CAS  Google Scholar 

  65. Wu C, Zhao J, Hu F, Zheng Y, Yang H, Pan S, Shi S, Chen X, Wang S (2018) Design of injectable agar-based composite hydrogel for multi-mode tumor therapy. Carbohydr Polym 180:112–121. https://doi.org/10.1016/j.carbpol.2017.10.024

    Article  CAS  Google Scholar 

  66. Zhao J, Li J, Zhu C, Hu F, Wu H, Man X, Li Z, Ye C, Zou D, Wang S (2018) Design of phase-changeable and injectable alginate hydrogel for imaging-guided tumor hyperthermia and chemotherapy. ACS Appl Mater Interfaces 10(4):3392–3404. https://doi.org/10.1021/acsami.7b17608

    Article  CAS  Google Scholar 

  67. Liu T, Chao Y, Gao M, Liang C, Chen Q, Song GS, Cheng L, Liu Z (2016) Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano Res 9(10):3003–3017. https://doi.org/10.1007/s12274-016-1183-x

    Article  CAS  Google Scholar 

  68. Wang J, Tan X, Pang X, Liu L, Tan F, Li N (2016) MoS2 quantum dot@polyaniline inorganic-organic nanohybrids for in vivo dual-modal imaging guided synergistic photothermal/radiation therapy. ACS Appl Mater Interfaces 8(37):24331–24338. https://doi.org/10.1021/acsami.6b08391

    Article  CAS  Google Scholar 

  69. Zhao J, Zhou C, Li M, Li J, Li G, Ma D, Li Z, Zou D (2017) Bottom-up synthesis of ultra-small molybdenum disulfide-polyvinylpyrrolidone nanosheets for imaging-guided tumor regression. Oncotarget 8(63):106707–106720. https://doi.org/10.18632/oncotarget.22477

    Article  Google Scholar 

  70. Chen J, Li X, Liu X, Yan H, Xie Z, Sheng Z, Gong X, Wang L, Liu X, Zhang P, Zheng H, Song L, Liu C (2018) Hybrid MoSe2-indocyanine green nanosheets as a highly efficient phototheranostic agent for photoacoustic imaging guided photothermal cancer therapy. Biomater Sci 6(6):1503–1516. https://doi.org/10.1039/c8bm00104a

    Article  CAS  Google Scholar 

  71. Pan J, Zhu X, Chen X, Zhao Y, Liu J (2018) Gd3+-doped MoSe2 nanosheets used as a theranostic agent for bimodal imaging and highly efficient photothermal cancer therapy. Biomater Sci 6(2):372–387. https://doi.org/10.1039/c7bm00894e

    Article  CAS  Google Scholar 

  72. Cheng L, Yuan C, Shen S, Yi X, Gong H, Yang K, Liu Z (2015) Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics. ACS Nano 9(11):11090–11101. https://doi.org/10.1021/acsnano.5b04606

    Article  CAS  Google Scholar 

  73. Wang S, Zhao J, Yang H, Wu C, Hu F, Chang H, Li G, Ma D, Zou D, Huang M (2017) Bottom-up synthesis of WS2 nanosheets with synchronous surface modification for imaging guided tumor regression. Acta Biomater 58:442–454. https://doi.org/10.1016/j.actbio.2017.06.014

    Article  CAS  Google Scholar 

  74. Zhang C, Yong Y, Song L, Dong X, Zhang X, Liu X, Gu Z, Zhao Y, Hu Z (2016) Multifunctional WS2@Poly(ethylene imine) nanoplatforms for imaging guided gene-photothermal synergistic therapy of cancer. Adv Healthc Mater 5(21):2776–2787. https://doi.org/10.1002/adhm.201600633

    Article  CAS  Google Scholar 

  75. Qian XX, Shen SD, Liu T, Cheng L, Liu Z (2015) Two-dimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy. Nanoscale 7(14):6380–6387. https://doi.org/10.1039/c5nr00893j

    Article  CAS  Google Scholar 

  76. Chen Y, Cheng L, Dong Z, Chao Y, Lei H, Zhao H, Wang J, Liu Z (2017) Degradable vanadium disulfide nanostructures with unique optical and magnetic functions for cancer theranostics. Angew Chem Int Ed 56(42):12991–12996. https://doi.org/10.1002/anie.201707128

    Article  CAS  Google Scholar 

  77. Shen SD, Chao Y, Dong ZL, Wang GL, Yi X, Song GS, Yang K, Liu Z, Cheng L (2017) Bottom-up preparation of uniform ultrathin rhenium disulfide nanosheets for image-guided photothermal radiotherapy. Adv Funct Mater 27(28):1700250. https://doi.org/10.1002/adfm.201700250

    Article  CAS  Google Scholar 

  78. Miao ZH, Lv LX, Li K, Liu PY, Li Z, Yang H, Zhao Q, Chang M, Zhen L, Xu CY (2018) Liquid exfoliation of colloidal rhenium disulfide nanosheets as a multifunctional theranostic agent for in vivo photoacoustic/ct imaging and photothermal therapy. Small 14(14):1703789. https://doi.org/10.1002/smll.201703789

    Article  CAS  Google Scholar 

  79. Wang S, Li X, Chen Y, Cai X, Yao H, Gao W, Zheng Y, An X, Shi J, Chen H (2015) A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy. Adv Mater 27(17):2775–2782. https://doi.org/10.1002/adma.201500870

    Article  CAS  Google Scholar 

  80. Yu J, Yin W, Zheng X, Tian G, Zhang X, Bao T, Dong X, Wang Z, Gu Z, Ma X, Zhao Y (2015) Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics 5(9):931–945. https://doi.org/10.7150/thno.11802

    Article  CAS  Google Scholar 

  81. Liu B, Li C, Chen G, Liu B, Deng X, Wei Y, Xia J, Xing B, Ma P, Lin J (2017) Synthesis and optimization of MoS2@Fe3O4-ICG/Pt(IV) Nanoflowers for MR/IR/PA bioimaging and combined PTT/PDT/chemotherapy triggered by 808 nm laser. Adv Sci 4(8):1600540. https://doi.org/10.1002/advs.201600540

    Article  CAS  Google Scholar 

  82. Meng XD, Liu ZQ, Cao Y, Dai WH, Zhang K, Dong HF, Feng XY, Zhang XJ (2017) Fabricating aptamer-conjugated PEGylated-MoS2/Cu1.8S theranostic nanoplatform for multiplexed imaging diagnosis and chemo-photothermal therapy of cancer. Adv Funct Mater 27 (16):1605592. https://doi.org/10.1002/adfm.201605592

    Article  Google Scholar 

  83. Ke K, Yang W, Xie X, Liu R, Wang LL, Lin WW, Huang G, Lu CH, Yang HH (2017) Copper manganese sulfide nanoplates: a new two-dimensional theranostic nanoplatform for MRI/MSOT dual-modal imaging-guided photothermal therapy in the second near-infrared window. Theranostics 7(19):4763–4776. https://doi.org/10.7150/thno.21694

    Article  CAS  Google Scholar 

  84. Zhu H, Lai Z, Fang Y, Zhen X, Tan C, Qi X, Ding D, Chen P, Zhang H, Pu K (2017) Ternary chalcogenide nanosheets with ultrahigh photothermal conversion efficiency for photoacoustic theranostics. Small 13(16):1604139. https://doi.org/10.1002/smll.201604139

    Article  CAS  Google Scholar 

  85. Cui X-Z, Zhou Z-G, Yang Y, Wei J, Wang J, Wang M-W, Yang H, Zhang Y-J, Yang S-P (2015) PEGylated WS2 nanosheets for X-ray computed tomography imaging and photothermal therapy. Chin Chem Lett 26(6):749–754. https://doi.org/10.1016/j.cclet.2015.03.034

    Article  CAS  Google Scholar 

  86. Yong Y, Cheng X, Bao T, Zu M, Yan L, Yin W, Ge C, Wang D, Gu Z, Zhao Y (2015) Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 9(12):12451–12463. https://doi.org/10.1021/acsnano.5b05825

    Article  CAS  Google Scholar 

  87. Yong Y, Zhou L, Gu Z, Yan L, Tian G, Zheng X, Liu X, Zhang X, Shi J, Cong W, Yin W, Zhao Y (2014) WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale 6(17):10394–10403. https://doi.org/10.1039/C4NR02453B

    Article  CAS  Google Scholar 

  88. Wang J, Pang X, Tan X, Song Y, Liu L, You Q, Sun Q, Tan F, Li N (2017) A triple-synergistic strategy for combinational photo/radiotherapy and multi-modality imaging based on hyaluronic acid-hybridized polyaniline-coated WS2 nanodots. Nanoscale 9(17):5551–5564. https://doi.org/10.1039/c6nr09219e

    Article  CAS  Google Scholar 

  89. Liu Y, Ji X, Liu J, Tong WWL, Askhatova D, Shi J (2017) Tantalum sulfide nanosheets as a theranostic nanoplatform for computed tomography imaging-guided combinatorial chemo-photothermal therapy. Adv Funct Mater 27(39):1703261. https://doi.org/10.1002/adfm.201703261

    Article  CAS  Google Scholar 

  90. Liu L, Wang J, Tan X, Pang X, You Q, Sun Q, Tan F, Li N (2017) Photosensitizer loaded PEG-MoS2-Au hybrids for CT/NIRF imaging-guided stepwise photothermal and photodynamic therapy. J Mater Chem B 5(12):2286–2296. https://doi.org/10.1039/c6tb03352k

    Article  CAS  Google Scholar 

  91. Xu J, Gulzar A, Liu Y, Bi H, Gai S, Liu B, Yang D, He F, Yang P (2017) Integration of IR-808 sensitized upconversion nanostructure and MoS2 nanosheet for 808 nm NIR light triggered phototherapy and bioimaging. Small 13(36):1701841. https://doi.org/10.1002/smll.201701841

    Article  CAS  Google Scholar 

  92. Yin W, Yan L, Yu J, Tian G, Zhou L, Zheng X, Zhang X, Yong Y, Li J, Gu Z, Zhao Y (2014) High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8(7):6922–6933. https://doi.org/10.1021/nn501647j

    Article  CAS  Google Scholar 

  93. Mao B, Bao T, Yu J, Zheng L, Qin J, Yin W, Cao M (2017) One-pot synthesis of MoSe2 hetero-dimensional hybrid self-assembled by nanodots and nanosheets for electrocatalytic hydrogen evolution and photothermal therapy. Nano Res 10(8):2667–2682. https://doi.org/10.1007/s12274-017-1469-7

    Article  CAS  Google Scholar 

  94. Jing X, Zhi Z, Wang D, Liu J, Shao Y, Meng L (2018) Multifunctional nanoflowers for simultaneous multimodal imaging and high-sensitivity chemo-photothermal treatment. Bioconjug Chem 29(2):559–570. https://doi.org/10.1021/acs.bioconjchem.8b00053

    Article  CAS  Google Scholar 

  95. Tang S, Fu C, Tan L, Liu T, Mao J, Ren X, Su H, Long D, Chai Q, Huang Z, Chen X, Wang J, Ren J, Meng X (2017) Imaging-guided synergetic therapy of orthotopic transplantation tumor by superselectively arterial administration of microwave-induced microcapsules. Biomaterials 133:144–153. https://doi.org/10.1016/j.biomaterials.2017.04.027

    Article  CAS  Google Scholar 

  96. Xie W, Gao Q, Wang D, Guo Z, Gao F, Wang X, Cai Q, S-s Feng, Fan H, Sun X, Zhao L (2018) Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer. Nano Res 11(5):2470–2487. https://doi.org/10.1007/s12274-017-1871-1

    Article  CAS  Google Scholar 

  97. Yang G, Zhang R, Liang C, Zhao H, Yi X, Shen S, Yang K, Cheng L, Liu Z (2018) Manganese dioxide coated WS2@Fe3O4/sSiO2 nanocomposites for pH-responsive MR imaging and oxygen-elevated synergetic therapy. Small 14(2):1702664. https://doi.org/10.1002/smll.201702664

    Article  CAS  Google Scholar 

  98. Anbazhagan R, Su YA, Tsai HC, Jeng RJ (2016) MoS2-Gd chelate magnetic nanomaterials with core-shell structure used as contrast agents in in vivo magnetic resonance imaging. ACS Appl Mater Interfaces 8(3):1827–1835. https://doi.org/10.1021/acsami.5b09722

    Article  CAS  Google Scholar 

  99. Dong X, Yin W, Zhang X, Zhu S, He X, Yu J, Xie J, Guo Z, Yan L, Liu X, Wang Q, Gu Z, Zhao Y (2018) Intelligent MoS2 nanotheranostic for targeted and enzyme-/pH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging. ACS Appl Mater Interfaces 10(4):4271–4284. https://doi.org/10.1021/acsami.7b17506

    Article  CAS  Google Scholar 

  100. Chao Y, Wang G, Liang C, Yi X, Zhong X, Liu J, Gao M, Yang K, Cheng L, Liu Z (2016) Rhenium-188 labeled tungsten disulfide nanoflakes for self-sensitized. Near-infrared enhanced radioisotope therapy. Small 12(29):3967–3975. https://doi.org/10.1002/smll.201601375

    Article  CAS  Google Scholar 

  101. Cheng L, Kamkaew A, Shen S, Valdovinos HF, Sun H, Hernandez R, Goel S, Liu T, Thompson CR, Barnhart TE, Liu Z, Cai W (2016) Facile preparation of multifunctional WS2/WOx nanodots for chelator-free Zr-89-labeling and in vivo PET imaging. Small 12(41):5750–5758. https://doi.org/10.1002/smll.201601696

    Article  CAS  Google Scholar 

  102. Wang SP, Tan LF, Liang P, Liu TL, Wang JZ, Fu CH, Yu J, Dou JP, Hong L, Meng XW (2016) Layered MoS2 nanoflowers for microwave thermal therapy. J Mater Chem B 4(12):2133–2141. https://doi.org/10.1039/c6tb00296j

    Article  CAS  Google Scholar 

  103. Liu T, Wang C, Gu X, Gong H, Cheng L, Shi X, Feng L, Sun B, Liu Z (2014) Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater 26(21):3433–3440. https://doi.org/10.1002/adma.201305256

    Article  CAS  Google Scholar 

  104. Han Q, Wang X, Jia X, Cai S, Liang W, Qin Y, Yang R, Wang C (2017) CpG loaded MoS2 nanosheets as multifunctional agents for photothermal enhanced cancer immunotherapy. Nanoscale 9(18):5927–5934. https://doi.org/10.1039/c7nr01460k

    Article  CAS  Google Scholar 

  105. Wang C, Bai J, Liu YW, Jia XD, Jiang X (2016) Polydopamine coated selenide molybdenum: a new photothermal nanocarrier for highly effective chemo-photothermal synergistic therapy. ACS Biomater Sci Eng 2(11):2011–2017. https://doi.org/10.1021/acsbiomaterials.6b00416

    Article  CAS  Google Scholar 

  106. Jia XD, Bai J, Ma ZF, Jiang XU (2017) BSA-exfoliated WSe2 nanosheets as a photoregulated carrier for synergistic photodynamic/photothermal therapy. J Mater Chem B 5(2):269–278. https://doi.org/10.1039/c6tb02525k

    Article  CAS  Google Scholar 

  107. Huang QL, Wang SR, Zhou J, Zhong XY, Huang YL (2018) Albumin-assisted exfoliated ultrathin rhenium disulfide nanosheets as a tumor targeting and dual-stimuli-responsive drug delivery system for a combination chemo-photothermal treatment. RSC Adv 8(9):4624–4633. https://doi.org/10.1039/c7ra13454a

    Article  CAS  Google Scholar 

  108. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497. https://doi.org/10.1016/s1470-2045(02)00818-5

    Article  CAS  Google Scholar 

  109. Chou SS, Kaehr B, Kim J, Foley BM, De M, Hopkins PE, Huang J, Brinker CJ, Dravid VP (2013) Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew Chem Int Ed 52(15):4160–4164. https://doi.org/10.1002/anie.201209229

    Article  CAS  Google Scholar 

  110. Robinson JT, Welsher K, Tabakman SM, Sherlock SP, Wang H, Luong R, Dai H (2010) High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res 3(11):779–793. https://doi.org/10.1007/s12274-010-0045-1

    Article  CAS  Google Scholar 

  111. Wang S, Li K, Chen Y, Chen H, Ma M, Feng J, Zhao Q, Shi J (2015) Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials 39:206–217. https://doi.org/10.1016/j.biomaterials.2014.11.009

    Article  CAS  Google Scholar 

  112. Li M, Zhao AD, Dong K, Li W, Ren JS, Qu XG (2015) Chemically exfoliated WS2 nanosheets efficiently inhibit amyloid beta-peptide aggregation and can be used for photothermal treatment of Alzheimer’s disease. Nano Res 8(10):3216–3227. https://doi.org/10.1007/s12274-015-0821-z

    Article  CAS  Google Scholar 

  113. Han Q, Cai S, Yang L, Wang X, Qi C, Yang R, Wang C (2017) Molybdenum disulfide nanoparticles as multifunctional inhibitors against Alzheimer’s disease. ACS Appl Mater Interfaces 9(25):21116–21123. https://doi.org/10.1021/acsami.7b03816

    Article  CAS  Google Scholar 

  114. Zhang H, Chen H-J, Du X, Wen D (2014) Photothermal conversion characteristics of gold nanoparticle dispersions. Sol Energy 100:141–147. https://doi.org/10.1016/j.solener.2013.12.004

    Article  CAS  Google Scholar 

  115. Lin H, Gao S, Dai C, Chen Y, Shi J (2017) A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc 139(45):16235–16247. https://doi.org/10.1021/jacs.7b07818

    Article  CAS  Google Scholar 

  116. Lei Z, Zhu W, Xu S, Ding J, Wan J, Wu P (2016) Hydrophilic MoSe2 nanosheets as effective photothermal therapy agents and their application in smart devices. ACS Appl Mater Interfaces 8(32):20900–20908. https://doi.org/10.1021/acsami.6b07326

    Article  CAS  Google Scholar 

  117. Lin H, Wang Y, Gao S, Chen Y, Shi J (2018) Theranostic 2D tantalum carbide (MXene). Adv Mater 30(4):1703284. https://doi.org/10.1002/adma.201703284

    Article  CAS  Google Scholar 

  118. Sun Z, Xie H, Tang S, Yu XF, Guo Z, Shao J, Zhang H, Huang H, Wang H, Chu PK (2015) Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew Chem Int Ed 54(39):11526–11530. https://doi.org/10.1002/anie.201506154

    Article  CAS  Google Scholar 

  119. Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, Korgel BA (2011) Copper selenide nanocrystals for photothermal therapy. Nano Lett 11(6):2560–2566. https://doi.org/10.1021/nl201400z

    Article  CAS  Google Scholar 

  120. Zeng J, Goldfeld D, Xia Y (2013) A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew Chem Int Ed 52(15):4169–4173. https://doi.org/10.1002/anie.201210359

    Article  CAS  Google Scholar 

  121. Wang B, Wang JH, Liu Q, Huang H, Chen M, Li K, Li C, Yu XF, Chu PK (2014) Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials 35(6):1954–1966. https://doi.org/10.1016/j.biomaterials.2013.11.066

    Article  CAS  Google Scholar 

  122. Feng W, Chen L, Qin M, Zhou X, Zhang Q, Miao Y, Qiu K, Zhang Y, He C (2015) Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy. Sci Rep 5:17422. https://doi.org/10.1038/srep17422

    Article  CAS  Google Scholar 

  123. Huang Z, Qi Y, Yu D, Zhan J (2016) Radar-like MoS2 nanoparticles as a highly efficient 808 nm laser-induced photothermal agent for cancer therapy. RSC Adv 6(37):31031–31036. https://doi.org/10.1039/C6RA03226E

    Article  CAS  Google Scholar 

  124. Li X, Gong Y, Zhou XQ, Jin H, Yan HH, Wang SG, Liu J (2016) Facile synthesis of soybean phospholipid-encapsulated MoS2 nanosheets for efficient in vitro and in vivo photothermal regression of breast tumor. Int J Nanomed 11:1819–1833. https://doi.org/10.2147/ijn.s104198

    Article  CAS  Google Scholar 

  125. Tan LF, Wang SP, Xu K, Liu TL, Liang P, Niu M, Fu CH, Shao HB, Yu J, Ma TC, Ren XL, Li H, Dou JP, Ren J, Meng XW (2016) Layered MoS2 hollow spheres for highly-efficient photothermal therapy of rabbit liver orthotopic transplantation tumors. Small 12(15):2046–2055. https://doi.org/10.1002/smll.201600191

    Article  CAS  Google Scholar 

  126. Ariyasu S, Mu J, Zhang X, Huang Y, Yeow EKL, Zhang H, Xing B (2017) Investigation of thermally induced cellular ablation and heat response triggered by planar MoS2-based nanocomposite. Bioconjug Chem 28(4):1059–1067. https://doi.org/10.1021/acs.bioconjchem.6b00741

    Article  CAS  Google Scholar 

  127. Chen L, Feng Y, Zhou X, Zhang Q, Nie W, Wang W, Zhang Y, He C (2017) One-pot synthesis of MoS2 nanoflakes with desirable degradability for photothermal cancer therapy. ACS Appl Mater Interfaces 9(20):17347–17358. https://doi.org/10.1021/acsami.7b02657

    Article  CAS  Google Scholar 

  128. Huang B, Wang D, Wang G, Zhang F, Zhou L (2017) Enhancing the colloidal stability and surface functionality of molybdenum disulfide (MoS2) nanosheets with hyperbranched polyglycerol for photothermal therapy. J Colloid Interface Sci 508:214–221. https://doi.org/10.1016/j.jcis.2017.08.062

    Article  CAS  Google Scholar 

  129. Li Z, Yang Y, Yao J, Shao Z, Chen X (2017) A facile fabrication of silk/MoS2 hybrids for photothermal therapy. Mater Sci Eng C Mater Biol Appl 79:123–129. https://doi.org/10.1016/j.msec.2017.05.010

    Article  CAS  Google Scholar 

  130. Park CH, Yun H, Yang H, Lee J, Kim BJ (2017) Fluorescent block copolymer-MoS2 nanocomposites for real-time photothermal heating and imaging. Adv Funct Mater 27(5):1604403. https://doi.org/10.1002/adfm.201604403

    Article  CAS  Google Scholar 

  131. Zhang Y, Xiu W, Sun Y, Zhu D, Zhang Q, Yuwen L, Weng L, Teng Z, Wang L (2017) RGD-QD-MoS2 nanosheets for targeted fluorescent imaging and photothermal therapy of cancer. Nanoscale 9(41):15835–15845. https://doi.org/10.1039/c7nr05278b

    Article  CAS  Google Scholar 

  132. Zhang YB, Jia GZ, Wang P, Zhang Q, Wei XY, Dong EM, Yao JH (2017) Size effect on near infrared photothermal conversion properties of liquid-exfoliated MoS2 and MoSe2. Superlattices Microstruct 105:22–27. https://doi.org/10.1016/j.spmi.2016.11.058

    Article  CAS  Google Scholar 

  133. Park CH, Lee S, Pornnoppadol G, Nam YS, Kim SH, Kim BJ (2018) Microcapsules containing pH-responsive, fluorescent polymer-integrated MoS2: an effective platform for in situ pH sensing and photothermal heating. ACS Appl Mater Interfaces 10(10):9023–9031. https://doi.org/10.1021/acsami.7b19468

    Article  CAS  Google Scholar 

  134. Liu Q, Sun C, He Q, Khalil A, Xiang T, Liu D, Zhou Y, Wang J, Song L (2015) Stable metallic 1T-WS2 ultrathin nanosheets as a promising agent for near-infrared photothermal ablation cancer therapy. Nano Res 8(12):3982–3991. https://doi.org/10.1007/s12274-015-0901-0

    Article  CAS  Google Scholar 

  135. Macharia DK, Yu N, Zhong R, Xiao Z, Yang J, Chen Z (2016) Synthesis of WS2 nanowires as efficient 808 nm-laser-driven photothermal nanoagents. J Nanosci Nanotechnol 16(6):5865–5868. https://doi.org/10.1166/jnn.2016.11747

    Article  CAS  Google Scholar 

  136. Nandi S, Bhunia SK, Zeiri L, Pour M, Nachman I, Raichman D, Lellouche JM, Jelinek R (2017) Bifunctional carbon-dot-WS2 nanorods for photothermal therapy and cell imaging. Chem Eur J 23(4):963–969. https://doi.org/10.1002/chem.201604787

    Article  CAS  Google Scholar 

  137. Yuwen LH, Zhou JJ, Zhang YQ, Zhang Q, Shan JY, Luo ZM, Weng LX, Teng ZG, Wang LH (2016) Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells. Nanoscale 8(5):2720–2726. https://doi.org/10.1039/c5nr08166a

    Article  CAS  Google Scholar 

  138. Zhong CL, Zhao X, Wang LJ, Li YX, Zhao YY (2017) Facile synthesis of biocompatible MoSe2 nanoparticles for efficient targeted photothermal therapy of human lung cancer. RSC Adv 7(12):7382–7391. https://doi.org/10.1039/c6ra27384j

    Article  CAS  Google Scholar 

  139. Zhu Z, Zou Y, Hu W, Li Y, Gu Y, Cao B, Guo N, Wang L, Song J, Zhang S, Gu H, Zeng H (2016) Near-infrared plasmonic 2D semimetals for applications in communication and biology. Adv Funct Mater 26(11):1793–1802. https://doi.org/10.1002/adfm.201504884

    Article  CAS  Google Scholar 

  140. Ren QL, Li B, Peng ZY, He GJ, Zhang WL, Guan GQ, Huang XJ, Xiao ZY, Liao LJ, Pan YS, Yang XJ, Zou RJ, Hu JQ (2016) SnS nanosheets for efficient photothermal therapy. New J Chem 40(5):4464–4467. https://doi.org/10.1039/c5nj03263f

    Article  CAS  Google Scholar 

  141. Ma N, Zhang M-K, Wang X-S, Zhang L, Feng J, Zhang X-Z (2018) NIR light-triggered degradable MoTe2 nanosheets for combined photothermal and chemotherapy of cancer. Adv Funct Mater:1801139. https://doi.org/10.1002/adfm.201801139

    Article  Google Scholar 

  142. Lin H, Wang X, Yu L, Chen Y, Shi J (2017) Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett 17(1):384–391. https://doi.org/10.1021/acs.nanolett.6b04339

    Article  CAS  Google Scholar 

  143. Xie H, Li Z, Sun Z, Shao J, Yu XF, Guo Z, Wang J, Xiao Q, Wang H, Wang QQ, Zhang H, Chu PK (2016) Metabolizable ultrathin bi2se3 nanosheets in imaging-guided photothermal therapy. Small 12(30):4136–4145. https://doi.org/10.1002/smll.201601050

    Article  CAS  Google Scholar 

  144. Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Vinh D, Dai H (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–6831. https://doi.org/10.1021/ja2010175

    Article  CAS  Google Scholar 

  145. Xia C, Wang H, Jiao F, Gao F, Wu Q, Shen Y, Zhang Y, Qian X (2018) Rational synthesis of MoS2-based immobilized trypsin for rapid and effective protein digestion. Talanta 179:393–400. https://doi.org/10.1016/j.talanta.2017.11.027

    Article  CAS  Google Scholar 

  146. Bettaieb A, Wrzal PK, Averill-Bates DA (2013) Hyperthermia: cancer treatment and beyond. In: Cancer treatment—conventional and innovative approaches. https://doi.org/10.5772/55795

    Google Scholar 

  147. Day ES, Morton JG, West JL (2009) Nanoparticles for thermal cancer therapy. J Biomech Eng 131(7):074001–074005. https://doi.org/10.1115/1.3156800

    Article  Google Scholar 

  148. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317. https://doi.org/10.1038/86684

    Article  CAS  Google Scholar 

  149. Yun SH, Kwok SJJ (2017) Light in diagnosis, therapy and surgery. Nat Biomed Eng 1(1):0008. https://doi.org/10.1038/s41551-016-0008

    Article  Google Scholar 

  150. Qian GJ, Wang N, Shen Q, Sheng YH, Zhao JQ, Kuang M, Liu GJ, Wu MC (2012) Efficacy of microwave versus radiofrequency ablation for treatment of small hepatocellular carcinoma: experimental and clinical studies. Eur Radiol 22(9):1983–1990. https://doi.org/10.1007/s00330-012-2442-1

    Article  Google Scholar 

  151. Fu C, He F, Tan L, Ren X, Zhang W, Liu T, Wang J, Ren J, Chen X, Meng X (2017) MoS2 nanosheets encapsulated in sodium alginate microcapsules as microwave embolization agents for large orthotopic transplantation tumor therapy. Nanoscale 9(39):14846–14853. https://doi.org/10.1039/c7nr04274d

    Article  CAS  Google Scholar 

  152. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281. https://doi.org/10.3322/caac.20114

    Article  Google Scholar 

  153. Ji DK, Zhang Y, Zang Y, Li J, Chen GR, He XP, Tian H (2016) Targeted intracellular production of reactive oxygen species by a 2D molybdenum disulfide glycosheet. Adv Mater 28(42):9356–9363. https://doi.org/10.1002/adma.201602748

    Article  CAS  Google Scholar 

  154. Dong H, Tang S, Hao Y, Yu H, Dai W, Zhao G, Cao Y, Lu H, Zhang X, Ju H (2016) Fluorescent MoS2 quantum dots: ultrasonic preparation, up-conversion and down-conversion bioimaging, and photodynamic therapy. ACS Appl Mater Interfaces 8(5):3107–3114. https://doi.org/10.1021/acsami.5b10459

    Article  CAS  Google Scholar 

  155. Peng MY, Zheng DW, Wang SB, Cheng SX, Zhang XZ (2017) Multifunctional nanosystem for synergistic tumor therapy delivered by two-dimensional MoS2. ACS Appl Mater Interfaces 9(16):13965–13975. https://doi.org/10.1021/acsami.7b03276

    Article  CAS  Google Scholar 

  156. Jia L, Ding L, Tian J, Bao L, Hu Y, Ju H, Yu JS (2015) Aptamer loaded MoS2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic therapy. Nanoscale 7(38):15953–15961. https://doi.org/10.1039/c5nr02224j

    Article  CAS  Google Scholar 

  157. Han J, Xia H, Wu Y, Kong SN, Deivasigamani A, Xu R, Hui KM, Kang Y (2016) Single-layer MoS2 nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy. Nanoscale 8(15):7861–7865. https://doi.org/10.1039/c6nr00150e

    Article  CAS  Google Scholar 

  158. Chen L, Feng W, Zhou X, Qiu K, Miao Y, Zhang Q, Qin M, Li L, Zhang Y, He C (2016) Facile synthesis of novel albumin-functionalized flower-like MoS2 nanoparticles for in vitro chemo-photothermal synergistic therapy. RSC Adv 6(16):13040–13049. https://doi.org/10.1039/C5RA27822H

    Article  CAS  Google Scholar 

  159. Deng R, Yi H, Fan FY, Fu L, Zeng Y, Wang Y, Li YC, Liu YL, Ji SJ, Su Y (2016) Facile exfoliation of MoS2 nanosheets by protein as a photothermal-triggered drug delivery system for synergistic tumor therapy. RSC Adv 6(80):77083–77092. https://doi.org/10.1039/c6ra13993k

    Article  CAS  Google Scholar 

  160. Shao T, Wen J, Zhang Q, Zhou Y, Liu L, Yuwen L, Tian Y, Zhang Y, Tian W, Su Y, Teng Z, Lu G, Xu J (2016) NIR photoresponsive drug delivery and synergistic chemo-photothermal therapy by monodispersed-MoS2-nanosheets wrapped periodic mesoporous organosilicas. J Mater Chem B 4(47):7708–7717. https://doi.org/10.1039/c6tb02724e

    Article  CAS  Google Scholar 

  161. Lei Q, Wang SB, Hu JJ, Lin YX, Zhu CH, Rong L, Zhang XZ (2017) Stimuli-Responsive “Cluster Bomb” for Programmed Tumor Therapy. ACS Nano 11(7):7201–7214. https://doi.org/10.1021/acsnano.7b03088

    Article  CAS  Google Scholar 

  162. Wang KW, Chen QQ, Xue W, Li S, Liu ZH (2017) Combined chemo-photothermal antitumor therapy using molybdenum disulfide modified with hyperbranched polyglycidyl. ACS Biomater Sci Eng 3(10):2325–2335. https://doi.org/10.1021/acsbiomaterials.7b00499

    Article  CAS  Google Scholar 

  163. Liao W, Zhang L, Zhong Y, Shen Y, Li C, An N (2018) Fabrication of ultrasmall WS2 quantum dots-coated periodic mesoporous organosilica nanoparticles for intracellular drug delivery and synergistic chemo-photothermal therapy. Onco Targets Ther 11:1949–1960. https://doi.org/10.2147/OTT.S160748

    Article  Google Scholar 

  164. Wang S, Chen Y, Li X, Gao W, Zhang L, Liu J, Zheng Y, Chen H, Shi J (2015) Injectable 2D MoS2-integrated drug delivering implant for highly efficient NIR-triggered synergistic tumor hyperthermia. Adv Mater 27(44):7117–7122. https://doi.org/10.1002/adma.201503869

    Article  CAS  Google Scholar 

  165. Zhang A, Li A, Tian W, Li Z, Wei C, Sun Y, Zhao W, Liu M, Liu J (2017) A target-directed chemo-photothermal system based on transferrin and copolymer-modified MoS2 nanoplates with pH-activated drug release. Chem Eur J 23(47):11346–11356. https://doi.org/10.1002/chem.201701916

    Article  CAS  Google Scholar 

  166. Zhao W, Li AH, Chen C, Quan FY, Sun L, Zhang AT, Zheng YW, Liu JQ (2017) Transferrin-decorated, MoS2-capped hollow mesoporous silica nanospheres as a self-guided chemo-photothermal nanoplatform for controlled drug release and thermotherapy. J Mater Chem B 5(35):7403–7414. https://doi.org/10.1039/c7tb01648d

    Article  CAS  Google Scholar 

  167. Zhang A, Li A, Zhao W, Yan G, Liu B, Liu M, Li M, Huo B, Liu J (2018) An efficient and self-guided chemo-photothermal drug loading system based on copolymer and transferrin decorated MoS2 nanodots for dually controlled drug release. Chem Eng J 342:120–132. https://doi.org/10.1016/j.cej.2018.02.081

    Article  CAS  Google Scholar 

  168. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489. https://doi.org/10.1038/nature10673

    Article  CAS  Google Scholar 

  169. Song W, Musetti SN, Huang L (2017) Nanomaterials for cancer immunotherapy. Biomaterials 148:16–30. https://doi.org/10.1016/j.biomaterials.2017.09.017

    Article  CAS  Google Scholar 

  170. Wang ZJ, Liu WH, Shi JY, Chen N, Fan CH (2018) Nanoscale delivery systems for cancer immunotherapy. Mater Horiz 5(3):344–362. https://doi.org/10.1039/c7mh00991g

    Article  CAS  Google Scholar 

  171. Ge R, Liu C, Zhang X, Wang W, Li B, Liu J, Liu Y, Sun H, Zhang D, Hou Y, Zhang H, Yang B (2018) Photothermal-activatable Fe3O4 superparticle nanodrug carriers with PD-L1 immune checkpoint blockade for anti-metastatic cancer immunotherapy. ACS Appl Mater Interfaces 10(24):20342–20355. https://doi.org/10.1021/acsami.8b05876

    Article  CAS  Google Scholar 

  172. Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum RR, Lin W (2016) Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J Am Chem Soc 138(38):12502–12510. https://doi.org/10.1021/jacs.6b06663

    Article  CAS  Google Scholar 

  173. Ni K, Lan G, Chan C, Quigley B, Lu K, Aung T, Guo N, La Riviere P, Weichselbaum RR, Lin W (2018) Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat Commun 9(1):2351. https://doi.org/10.1038/s41467-018-04703-w

    Article  CAS  Google Scholar 

  174. Lan G, Ni K, Xu Z, Veroneau SS, Song Y, Lin W (2018) Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J Am Chem Soc 140(17):5670–5673. https://doi.org/10.1021/jacs.8b01072

    Article  CAS  Google Scholar 

  175. He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum RR, Lin W (2016) Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun 7:12499. https://doi.org/10.1038/ncomms12499

    Article  CAS  Google Scholar 

  176. Noh YW, Kim SY, Kim JE, Kim S, Ryu J, Kim I, Lee E, Um SH, Lim YT (2017) Multifaceted immunomodulatory nanoliposomes: reshaping tumors into vaccines for enhanced cancer immunotherapy. Adv Funct Mater 27(8):1605398. https://doi.org/10.1002/adfm.201605398

    Article  CAS  Google Scholar 

  177. Zhu G, Liu Y, Yang X, Kim YH, Zhang H, Jia R, Liao HS, Jin A, Lin J, Aronova M, Leapman R, Nie Z, Niu G, Chen X (2016) DNA-inorganic hybrid nanovaccine for cancer immunotherapy. Nanoscale 8(12):6684–6692. https://doi.org/10.1039/c5nr08821f

    Article  CAS  Google Scholar 

  178. Pardo M, Shuster-Meiseles T, Levin-Zaidman S, Rudich A, Rudich Y (2014) Low cytotoxicity of inorganic nanotubes and fullerene-like nanostructures in human bronchial epithelial cells: relation to inflammatory gene induction and antioxidant response. Environ Sci Technol 48(6):3457–3466. https://doi.org/10.1021/es500065z

    Article  CAS  Google Scholar 

  179. Rajendrakumar SK, Uthaman S, Cho CS, Park IK (2018) Nanoparticle-based phototriggered cancer immunotherapy and its domino effect in the tumor microenvironment. Biomacromol 19(6):1869–1887. https://doi.org/10.1021/acs.biomac.8b00460

    Article  CAS  Google Scholar 

  180. Wang H, Mu X, He H, Zhang XD (2018) Cancer radiosensitizers. Trends Pharmacol Sci 39(1):24–48. https://doi.org/10.1016/j.tips.2017.11.003

    Article  CAS  Google Scholar 

  181. Zhu S, Gu Z, Zhao Y (2018) Harnessing tumor microenvironment for nanoparticle-mediated radiotherapy. Adv Therap 0(0):1800050. https://doi.org/10.1002/adtp.201800050

    Article  Google Scholar 

  182. Xie J, Wang N, Dong X, Wang C, Du Z, Mei L, Yong Y, Huang C, Li Y, Gu Z, Zhao Y (2018) Graphdiyne nanoparticles with high free radical scavenging activity for radiation protection. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b00949

    Article  Google Scholar 

  183. Xie J, Wang C, Zhao F, Gu Z, Zhao Y (2018) Application of multifunctional nanomaterials in radioprotection of healthy tissues. Adv Healthc Mater 0(0):1800421. https://doi.org/10.1002/adhm.201800421

    Article  Google Scholar 

  184. Hall EJ, Giaccia AJ (2012) Radiobiology for the radiologist. Wolters Kluwer Health

    Google Scholar 

  185. Kouvaris JR, Kouloulias VE, Vlahos LJ (2007) Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist 12(6):738–747. https://doi.org/10.1634/theoncologist.12-6-738

    Article  CAS  Google Scholar 

  186. Grdina DJ, Murley JS, Kataoka Y (2002) Radioprotectants: current status and new directions. Oncology 63(Suppl. 2):2–10. https://doi.org/10.1159/000067146

    Article  CAS  Google Scholar 

  187. Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5(12):2573–2577. https://doi.org/10.1021/nl052024f

    Article  CAS  Google Scholar 

  188. Colon J, Hsieh N, Ferguson A, Kupelian P, Seal S, Jenkins DW, Baker CH (2010) Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomed Nanotechnol Biol Med 6(5):698–705. https://doi.org/10.1016/j.nano.2010.01.010

    Article  CAS  Google Scholar 

  189. Xue Y, Luan Q, Yang D, Yao X, Zhou K (2011) Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J Phys Chem C 115(11):4433–4438. https://doi.org/10.1021/jp109819u

    Article  CAS  Google Scholar 

  190. Li H, Yang ZY, Liu C, Zeng YP, Hao YH, Gu Y, Wang WD, Li R (2015) PEGylated ceria nanoparticles used for radioprotection on human liver cells under gamma-ray irradiation. Free Radic Biol Med 87:26–35. https://doi.org/10.1016/j.freeradbiomed.2015.06.010

    Article  CAS  Google Scholar 

  191. Xie J, Yong Y, Dong X, Du J, Guo Z, Gong L, Zhu S, Tian G, Yu S, Gu Z, Zhao Y (2017) Therapeutic nanoparticles based on curcumin and bamboo charcoal nanoparticles for chemo-photothermal synergistic treatment of cancer and radioprotection of normal cells. ACS Appl Mater Interfaces 9(16):14281–14291. https://doi.org/10.1021/acsami.7b02622

    Article  CAS  Google Scholar 

  192. Cirillo G, Hampel S, Klingeler R, Puoci F, Iemma F, Curcio M, Parisi Ortensia I, Spizzirri Umile G, Picci N, Leonhardt A, Ritschel M, Büchner B (2010) Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications. J Pharm Pharmacol 63(2):179–188. https://doi.org/10.1111/j.2042-7158.2010.01211.x

    Article  CAS  Google Scholar 

  193. Qiu Y, Wang Z, Owens ACE, Kulaots I, Chen Y, Kane AB, Hurt RH (2014) Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale 6(20):11744–11755. https://doi.org/10.1039/C4NR03275F

    Article  CAS  Google Scholar 

  194. Yim D, Kim JE, Kim HI, Yang JK, Kang TW, Nam J, Han SH, Jun B, Lee CH, Lee SU, Kim JW, Kim JH (2018) Adjustable intermolecular interactions allowing 2D transition metal dichalcogenides with prolonged scavenging activity for reactive oxygen species. Small 14(16):1800026. https://doi.org/10.1002/smll.201800026

    Article  CAS  Google Scholar 

  195. Zhang XD, Zhang J, Wang J, Yang J, Chen J, Shen X, Deng J, Deng D, Long W, Sun YM, Liu C, Li M (2016) Highly catalytic nanodots with renal clearance for radiation protection. ACS Nano 10(4):4511–4519. https://doi.org/10.1021/acsnano.6b00321

    Article  CAS  Google Scholar 

  196. Bai XT, Wang JY, Mu XY, Yang J, Liu HX, Xu FJ, Jing YQ, Liu LF, Xue XH, Dai HT, Liu Q, Sun YM, Liu CL, Zhang XD (2017) Ultrasmall WS2 quantum dots with visible fluorescence for protection of cells and animal models from radiation-induced damages. ACS Biomater Sci Eng 3(3):460–470. https://doi.org/10.1021/acsbiomaterials.6b00714

    Article  CAS  Google Scholar 

  197. Liu HX, Wang JY, Jing YQ, Yang J, Bai XT, Mu XY, Xu FJ, Xue XH, Liu LF, Sun YM, Liu Q, Dai HT, Liu CL, Zhang XD (2017) Renal clearable luminescent WSe2 for radioprotection of nontargeted tissues during radiotherapy. Part Part Syst Charact 34(6):1700035. https://doi.org/10.1002/ppsc.201700035

    Article  CAS  Google Scholar 

  198. Radioprotection: taking the Toll Road (2008). Science 320 (5873):151–151. https://doi.org/10.1126/science.320.5873.151g

  199. Fan W, Yung B, Huang P, Chen X (2017) Nanotechnology for multimodal synergistic cancer therapy. Chem Rev 117(22):13566–13638. https://doi.org/10.1021/acs.chemrev.7b00258

    Article  CAS  Google Scholar 

  200. Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 4(1):66–80. https://doi.org/10.1016/j.nantod.2008.10.014

    Article  CAS  Google Scholar 

  201. Lalwani G, Henslee AM, Farshid B, Parmar P, Lin L, Qin YX, Kasper FK, Mikos AG, Sitharaman B (2013) Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering. Acta Biomater 9(9):8365–8373. https://doi.org/10.1016/j.actbio.2013.05.018

    Article  CAS  Google Scholar 

  202. Jaiswal MK, Carrow JK, Gentry JL, Gupta J, Altangerel N, Scully M, Gaharwar AK (2017) Vacancy-driven gelation using defect-rich nanoassemblies of 2D transition metal dichalcogenides and polymeric binder for biomedical applications. Adv Mater 29(36):1702037. https://doi.org/10.1002/adma.201702037

    Article  CAS  Google Scholar 

  203. Wu S, Wang J, Jin L, Li Y, Wang Z (2018) Effects of polyacrylonitrile/MoS2 composite nanofibers on the growth behavior of bone marrow mesenchymal stem cells. ACS Appl Nano Mater 1(1):337–343. https://doi.org/10.1021/acsanm.7b00188

    Article  CAS  Google Scholar 

  204. Hussey GS, Dziki JL, Badylak SF (2018) Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 3(7):159–173. https://doi.org/10.1038/s41578-018-0023-x

    Article  CAS  Google Scholar 

  205. Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, Xi J, Bi Y, Tong Z, Gao GF, Xie N, Tang A, Nie G, Liang M, Yan X (2018) Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc 13(7):1506–1520. https://doi.org/10.1038/s41596-018-0001-1

    Article  CAS  Google Scholar 

  206. Zhu X, Ji X, Kong N, Chen Y, Mahmoudi M, Xu X, Ding L, Tao W, Cai T, Li Y, Gan T, Barrett A, Bharwani Z, Chen H, Farokhzad OC (2018) Intracellular mechanistic understanding of 2D MoS2 nanosheets for anti-exocytosis-enhanced synergistic cancer therapy. ACS Nano 12(3):2922–2938. https://doi.org/10.1021/acsnano.8b00516

    Article  CAS  Google Scholar 

  207. Yan L, Zhao YL, Gu ZJ (2016) Nanotoxicity of near infrared nanomaterials. In: Near-infrared nanomaterials: preparation, bioimaging and therapy applications. The Royal Society of Chemistry, pp 355–402. (Chapter 11). https://doi.org/10.1039/9781782623939-00355

  208. Ling Y, Gu Z, S-g Kang, Luo J, Zhou R (2016) Structural damage of a β-sheet protein upon adsorption onto molybdenum disulfide nanotubes. J Phys Chem C 120(12):6796–6803. https://doi.org/10.1021/acs.jpcc.5b11236

    Article  CAS  Google Scholar 

  209. Gu Z, Yang Z, Kang SG, Yang JR, Luo J, Zhou R (2016) Robust denaturation of villin headpiece by MoS2 nanosheet: potential molecular origin of the nanotoxicity. Sci Rep 6:28252. https://doi.org/10.1038/srep28252

    Article  CAS  Google Scholar 

  210. Gu Z, Plant LD, Meng X-Y, Perez-Aguilar JM, Wang Z, Dong M, Logothetis DE, Zhou R (2018) Exploring the nanotoxicology of MoS2: a study on the interaction of mos2 nanoflakes and K+ channels. ACS Nano 12(1):705–717. https://doi.org/10.1021/acsnano.7b07871

    Article  CAS  Google Scholar 

  211. Zou W, Zhang X, Zhao M, Zhou Q, Hu X (2017) Cellular proliferation and differentiation induced by single-layer molybdenum disulfide and mediation mechanisms of proteins via the Akt-mTOR-p70S6K signaling pathway. Nanotoxicology 11(6):781–793. https://doi.org/10.1080/17435390.2017.1357213

    Article  CAS  Google Scholar 

  212. Kenry Lim CT (2017) Biocompatibility and nanotoxicity of layered two-dimensional nanomaterials. Chemnanomat 3(1):5–16. https://doi.org/10.1002/cnma.201600290

    Article  CAS  Google Scholar 

  213. Wei Y, Quan L, Zhou C, Zhan Q (2018) Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine (Lond) 13(12):1495–1512. https://doi.org/10.2217/nnm-2018-0040

    Article  CAS  Google Scholar 

  214. Chng EL, Sofer Z, Pumera M (2014) MoS2 exhibits stronger toxicity with increased exfoliation. Nanoscale 6(23):14412–14418. https://doi.org/10.1039/c4nr04907a

    Article  CAS  Google Scholar 

  215. Wang X, Mansukhani ND, Guiney LM, Ji Z, Chang CH, Wang M, Liao YP, Song TB, Sun B, Li R, Xia T, Hersam MC, Nel AE (2015) Differences in the toxicological potential of 2D versus aggregated molybdenum disulfide in the lung. Small 11(38):5079–5087. https://doi.org/10.1002/smll.201500906

    Article  CAS  Google Scholar 

  216. Latiff NM, Sofer Z, Fisher AC, Pumera M (2017) Cytotoxicity of exfoliated layered vanadium dichalcogenides. Chem Eur J 23(3):684–690. https://doi.org/10.1002/chem.201604430

    Article  CAS  Google Scholar 

  217. Appel JH, Li DO, Podlevsky JD, Debnath A, Green AA, Wang QH, Chae J (2016) Low cytotoxicity and genotoxicity of two-dimensional MoS2 and WS2. ACS Biomater Sci Eng 2(3):361–367. https://doi.org/10.1021/acsbiomaterials.5b00467

    Article  CAS  Google Scholar 

  218. Rosli NF, Latiff NM, Sofer Z, Fisher AC, Pumera M (2018) In vitro cytotoxicity of covalently protected layered molybdenum disulfide. Appl Mater Today 11:200–206. https://doi.org/10.1016/j.apmt.2018.02.001

    Article  Google Scholar 

  219. Moore C, Movia D, Smith RJ, Hanlon D, Lebre F, Lavelle EC, Byrne HJ, Coleman JN, Volkov Y, McIntyre J (2017) Industrial grade 2D molybdenum disulphide (MoS2): an in vitro exploration of the impact on cellular uptake, cytotoxicity, and inflammation. 2d Mater 4(2):025065. https://doi.org/10.1088/2053-1583/aa673f

    Article  Google Scholar 

  220. Goldman EB, Zak A, Tenne R, Kartvelishvily E, Levin-Zaidman S, Neumann Y, Stiubea-Cohen R, Palmon A, Hovav AH, Aframian DJ (2015) Biocompatibility of tungsten disulfide inorganic nanotubes and fullerene-like nanoparticles with salivary gland cells. Tissue Eng Part A 21(5–6):1013–1023. https://doi.org/10.1089/ten.TEA.2014.0163

    Article  CAS  Google Scholar 

  221. Wu X, Tian X, Chen T, Zeng A, Yang G (2018) Inorganic fullerene-like molybdenum selenide with good biocompatibility synthesized by laser ablation in liquids. Nanotechnology 29(29):295604. https://doi.org/10.1088/1361-6528/aac1b1

    Article  CAS  Google Scholar 

  222. Teo Wei Z, Chng Elaine Lay K, Sofer Z, Pumera M (2014) Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem Eur J 20(31):9627–9632. https://doi.org/10.1002/chem.201402680

    Article  CAS  Google Scholar 

  223. Chng ELK, Pumera M (2015) Toxicity of graphene related materials and transition metal dichalcogenides. RSC Adv 5(4):3074–3080. https://doi.org/10.1039/c4ra12624f

    Article  CAS  Google Scholar 

  224. Latiff N, Teo WZ, Sofer Z, Huber S, Fisher AC, Pumera M (2015) Toxicity of layered semiconductor chalcogenides: beware of interferences. RSC Adv 5(83):67485–67492. https://doi.org/10.1039/c5ra09404f

    Article  CAS  Google Scholar 

  225. Latiff NM, Teo WZ, Sofer Z, Fisher AC, Pumera M (2015) The cytotoxicity of layered black phosphorus. Chem Eur J 21(40):13991–13995. https://doi.org/10.1002/chem.201502006

    Article  CAS  Google Scholar 

  226. Chia HL, Latiff NM, Sofer Z, Pumera M (2018) Cytotoxicity of group 5 transition metal ditellurides (MTe2; M = V, Nb, Ta). Chem Eur J 24(1):206–211. https://doi.org/10.1002/chem.201704316

    Article  CAS  Google Scholar 

  227. Rosli NF, Mayorga-Martinez CC, Latiff NM, Rohaizad N, Sofer Z, Fisher AC, Pumera M (2018) Layered PtTe2 matches electrocatalytic performance of Pt/C for oxygen reduction reaction with significantly lower toxicity. ACS Sustain Chem Eng 6(6):7432–7441. https://doi.org/10.1021/acssuschemeng.7b04920

    Article  CAS  Google Scholar 

  228. Yu Y, Yi Y, Li Y, Peng T, Lao S, Zhang J, Liang S, Xiong Y, Shao S, Wu N, Zhao Y, Huang H (2018) Dispersible MoS2 micro-sheets induced a proinflammatory response and apoptosis in the gills and liver of adult zebrafish. RSC Adv 8(32):17826–17836. https://doi.org/10.1039/c8ra00922h

    Article  CAS  Google Scholar 

  229. Hao J, Song G, Liu T, Yi X, Yang K, Cheng L, Liu Z (2017) In vivo long-term biodistribution, excretion, and toxicology of pegylated transition-metal dichalcogenides MS2 (M = Mo, W, Ti) nanosheets. Adv Sci 4(1):1600160. https://doi.org/10.1002/advs.201600160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the help from Jiani Xie and Shuang Zhu. This work was supported by the National Basic Research Programs of China (Grant Nos. 2016YFA0201600 and 2015CB932104), the National Natural Science Foundation of China (Grant Nos. 31571015, 11621505, 11435002, and 21320102003), and the Youth Innovation Promotion Association CAS (Grant No. 2013007).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gong, L., Gu, Z. (2019). Transition Metal Dichalcogenides for Biomedical Applications. In: Arul, N., Nithya, V. (eds) Two Dimensional Transition Metal Dichalcogenides. Springer, Singapore. https://doi.org/10.1007/978-981-13-9045-6_8

Download citation

Publish with us

Policies and ethics