Skip to main content

Rhizosphere Engineering and Agricultural Productivity

  • Chapter
  • First Online:

Abstract

Animal and plant microbiomes encompass diverse microbial communities that colonize every accessible host tissue. These microbiomes enhance host functions, contributing to host health and fitness. A novel approach to improve animal and plant fitness is to artificially select upon microbiomes, thus engineering evolved microbiomes with specific effects on host fitness. We call this engineering approach host-mediated microbiome selection, because this method selects upon microbial communities indirectly through the host and leverages host traits that evolved to influence microbiomes. In essence, host phenotypes are used as probes to gauge and manipulate those microbiome functions that impact host fitness. To facilitate research on host-mediated microbiome engineering, we explain and compare the principal methods to impose artificial selection on microbiomes; discuss advantages and potential challenges of each method; offer a skeptical appraisal of each method in light of these potential challenges; and outline experimental strategies to optimize microbiome engineering. Finally, we develop a predictive framework for microbiome engineering that organizes research around principles of artificial selection, quantitative genetics, and microbial community-ecology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abed, R. M. M., Dobretsov, S., & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Adl, S. (2016). Rhizosphere, food security, and climate change: A critical role for plant-soil research. Rhizosphere, 1, 1–3.

    Article  Google Scholar 

  • Ahemad, M., & Khan, M. S. (2011). Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa. Acta Microbiologica et Immunologica Hungarica, 58, 169–187.

    Article  CAS  PubMed  Google Scholar 

  • Ahemad, M., & Khan, M. S. (2012). Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere, 86, 945–950.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163, 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Alabouvette, C., Lemanceau, P., & Steinberg, C. (1996). Biological control of fusarium wilts: Opportunitiesfor developing a commercial product. In R. Hall (Ed.), Principles and practice of managing soilborne plant pathogens (pp. 192–212). St. Paul: APS Press.

    Google Scholar 

  • Alami, Y., Achouak, W., Marol, C., & Heulin, T. (2000). Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Applied and Environmental Microbiology, 66, 3393–3398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert, R. A., Waas, N. E., Pavlons, S. C., Pearson, J. L., Ketelboeter, L., et al. (2013). Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. International Journal of Systematic and Evolutionary Microbiology, 63(3), 952–958.

    Article  CAS  PubMed  Google Scholar 

  • Amrita, A., Usha, C., & Bishwanath, C. (2013). Improvement of health status of Listea monopetala using plant growth promoting rhizobacteria. International Journal of Bio-Resource and Stress Management, 4(2), 187–191.

    Google Scholar 

  • Anagnostidis, K., & Komárek, J. A. (1990). Modern approach to the classification systems of cyanophytes. 5-stigonematales. Algological Studies, 59, 1–73.

    Google Scholar 

  • Ansary, M. H., Rahmani, H. A., Ardakani, M. R., Paknejad, F., Habibi, D., & Mafakheri, S. (2012). Effect of Pseudomonas fluorescens on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Annals of Biological Research, 3, 1054–1062.

    CAS  Google Scholar 

  • Antoun, H., Beauchamp, C. J., Goussard, N., Chabot, R., & Lalande, R. (1998). Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effects on radishes (Raphanus sativus L.). Plant and Soil, 204, 57–67.

    Article  CAS  Google Scholar 

  • Archetti, M., et al. (2011). Let the right one in: A microeconomic approach to partner choice in mutualisms. The American Naturalist, 177, 75–85.

    Article  PubMed  Google Scholar 

  • Arkhipova, T. N., Veselov, S. U., Melentiev, A. I., Martynenko, E. V., & Kudoyarova, G. R. (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil, 272, 201–209.

    Article  CAS  Google Scholar 

  • Arkhipova, T. N., Prinsen, E., Veselov, S. U., Martinenko, E. V., Melentiev, A. I., & Kudoyarova, G. R. (2007). Cytokinin producing bacteria enhance plant growth in drying soil. Plant and Soil, 292, 305–315. https://doi.org/10.1007/s11104-007-9233-5.

    Article  CAS  Google Scholar 

  • Armada, E., Roldan, A., & Azcon, R. (2014a). Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. Microbial Ecology, 67, 410–420.

    Article  CAS  PubMed  Google Scholar 

  • Armada, E., Roldan, A., & Azcon, R. (2014b). Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. Microbial Ecology, 67, 410–420.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, A. E., Mamit, L. J., Gehring, C. A., Bidartondo, M. I., & Callahan, H. (2010). Interwoven branches of the plant and fungal trees of life. New Phytologist, 185, 874–878.

    Article  CAS  Google Scholar 

  • Arseneault, T., Goyer, C., & Filion, M. (2013). Phenazine production by Pseudomonas sp. LBUM223 contributes to the biological control of potato common scab. Phytopathology, 103, 995–1000.

    Article  CAS  PubMed  Google Scholar 

  • Arshad, M., Sharoona, B., & Mahmood, T. (2008). Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminate the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere, 18, 611–620.

    Article  Google Scholar 

  • Arzanesh, M. H., Alikhani, H. A., Khavazi, K., Rahimian, H. A., & Miransari, M. (2011). Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology, 27, 197–205.

    Article  CAS  Google Scholar 

  • Ashelford, K. E., Day, M. J., & Fry, J. C. (2003). Elevated abundance of bacteriophage infecting bacteria in soil. Applied and Environmental Microbiology, 69(1), 285–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auman, A. J., Breezee, J. L., Gosink, J. J., Kämpfer, P., & Staley, J. T. (2006). Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. International Journal of Systematic and Evolutionary Microbiology, 56(5), 1001–1007.

    Article  CAS  PubMed  Google Scholar 

  • Bailly, A., & Weisskopf, L. (2012). The modulating effect of bacterial volatiles on plant growth: Current knowledge and future challenges. Plant Signaling & Behavior, 7, 79–85. https://doi.org/10.4161/psb.7.1.18418.

    Article  CAS  Google Scholar 

  • Bais, H. P., Loyola-Vargas, V. M., Flores, H. E., & Vivanco, J. M. (2001). Invited review: Rootspecific metabolism: The biology and biochemistry of underground organs. In Vitro Cellular & Developmental Biology-Plant, 37, 730–741.

    Article  CAS  Google Scholar 

  • Bakker, M. G., et al. (2014). Diffuse symbioses: Roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome. Molecular Ecology, 23, 1571–1583.

    Article  PubMed  Google Scholar 

  • Balogh, B., Jones, J. B., Momol, M. T., Olson, S. M., Obradovic, A., King, P., & Jackson, L. E. (2003a). Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Disease, 87, 949–954.

    Article  CAS  PubMed  Google Scholar 

  • Balogh, B., Jones, J. B., Momol, M. T., Olson, S. M., Obradovic, A., & Jackson, L. E. (2003b). Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Disease, 87, 949–954.

    Article  CAS  PubMed  Google Scholar 

  • Balogh, L., Polyak, A., Mathe, D., Kiraly, R., Thuroczy, J., Terez, M., Janoki, G., Ting, Y., Bucci, L. R., & Schauss, A. G. (2008). Absorption, uptake and tissue affinity of high- molecular-weight Hyaluronan after Oral Administration in Rats and Dogs. Journal of Agricultural and Food Chemistry, 56(22), 10582–10593.

    Google Scholar 

  • Balsanelli, E., de Baura, V. A., Pedrosa, F. D., de Souza, E. M., & Monteiro, R. A. (2014). Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by Herbaspirillum seropedicae. PLoS One, 9, e110392. https://doi.org/10.1371/journal.pone.0110392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bano, Q., Ilyas, N., Bano, A., Zafar, N., Akram, A., & Ul Hassan, F. (2013). Effect of Azospirillum inoculation on maize (zea mays l.) under drought stress. Pakistan Journal of Botany, 45, 13–20.

    CAS  Google Scholar 

  • Barbhaiya, H. B., & Rao, K. K. (1985). Production of pyoverdine, the fluorescent pigment of Pseudomonas aeruginosa PAO1. FEMS Microbiology Letters, 27, 233–235.

    Article  CAS  Google Scholar 

  • Bargabus, R. L., Zidack, N. K., Sherwood, J. W., & Jacobsen, B. J. (2002). Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology, 61, 289–298.

    Article  CAS  Google Scholar 

  • Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J.-P. (2014). Advances in plant growthpromoting bacterial inoculant technology: Formulations and practical perspectives. Plant and Soil, 378, 1–33.

    Article  CAS  Google Scholar 

  • Bauer, W. D., & Mathesius, U. (2004). Plant responses to bacterial quorum sensing signals. Current Opinion in Plant Biology, 7, 429–433.

    Article  CAS  PubMed  Google Scholar 

  • Belimov, A. A., Dodd, I. C., Hontzeas, N., Theobald, J. C., Safronova, V. I., & Davies, W. J. (2009). Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. The New Phytologist, 181, 413–423.

    Article  CAS  PubMed  Google Scholar 

  • Benhamou, N., Kloepper, J. W., Quadt-Hallmann, A., & Tuzun, S. (1996). Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiology, 112, 919–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensalim, S., Nowak, J., & Asiedu, S. K. (1998). A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. American Journal of Potato Research, 75, 145–152.

    Article  Google Scholar 

  • Benz, G., Schroder, T., Kurz, J., Wunsche, C., Karl, W., Steffens, G., Pfitzner, J., & Schmidt, D. (1982). Konstitution der Desferriform der Albomycine d1, d2 and e. Angewandte Chemie, 94, 552–553.

    Article  CAS  Google Scholar 

  • Berdy, J. (2005). Bioactive microbial metabolites. Journal of Antibiotics, 58, 1–26.

    Article  CAS  Google Scholar 

  • Berendsen, R. L., Pieterse, C. M., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein, H. C., & Carlson, R. P. (2012). Microbial consortia engineering for cellular factories: In vitro to in sili-co systems. Computational and Structural Biotechnology Journal, 3, e20120017.

    Article  Google Scholar 

  • Bernstein, H. C., Paulson, S. D., & Carlson, R. P. (2012). Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. Journal of Biotechnology, 157, 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Bharathi, R., Vivekananthan, R., Harish, S., Ramanathan, A., & Samiyappan, R. (2004). Rhizobacteria-based bioformulations for the management of fruit rot infection in chillies. Crop Protection, 2, 835–843.

    Article  Google Scholar 

  • Bharti, N., Pandey, S. S., Barnawal, D., Patel, V. K., & Kalra, A. (2016). Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Scientific Reports, 6, 34768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, P. E., & Jorerger, R. D. (1990). Genetics and molecular biology of an alternative nitrogen fixation system. Plant Molecular Biology, 41, 109–125.

    CAS  Google Scholar 

  • Blumer, C., & Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173, 170–177.

    Article  CAS  PubMed  Google Scholar 

  • Boiero, L., Perrig, D., Masciarelli, O., Penna, C., Cassan, F., & Luna, V. (2007). Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Applied Microbiology and Biotechnology, 74(4), 874–880.

    Article  CAS  PubMed  Google Scholar 

  • Borah, P. K., Jindal, J. K., & Verma, J. P. (2000). Biological management of bacterial leaf spot of mungbean caused by Xanthomonas axonopodis pv. vignaeradiatae. Indian Phytopathology, 53, 384–394.

    Google Scholar 

  • Bouizgarne, B. (2013). Bacteria for plant growth promotion and disease management. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Disease management. Berlin/Heidelberg: Springer. https://doi.org/10.1007/978-3-642-33639-3_2.

    Chapter  Google Scholar 

  • Bowman, J. P. (2000). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. International Journal of Systematic and Evolutionary Microbiology, 50(5), 1861–1868.

    Article  CAS  PubMed  Google Scholar 

  • Boyd, R. J., Hildebrant, A. C., & Allen, O. N. (1971). Retardation of crown gall enlargement after bacteriophage treatment. Plant Disease Report, 55, 145–148.

    Google Scholar 

  • Bresson, J., Varoquaux, F., Bontpart, T., Touraine, B., & Vile, D. (2013). The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytologist, 200, 558–569.

    Article  CAS  Google Scholar 

  • Burris, R. H. (1991). Nitrogenases. Journal of Biological Chemistry, 226, 9339–9342.

    Google Scholar 

  • Buyer, J. S., & Leong, J. (1986). Iron transport-mediated antagonism between plant growth-promoting and plantdeleterious Pseudomonas strains. The Journal of Biological Chemistry, 261, 791–794.

    CAS  PubMed  Google Scholar 

  • Camerini, S., Senatore, B., Lonardo, E., Imperlini, E., Bianco, C., Moschetti, G., Rotino, G. L., Campion, B., & Defez, R. (2008). Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Archives of Microbiology, 190, 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Carmichael, W. W. (2001). Health effects of toxin producing cyanobacteria: The CyanoHABs. Human and Ecological Risk Assessment, 7, 1393–1407.

    Article  Google Scholar 

  • Casanovas, E. M., Barassi, C. A., & Sueldo, R. J. (2002). Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Research Communications, 30, 343–350.

    Google Scholar 

  • Cassan, F., Maiale, S., Masciarelli, O., Vidal, A., Luna, V., & Ruiz, O. (2009). Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. European Journal of Soil Biology, 45, 12–19.

    Article  CAS  Google Scholar 

  • Cattelan, A. J., Hartel, P. G., & Fuhrmann, J. J. (1999). Screening for plant growth—Promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal, 63(6), 1670–1680.

    Article  CAS  Google Scholar 

  • Chabot, R., Beauchamp, C. J., Kloepper, J. W., & Antoun, H. (1998). Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing rhizobium leguminosarum biovar phaseoli. Soil Biology and Biochemistry, 30(12), 1615–1618.

    Article  Google Scholar 

  • Chakrabarty, A. M., & Roy, S. C. (1964). Effects of trace elements on the production of pigments by a pseudomonad. The Biochemical Journal, 93, 228–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi, P., Prabahar, V., Manorama, R., Pindi, P. K., Bhadra, B., et al. (2008). Exiguobacterium soli sp. nov., a psychrophilic bacterium from the McMurdo dry valleys, Antarctica. International Journal of Systematic and Evolutionary Microbiology, 58(10), 2447–2453.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., Wei, H., Cao, J., Liu, R., Wang, Y., & Zheng, C. (2007). Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. Journal of Biochemistry and Molecular Biology, 40, 396–403.

    CAS  PubMed  Google Scholar 

  • Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J. Y., Lee, Y. H., et al. (2008). 2R, 3R-Butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21, 1067–1075.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, S. P., Hartmann, A., Gao, X. W., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42-a review. Frontiers in Microbiology, 6, 780. https://doi.org/10.3389/fmicb.2015.00780.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chua, A. C., Ingram, H. A., Raymond, K. N., & Baker, E. (2003). Multidentate pyridinones inhibit the metabolism of nontransferrin-bound iron by hepatocytes and hepatoma cells. European Journal of Biochemistry, 270, 1689–1698.

    Article  CAS  PubMed  Google Scholar 

  • Close, T. J. (1996). Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum, 97, 795–803.

    Article  CAS  Google Scholar 

  • Cohen, A. C., Bottini, R., & Piccoli, P. N. (2008). Azosprillium brasilense Sp 245 produces ABA in chemically defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regulation, 54, 97–103.

    Article  CAS  Google Scholar 

  • Cohen, A. C., Travaglia, C. N., Bottini, R., & Piccoli, P. N. (2009). Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botanique, 87, 455–462.

    Article  CAS  Google Scholar 

  • Coleman-Derr, D., & Tringe, S. G. (2014). Building the crops of tomorrow: Advantages of 29 symbiont-based approaches to improving abiotic stress tolerance. Frontiers in Microbiology, 5, 283.

    Article  PubMed  PubMed Central  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Cle’ment, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951–4959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook, R. J., & Baker, K. F. (1983). Nature and practice of biological control of plant pathogens. St. Paul: American Phytopathological Society.

    Google Scholar 

  • Creus, C. M., Sueldo, R. J., & Barassi, C. A. (2004). Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Canadian Journal of Botany, 82, 273–281.

    Article  Google Scholar 

  • Creus, C. M., Graziano, M., Casanovas, E. M., Pereyra, M. A., Simontacchi, M., Puntarulo, S., Barassi, C. A., & Lamattina, L. (2005). Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta, 221, 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Crowley, D. E. (2006). Microbial siderophores in the plant rhizospheric. In Iron nutrition in plants and Rhizospheric microorganisms (pp. 169–198). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Cui, X., & Harling, R. (2005). N-acyl-homoserine lactone-mediated quorum sensing blockage, a novel strategy for attenuating pathogenicity of gram-negative bacterial plant pathogens. European Journal of Plant Pathology, 111, 327–339.

    Article  CAS  Google Scholar 

  • Dardanelli, M. S., Fernández de Córdoba, F. J., Espuny, M. R., Rodríguez Carvajal, M. A., Soria Díaz, M. E., Gil Serrano, A. M., et al. (2008). Effect of Azospirillum brasilense coinoculated with rhizobium on Phaseolus vulgaris flavonoids and nod factor production under salt stress. Soil Biology and Biochemistry, 40, 2713–2721.

    Article  CAS  Google Scholar 

  • del Amor, F. M., & Cuadra-Crespo, P. (2012). Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Functional Plant Biology, 39, 82–90. https://doi.org/10.1071/Fp11173.

    Article  PubMed  Google Scholar 

  • DelRio, J. C., Marques, G., Rencoret, J., Martinez, A. T., & Gutierrez, A. (2007). Occurrence of naturally acetylated lignin units. Journal of Agricultural and Food Chemistry, 55, 5461–5468.

    Article  CAS  Google Scholar 

  • Deshmukh, Y., Khare, P., & Patra, D. (2016). Rhizobacteria elevate principal basmati aroma compound accumulation in rice variety. Rhizosphere, 1, 53–57.

    Article  Google Scholar 

  • Desikachary, T. V. (1959). Cyanophyta. Indian Council of Agricultural Research: New Delhi, 686 p.

    Google Scholar 

  • Deslandes, L., & Rivas, S. (2012). Catch me if you can: Bacterial effectors and plant targets. Trends in Plant Science, 17, 644–655.

    Article  CAS  PubMed  Google Scholar 

  • Dessaux, Y., Grandclement, C., & Faure, D. (2016). Engineering the rhizosphere. Trends in Plant Science, 21, 266–278.

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa, C., Svatos, A., Merten, D., Büchel, G., & Kothe, E. (2008). Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Canadian Journal of Microbiology, 54, 163–172.

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa, C., Weinand, T., & Asch, F. (2009a). Plant rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environment, 32, 1682–1694.

    Article  CAS  Google Scholar 

  • Dimkpa, C. O., Merten, D., Svatos, A., Büchel, G., & Kothe, E. (2009b). Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. Journal of Applied Microbiology, 107, 1687–1696.

    Article  CAS  PubMed  Google Scholar 

  • Dixit, R., Wasiullah, M. D., Pandiyan, K., Singh, U. B., Sahu, A., et al. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7, 2189–2212. https://doi.org/10.3390/su7022189.

    Article  CAS  Google Scholar 

  • Dodd, I. C., Belimov, A. A., Sobeih, W. Y., Safronova, V. I., Grierson, D., & Davies, W. J. (2005). Will modifying plant ethylene status improve plant productivity in water-limited environments? In 4th international crop science congress.

    Google Scholar 

  • Dodd, I. C., Zinovkina, N. Y., Safronova, V. I., & Belimov, A. A. (2010). Rhizobacterial mediation of plant hormone status. The Annals of Applied Biology, 157, 361–379. https://doi.org/10.1111/j.1744-7348.2010.00439.x.

    Article  CAS  Google Scholar 

  • Doke, N., Ramirez, A. V., & Tomiyama, K. (1987). Systemic induction of resistance in potato plants against Phytophthora infestans by local treatment with hyphal wall components of the fungus. Journal of Phytopathology, 119, 232–239.

    Article  Google Scholar 

  • Dong, Y.-H., Wang, L., Xu, J.-L., Zhang, H.-B., Zhang, X. F., & Zhang, L. H. (2001). Quenching quorum-sensingdependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411, 813–817.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y. H., Wang, L. H., & Zhang, L. H. (2007). Quorum-quenching microbial infections: Mechanisms and implications. Philosophical Transactions of the Royal Society B, 362, 1201–1211.

    Article  CAS  Google Scholar 

  • Dordas, C. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture: A review. Agronomy for Sustainable Development, 28, 33–46.

    Article  CAS  Google Scholar 

  • Duffy, B. K., & Défago, G. (1999). Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Applied and Environmental Microbiology, 65, 2429–2438.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duijff, B. J., Gianinazzi-Pearson, V., & Lemanceau, P. (1997). Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytologist, 135, 325–334.

    Article  CAS  Google Scholar 

  • Duzan, H. M., Zhou, X., Souleimanov, A., & Smith, D. L. (2004). Perception of Bradyrhizobium japonicum nod factor by soybean (Glycine max (L.) Merr.) root hairs under abiotic stress conditions. Journal of Experimental Botany, 55, 2641–2646. https://doi.org/10.1093/jxb/erh265.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, J., et al. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 112, E911–E920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva, D., & Kucharova, Z. (2009). Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fert Soil, 45, 561–573.

    Article  Google Scholar 

  • El-Afry, M. M., El-Nady, M. F., Abdelmonteleb, E. B., & Metwaly, M. M. S. (2012). Anatomical studies on droughtstressed wheat plants (Triticum aestivum L.) treated with some bacterial strains. Acta Biol Szeged, 56, 165–174.

    Google Scholar 

  • Elanor W & Rolfes S (2005). Understanding nutrition. Thomson-Wadsworth (10th ed., p. 6).

    Google Scholar 

  • Elasri, M., et al. (2001). Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Applied and Environmental Microbiology, 67, 1198–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad, S., & Bano, A. (2012). Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pakistan Journal of Botany, 44, 1433–1438.

    Google Scholar 

  • Farmer, E. E. (2001). Surface-to-air signals. Nature, 411, 854–856.

    Article  CAS  PubMed  Google Scholar 

  • Farrar, K., Bryant, D., & Cope-Selby, N. (2014). Understanding and engineering beneficial plant-microbe interactions: Plant growth promotion in energy crops. Plant Biotechnology Journal, 12, 1193–1206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueiredo, M. V. B., Burity, H. A., Martinez, C. R., & Chanway, C. P. (2008). Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Applied Soil Ecology, 40, 182–188. https://doi.org/10.1016/j.apsoil.2008.04.005.

    Article  Google Scholar 

  • Fitter, A. H., & Garbaye, J. (1994). Interactions between mycorrhizal fungi and other soil microorganisms. Plant and Soil, 159, 123–132.

    Article  Google Scholar 

  • Fitzpatrick, B. M. (2014). Symbiote transmission and maintenance of extra-genomic associations. Frontiers in Microbiology, 5, 46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick, M. C., Keller, S. R., & Vellend, M. (2015). Ecological genomics meets community-level modelling of biodiversity: Mapping the genomic landscape of current and future environmental adaptation. Ecology Letters, 18,(1):1–16.

    Google Scholar 

  • Flaherty, J. E., Jones, J. B., Harbaugh, B. K., Smoodi, G. C., & Jackson, L. E. (2000). Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. Horticultural Science, 35(5), 882–884.

    Google Scholar 

  • Flaherty, J. E., Harbaugh, B. K., Jones, J. B., Somodi, G. C., & Jackson, L. E. (2001). H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. Horticultural Science, 36(1), 98–100.

    Google Scholar 

  • Fleming, E. D., & Castenholz, R. W. (2007). Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environmental Microbiology, 9, 1448–1455.

    Article  CAS  PubMed  Google Scholar 

  • Foster, K. R., & Wenseleers, T. (2006). A general model for the evolution of mutualisms. Journal of Evolutionary Biology, 19, 1283–1293.

    Article  CAS  PubMed  Google Scholar 

  • Franche, C., Lindstrom, K., & Elmerich, C. (2009). Nitrogenfixing bacteria associated with leguminous and nonleguminous plants. Plant and Soil, 321, 35–59.

    Article  CAS  Google Scholar 

  • Franzmann, P., Stackebrandt, E., Sanderson, K., Volkman, J., Cameron, D., et al. (1988). Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst App Microbiol, 11(1), 20–27.

    Article  CAS  Google Scholar 

  • Friesen, M. L., et al. (2011). Microbially mediated plant functional traits. Annual Review of Ecology, Evolution, and Systematics, 42, 23–46.

    Article  Google Scholar 

  • Fujiwara, A., Fujisawa, M., Hamasaki, R., Kawasaki, T., Fujie, M., & Yamada, T. (2011). Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Applied and Environmental Microbiology, 77(12), 4155–4162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gal, M., Preston, G. M., Massey, R. C., Spiers, A. J., & Rainey, P. B. (2003). Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Molecular Ecology, 12, 3109–3121.

    Article  CAS  PubMed  Google Scholar 

  • Garcion, C., Lamotte, O., & Me’traux, J. P. (2007). In D. R. Walters, A. C. Newton, & G. D. Lyon (Eds.),. Induced resistance for plant defence Mechanisms of defense to pathogens: Biochemistry and physiology (pp. 109–132). Oxford: Blackwell Publishing.

    Google Scholar 

  • Garland, T., & Rose, M. R. (2009). Experimental evolution. University of California Press.

    Google Scholar 

  • Garrido-Sanz, D., et al. (2016). Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One, 11, e0150183.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gayathri, M., Kumar, P. S., Prabha, A. M. L., & Muralitharan, G. (2015). In vitro regeneration of Arachis hypogaea L. and Moringa oleifera Lam. Using extracellular phytohormones from Aphanothece sp. MBDU 515. Algae Research, 7, 100–105.

    Article  Google Scholar 

  • Geitler, L. (1932). Cyanophyceae. Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Leipzig: Akademische Verlagsgesellschaft.

    Google Scholar 

  • Gent, D. H., & Schwartz, H. F. (2005). Management of xanthomonas leaf blight of onion with a plant activator, biological control agents, and copper bactericides. Plant Disease, 89, 631–639.

    Article  CAS  PubMed  Google Scholar 

  • Georgia, F. R., & Poe, C. P. (1931). Study of bacterial fluorescence in various media. 1. Inorganic substances necessary for bacterial fluorescence. Journal of Bacteriology, 22, 349–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill, J. J., & Abedon, S. T. (2003). Bacteriophage ecology and plants. APSnet Feature, November. Available at: http://www.apsnet.org/online/feature/phages/

  • Glick, B. R. (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21, 383–393.

    Article  CAS  PubMed  Google Scholar 

  • Glick, B. R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters, 251, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Glick, B. R. (2012a). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica (Cairo), 1–15.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2012b). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica (Cairo), 2012, 963401. https://doi.org/10.6064/2012/963401.

    Article  CAS  Google Scholar 

  • Glick, B. R., & Pasternak, J. J. (2003). Molecular biotechnology: Principles and application recombinant Dna technology (3rd ed.). Washington: ASM Press.

    Google Scholar 

  • Glick, B. R., Patten, C. L., Holguin, G., & Penrose, G. M. (1999). Biochemical and genetic mechanisms used by plant growth promoting bacteria. London: Imperial College Press.

    Book  Google Scholar 

  • Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119, 329–339. https://doi.org/10.1007/s10658-007-9162-4.

    Article  CAS  Google Scholar 

  • Görke, B., & Stülke, J. (2008). Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nature Reviews. Microbiology, 6, 613–624.

    Article  PubMed  CAS  Google Scholar 

  • Gosink, J., Herwig, R., & Staley, J. (1997). Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Systematic and Applied Microbiology, 20(3), 356–365.

    Article  Google Scholar 

  • Gou, W., Tian, L., Ruan, Z., Zheng, P., Chen, F., Zhang, L., Cui, Z., Zheng, P., Li, Z., Gao, M., Shi, W., Zhang, L., Liu, J., & Hu, J. (2015). Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (zea mays) by three plant growth promoting rhizobacteria (pgpr) strains. Pakistan Journal of Botany, 47, 581–586.

    CAS  Google Scholar 

  • Goyer, C. (2005). Isolation and characterization of phages Stsc1 and Stsc3 infecting Streptomyces scabiei and their potential as biocontrol agents. Canadian Journal of Plant Pathology, 27, 210–216.

    Article  CAS  Google Scholar 

  • Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry, 37, 395–412. https://doi.org/10.1016/j.soilbio.2004.08.030.

    Article  CAS  Google Scholar 

  • Greer, G. G. (2005). Bacteriophage control of foodborne bacteria. Journal of Food Protection, 68, 1102–1111.

    Article  PubMed  Google Scholar 

  • Greppin, H., & Gouda, S. (1965). Action de la lumiere sur le pigment de Pseudomonas fluorescens Migula. Archival Science, 18, 721–725.

    CAS  Google Scholar 

  • Grosskopf, T., & Soyer, O. S. (2014a). Synthetic microbial communities. Current Opinion in Microbiology, 18, 72–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosskopf, T., & Soyer, O. S. (2014b). Synthetic microbial communities. Current Opinion in Microbiology, 18, 72–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, K., Dey, A., & Gupta, B. (2013). Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum, 35, 2015–2036. https://doi.org/10.1007/s11738-013-1239-4.

    Article  CAS  Google Scholar 

  • Gurusaravanan, P., Vinoth, S., Kumar, M. S., Thajuddin, N., & Jayabalan, N. (2013). Effect of cyanobacteria extracellular products on high-frequency in vitro induction and elongation of Gossypium hirsutum L. organs through shoot apex explants. Journal of Genetic Engineering and Biotechnology, 11, 9–16.

    Article  Google Scholar 

  • Gusain, Y. S., Singh, U. S., & Sharma, A. K. (2015). Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). African Journal of Biotechnology, 14, 764–773.

    Article  CAS  Google Scholar 

  • Gysin, J., Crenn, Y., Pereira da silva, L., & Breton, C. (1991). Siderophores as antiparasitic agents. US Patent 5, 192–807.

    Google Scholar 

  • Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews. Microbiology, 3, 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Han, J., Sun, L., Dong, X., Cai, Z., Sun, X., Yang, H., & Song, W. (2005). Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Systematic and Applied Microbiology, 28(1), 66–76.

    Article  CAS  PubMed  Google Scholar 

  • Hardoim, P. R., Van Overbeek, L. S., & Van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiol, 16, 463–471.

    Article  CAS  Google Scholar 

  • Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312, 7–14.

    Article  CAS  Google Scholar 

  • Heath, K. D., & Stinchcombe, J. R. (2014). Explaining mutualism variation: A new evolutionary paradox. Evolution, 68, 309–314.

    Article  PubMed  Google Scholar 

  • Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L., & Hedges, S. B. (2001). Molecular evidence for the early colonization of land by fungi and plants. Science, 293, 30 1129–30 1133.

    Article  Google Scholar 

  • Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L., & Barron, A. R. (2009). The nitrogen paradox in tropical forest ecosystems. Annual Review of Ecology, Evolution and Systematics, 40, 613–635.

    Article  Google Scholar 

  • Heidari, M., & Golpayegani, A. (2011). Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences, 11, 57–61.

    Article  Google Scholar 

  • Hellebust, J. A. (1974). Extracellular products. In W. D. P. Stewart (Ed.), Algal physiology and biochemistry (pp. 838–863). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Henry, G., Thonart, P., & Ongena, M. (2012). PAMPs, MAMPs, DAMPs and others: An update on the diversity of plant immunity elicitors. Biotechnologie, Agronomie, Société et Environnement, 16, 257–268.

    Google Scholar 

  • Himmel, M. E., et al. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  CAS  PubMed  Google Scholar 

  • Hinsa, S. M., Espinosa-Urgel, M., Ramos, J. L., & O’Toole, G. A. (2003). Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Molecular Microbiology, 49, 905–918.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, P., Ludwig, W., Hethke, C., Sittig, M., Hoffmann, B., et al. (1998). Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: Bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Systematic and Applied Microbiology, 21(3), 374–383.

    Article  CAS  PubMed  Google Scholar 

  • Hofte, M. (1993). Classes of microbial siderophores. In L. L. Barton (Ed.), Iron chelation in plants and soil microorganisms (pp. 3–26). San Diego: BC Hemming in Academic Press.

    Chapter  Google Scholar 

  • Huang, J., Wei, Z., Tan, S., Mei, X., Yin, S., Shen, Q., & Xu, Y. (2013). The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Applied Soil Ecology, 72, 79–84.

    Article  Google Scholar 

  • Hugenholtz, P. (2002). Exploring prokaryotic diversity in the genomic era. Genome Biology, 3, REVIEWS0003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hui, L. J., & Kim, S. D. (2013). Induction of drought stress resistance by multifunctional PGPR Bacillus licheniformis K11 in pepper. Plant Pathology Journal, 29, 201–208.

    Article  Google Scholar 

  • Humphry, D. R., George, A., Black, G. W., & Cummings, S. P. (2001). Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. International Journal of Systematic and Evolutionary Microbiology, 51(4), 1235–1243.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, M. B., Zahir, Z. A., Asghar, H. N., & Asghar, M. (2014). Exopolysaccharides producing rhizobia ameliorate drought stress in wheat. International Journal of Agriculture and Biology, 16, 3–13.

    CAS  Google Scholar 

  • Ings, J., Mur, L. A., Robson, P. R., & Bosch, M. (2013). Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus. Frontiers in Plant Science, 4, 468.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iriarte, F. B., Balogh, B., Momol, M. T., & Jones, J. B. (2007). Factors affecting survival of bacteriophage on tomato leaf surfaces. Applied and Environmental Microbiology, 73(6), 1704–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jafra, S., et al. (2006). Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Canadian Journal of Microbiology, 52, 1006–1015.

    Article  CAS  PubMed  Google Scholar 

  • Jagadeesh, K. S. (2000). Selection of rhizobacteria antagonistic to Ralstonia solanacearum causing bacterial wilt in tomato and their biocontrol mechanisms. PhD Thesis. University of Agricultural Sciences, Dharwad.

    Google Scholar 

  • Jamil, M., Zeb, S., Anees, M., Roohi, A., Ahmed, I., Rehman, S. U., & Rha, E. S. (2014). Role of Bacillus Licheniformis in phytoremediation of nickel contaminated soil cultivated with Rice. International Journal of Phytoremediation, 16, 554–571.

    Article  CAS  PubMed  Google Scholar 

  • Jones, J. D., & Dang, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Jones, J. B., Lacy, G. H., Bouzar, H., Minsavage, G. V., Stall, R. E., & Schaad, N. W. (2005). Bacterial spot-worldwide distribution, importance and review. Acta Horticulturae, (695), 27–33.

    Google Scholar 

  • Julian, G., Cameron, H. J., & Olsen, R. A. (1983). Role of chelation by ortho dihydroxy phenols in iron absorption by plant roots. Journal of Plant Nutrition, 6, 163–175.

    Article  CAS  Google Scholar 

  • Kang, S. M., Radhakrishnan, R., Khan, A. L., Kim, M. J., Park, J. M., Kim, B. R., Shin, D. H., & Lee, I. J. (2014a). Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry, 84, 115–124.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S.-M., Khan, A. L., Waqas, M., You, Y.-H., Kim, J.-H., Kim, J.-G., et al. (2014b). Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Journal of Plant Interactions, 9, 673–682. https://doi.org/10.1080/17429145.2014.894587.

    Article  CAS  Google Scholar 

  • Kang, S. M., Khan, A. L., Waqas, M., You, Y. H., Kim, J. H., Kim, J. G., Hamayun, M., & Lee, I. J. (2014c). Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Journal of Plant Interactions, 9, 673–682.

    Article  CAS  Google Scholar 

  • Kang, Y., Shen, M., Wang, H., & Zhao, Q. (2015). Complete genome sequence of Bacillus pumilus strain WP8, an efficient plant growth-promoting rhizobacterium. Genome Announcements, 3(1), e01452–e01414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karen, A. S., Grimplet, J., Cushman, J., & Cramer, G. R. (2010). Transcriptomics analysis methods: Microarray data processing, analysis and visualization using the Affymetrix Genechip® Vitis Vinifera genome array. Method Results Grapevine Research, 317–334.

    Google Scholar 

  • Kasim, W. A., Osman, M. E., Omar, M. N., Abd El-Daim, I. A., Bejai, S., & Meijer, J. (2013). Control of drought stress in wheat using plant growth promoting bacteria. Journal of Plant Growth Regulation, 32, 122–130.

    Article  CAS  Google Scholar 

  • Kaur, G., & Reddy, M. S. (2014). Influence of P-solubilizing bacteria on crop yield and soil fertility at multilocational sites. European Journal of Soil Biology, 61, 35–40.

    Article  CAS  Google Scholar 

  • Kaushal, M., & Wani, S. P. (2015). Plant-growth-promoting rhizobacteria: Drought stress alleviators to ameliorate crop production in drylands. Annales de Microbiologie, 1–8.

    Google Scholar 

  • Kempf, B., & Bremer, E. (1998). Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Archives of Microbiology, 170, 319–330. https://doi.org/10.1007/s002030050649.

    Article  CAS  PubMed  Google Scholar 

  • Keshavan, N. D., Chowdhary, P. K., Haines, D. C., & Gonzalez, J. E. (2005). L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. Journal of Bacteriology, 187, 8427–8436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalid, A., Akhtar, M. J., Mahmood, M. H., & Arshad, M. (2006). Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology, 75, 231–236.

    Article  CAS  Google Scholar 

  • Khan, M. S., Zaidi, A., & Wani, P. A. (2006). Role of phosphate-solubilizing microorganisms in sustainable agriculture—A review. Agronomy for Sustainable Development, 27, 29–43.

    Article  Google Scholar 

  • Kim, S. B., & Timmusk, S. (2013). A simplified method for gene knockout and direct screening of recombinant clones for application in Paenibacillus polymyxa. PLoS One, 8.

    Google Scholar 

  • Kim, K. Y., Jordan, D., & McDonald, G. A. (1998). Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: Effect of carbon sources. Soil Biology and Biochemistry, 30(8), 995–1003.

    Article  CAS  Google Scholar 

  • Kim, S. J., Shin, S. C., Hong, S. G., Lee, Y. M., Choi, I. G., et al. (2012a). Genome sequence of a novel member of the genus Psychrobacter isolated from Antarctic soil. Journal of Bacteriology, 194(9), 2403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Lowman, S., Hou, G., Nowak, J., Flinn, B., & Mei, C. (2012b). Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN. Biotechnology for Biofuels, 5, 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, K., Jang, Y.-J., Lee, S.-M., Oh, B.-T., Chae, J.-C., & Lee, K.-J. (2014). Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Molecules and Cells, 37, 109–117. https://doi.org/10.14348/molcells.2014.2239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper, J. W., & Beauchamp, C. J. (1992). A review of issues related to measuring of plant roots by bacteria. Canadian Journal of Microbiology, 38, 1219–1232.

    Article  Google Scholar 

  • Kloepper, J. W., & Schroth, M. N. (1978). Plant growth promoting rhizobacteria on radishes. In: Proceedings of the fourth international conference on plant pathogen bacteria, INRA, Gilbert-Clarey, Tours, France 2, pp. 879–882.

    Google Scholar 

  • Kloepper, J. W., & Schroth, M. N. (1981a). Plant growth-promoting Rhizobacteria and PlantGrowth under Gnotobiotic conditions. Phytopathology, 71, 642–644.

    Article  Google Scholar 

  • Kloepper, J. W., & Schroth, M. N. (1981b). Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology, 71, 1020–1024.

    Article  Google Scholar 

  • Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhancing plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286, 885–886.

    Article  CAS  Google Scholar 

  • Kloepper, J. W., Gutierrez-Estrada, A., & McInroy, J. A. (2007). Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Canadian Journal of Microbiology, 53(2), 159–167.

    Article  CAS  PubMed  Google Scholar 

  • Knief, C. (2014). Analysis of plant microbe interactions in the era of next generation sequencing technologies. Frontiers in Plant Science, 5.

    Google Scholar 

  • Knoester, M., Pieterse, C. M., Bol, J. F., & Van Loon, L. C. (1999). Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Molecular Plant-Microbe Interactions, 12(8), 720–727.

    Article  CAS  PubMed  Google Scholar 

  • Köberl, M., Ramadan, E. M., Adam, M., Cardinale, M., Hallmann, J., Heuer, H., Smalla, K., & Berg, G. (2013). Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiology Letters, 342, 168–178.

    Article  PubMed  CAS  Google Scholar 

  • Köberl, M., White, R. A., III, Erschen, S., El-Arab, T. F., Jansson, J. K., & Berg, G. (2015). Draft genome sequence of Streptomyces sp. strain Wb2n-11, a desert isolate with broad-spectrum antagonism against soilborne phytopathogens. Genome Announcements, 3(4).

    Google Scholar 

  • Koch, H., & Schmid-Hempel, P. (2011). Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences of the United States of America, 108, 19288–19292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch, B., Liljefors, T., Persson, T., Nielsen, J., Kjelleberg, S., & Givskov, M. (2005). The LuxR receptor: The sites of interaction with quorum-sensing signals and inhibitors. Microbiology, 151, 3589–3602.

    Article  CAS  PubMed  Google Scholar 

  • Koehn, F. E., Lomgley, R. E., & Reed, J. K. (1992). Microcolins A and B, new immunosuppressive peptide from the blue-green algae Lyngbya majuscule. Journal of Natural Products, 55, 613–619.

    Article  CAS  PubMed  Google Scholar 

  • Kohler, J., Caravaca, F., Carrasco, L., & Roldan, A. (2006). Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use and Management, 22, 298–304. https://doi.org/10.1111/j.1475-2743.2006.00041.x.

    Article  Google Scholar 

  • Kohler, J., Herna’ndez, J. A., Caravaca, F., & Rolda’n, A. (2008). Plant-growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water stressed plants. Functional Plant Biology, 35, 141–151.

    Article  CAS  PubMed  Google Scholar 

  • Konnova, S. A., Brykova, O. S., Sachkova, O. A., Egorenkova, I. V., & Ignatov, V. V. (2001). Protective role of the polysaccharide containing capsular components of Azospirillum brasilense. Microbiol, 70, 436–440.

    Article  CAS  Google Scholar 

  • Kuan, K. B., Othman, R., Abdul Rahim, K., & Shamsuddin, Z. H. (2016). Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One, 11, e0152478. https://doi.org/10.1371/journal.pone.0152478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulik, M. M. (1995). The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. European Journal of Plant Pathology, 101, 585–599.

    Article  Google Scholar 

  • Kumar, V., Behl, R. K., & Narula, N. (2001). Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiological Research, 156, 87–93.

    Article  CAS  PubMed  Google Scholar 

  • Kutter, E. (1997). Phage therapy: Bacteriophages as antibiotics Olympia. Washington: http://www.evergreen.edu/phage/phagetherapy/phagetherapy.htm. Accessed Apr 2014.

  • Lang, J. M., Gent, D. H., & Schwartz, H. F. (2007). Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Disease, 91(7), 871–878.

    Article  CAS  PubMed  Google Scholar 

  • Lau, J. A., & Lennon, J. T. (2012). Rapid responses of soil microorganisms improve plant fitness in novel environments. Proceedings of the National Academy of Sciences of the United States of America, 109, 14058–14062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y. M., Hwang, C. Y., Lee, I., Jung, Y. J., Cho, Y., et al. (2014). Lacinutrix jangbogonensis sp. nov., a psychrophilic bacterium isolated from Antarctic marine sediment and emended description of the genus Lacinutrix. Antonie Van Leeuwenhoek, 106(3), 527–533.

    Article  CAS  PubMed  Google Scholar 

  • Leeman, M., DenOuden, E. M., VanPelt, J. A., Dirkx, F. P. M., Steijl, H., Bakker, P. A. H. M., & Schippers, B. (1996). Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology, 86, 149–155.

    Article  CAS  Google Scholar 

  • Lenhoff, H. M. (1963). An inverse relationship of the effects of oxygen and iron on the production of fluorescin and cytochrome C by Pseudomonas fluorescens. Nature, 199, 601–602.

    Article  CAS  PubMed  Google Scholar 

  • Lifshitz, R., Kloepper, J. W., Scher, F. M., Tipping, E. M., & Laliberte, M. (1986). Nitrogen-fixing pseudomonads isolated from roots of plants grown in the Canadian high arctic. Applied and Environmental Microbiology, 51, 251–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, J. H., & Kim, S. D. (2013). Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathology Journal, 29, 201–208.

    Article  Google Scholar 

  • Linderman, R. G. (1994). Role of AM fungi in biocontrol. In F. L. Pfleger & R. G. Linderman (Eds.), Mycorrhizae and plant health (pp. 1–25). St. Paul: APS Press.

    Google Scholar 

  • Liu, B., Wu, S., Song, Q., Zhang, X., & Xie, L. (2006). Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields. Current Microbiology, 53, 163–166.

    Article  CAS  PubMed  Google Scholar 

  • Liu, F. C., Xing, S. J., Ma, H. L., Du, Z. Y., & Ma, B. Y. (2013). Cytokinin-producing, plant growthpromoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Applied Microbiology and Biotechnology, 97, 9155–9164.

    Article  CAS  PubMed  Google Scholar 

  • Loper, J. E., & Buyer, J. S. (1991). Siderophores in microbial interactions on plant surfaces. Molecular Plant-Microbe Interactions, 4, 5–13.

    Article  CAS  Google Scholar 

  • Loper, J. E., & Henkels, M. D. (1999). Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Applied and Environmental Microbiology, 65(12), 5357–5363.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loper, J. E., Kobayashi, D. Y., & Paulsen, I. T. (2007). The genomic sequence of Pseudomonas fluorescens Pf-5: Insights into biological control. Phytopathology, 97(2), 233–238.

    Article  CAS  PubMed  Google Scholar 

  • López, N. I., Pettinari, M. J., Stackebrandt, E., Tribelli, P. M., Põtter, M., et al. (2009). Pseudomonas extremaustralis sp. nov., a poly (3-hydroxybutyrate) producer isolated from an Antarctic environment. Current Microbiology, 59(5), 514–519.

    Article  PubMed  CAS  Google Scholar 

  • Lu, X. (2010). A perspective: Photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnology Advances, 28, 742–746.

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg, B., & Kamilova, F. (2009a). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg, B., & Kamilova, F. (2009b). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–555.

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg, B. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology, 39, 461–490.

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg, B. J., Malfanova, N., Kamilova, F., & Berg, G. (2013). Plant growth promotion by microbes. Molecular Microbial Ecology of the Rhizosphere, 1(2), 559–573.

    Article  Google Scholar 

  • Mackelprang, R., et al. (2011). Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature, 480, 368–371.

    Article  CAS  PubMed  Google Scholar 

  • Maffei, M. E., Arimura, G. I., & Mithofer, A. (2012). Natural elicitors, effectors and modulators of plant responses. Natural Product Reports, 29(11), 1288–1303.

    Article  CAS  PubMed  Google Scholar 

  • Mahmood, S., Daur, I., Al-Solaimani, S. G., Ahmad, S., Madkour, M. H., Yasir, M., Hirt, H., Ali, S., & Ali, Z. (2016). Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of Mung bean. Frontiers in Plant Science, 7.

    Google Scholar 

  • Manefield, M., et al. (2002). Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology, 148, 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  • Mantelin, S., & Touraine, B. (2004). Plant growth-promoting rhizobacteria and nitrate availability: Impacts on root development and nitrate uptake. Journal of Experimental Botany, 55, 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Margesin, R., Zhang, D. C., Frasson, D., & Brouchkov, A. (2016). Glaciimonas frigoris sp. nov., a psychrophilic bacterium isolated from ancient Siberian permafrost sediment, and emended description of the genus Glaciimonas. International Journal of Systematic and Evolutionary Microbiology, 66(2), 744–748.

    Article  CAS  PubMed  Google Scholar 

  • Mariano, R. L. R., Silveira, E. B., Assis, S. M. P., Gomes, A. M. A., Oliveira, I. S., & Nascimento, A. R. P. (2001). Diagnose e manejo de fitobacterioses de importância no Nordeste Brasileiro. In S. J. Michereff & R. Barros (Eds.), Proteção de Plantas na Agricultura Sustentável (pp. 141–169). Brasil: UFRPE, Recife.

    Google Scholar 

  • Marulanda, A., Azcon, R., Chaumont, F., Ruiz-Lozano, J. M., & Aroca, R. (2010). Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta, 232, 533–543. https://doi.org/10.1007/s00425-010-1196-8.

    Article  CAS  PubMed  Google Scholar 

  • Mauchline, T. H., et al. (2015). An analysis of Pseudomonas genomic diversity in take-all infected wheat fields reveals the lasting impact of wheat cultivars on the soil microbiota. Environmental Microbiology, 17, 4764–4778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurhofer, M., Hase, C., Meuwly, P., Metraux, J. P., & Défago, G. (1994). Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and of pyoverdine production. Phytopathology, 84, 139–146.

    Article  CAS  Google Scholar 

  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science, 166, 525–530.

    Article  CAS  Google Scholar 

  • Mazzola, M., Cook, R. J., Thomashow, L. S., Weller, D. M., & Pierson, L. S., 3rd. (1992). Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Applied and Environmental Microbiology, 58, 2616–2624.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath, S. P., Chaudri, A. M., & Giller, K. E. (1995). Long-term effects of metals in sewage sluge on soils, microorganisms and plants. Journal of Industrial Microbiology, 14(2), 94–104.

    Article  CAS  PubMed  Google Scholar 

  • McMillan, V. E., Hammond-Kosack, K. E., & Gutteridge, R. J. (2011). Evidence that wheat cultivars differin their ability to build up inoculum of the take-all fungus, Gaeumannomyces graminis var. tritici, under a first wheat crop. Plant Pathology, 60, 200–206.

    Article  Google Scholar 

  • McNear, D. H. Jr. (2013). The Rhizosphere – Roots, soil and everything in between. Nature Education Knowledge, 4, 1.

    Google Scholar 

  • McNeil, D. L., Romero, S., Kandula, J., Stark, C., Stewart, A., & Larsen, S. (2001). Bacteriphages: A potential biocontrol agent against walnut blight (Xanthomonas campestris pv. juglandis). New Zealand Plant Protection, 54, 220–224.

    Article  Google Scholar 

  • Mehrabi, Z., et al. (2016). Pseudomonas spp. diversity is negatively associated with suppression of the wheat take-all pathogen. Scientific Reports, 6, 29905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miernik, A. (2003). Occurrence of bacteria and coli bacteriophages as potential indicators of fecal pollution of vistula river and zegrze reservoir. Polish Journal of Environmental Studies, 13(1), 79–84.

    Google Scholar 

  • Miethke, M., & Marahiel, M. A. (2007). Siderophore-based Iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews, 71, 413–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miransari, M., & Smith, D. L. (2009). Alleviating salt stress on soybean (Glycine max (L.) Merr.) – Bradyrhizobium japonicumsymbiosis, using signal molecule genistein. European Journal of Soil Biology, 45, 146–152. https://doi.org/10.1016/j.ejsobi.2008.11.002.

    Article  CAS  Google Scholar 

  • Mirshad, P. P., and Puthur, J. T. (2017). Drought tolerance of bioenergy grass Saccharum spontaneum L. enhanced by arbuscular mycorrhizae. Rhizosphere 3, Part 1, 1–1, 8.

    Article  Google Scholar 

  • Mitri, S., et al. (2011). Social evolution in multispecies biofilms. Proceedings of the National Academy of Sciences of the United States of America, 108, 10839–41086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., Kato, T., Sato, S., Tarkowska, D., Tabata, S., Sandberg, G., & Kakimoto, T. (2006). Roles of Arabidopsis ATP/ADP 32 isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 16598–16603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran, N. A. (2015). Genomics of the honey bee microbiome. Current Opinion in Insect Science, 10, 22–28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan, P. W., & Drew, M. C. (1997). Ethylene and plant responses to stress. Physiologia Plantarum, 100, 620–630. https://doi.org/10.1034/j.1399-3054.1997.1000325.x.

    Article  CAS  Google Scholar 

  • Morris, P. F., & Ward, E. W. R. (1992). Chemoattraction of zoospores of the plant soybean pathogen, Phytophthora sojae, by isoflavones. Physiological and Molecular Plant Pathology, 40, 17–22.

    Article  CAS  Google Scholar 

  • Morton, J. B., & Benny, G. L. (1990). Revised classification of arbuscular mycorrhizal fungi (zygomycetes): A new order glomales, two new suborders, glomineae and gigasporineae and gigasporaceae, with an amendation of glomaceae. Mycotaxon, 37, 471–491.

    Google Scholar 

  • Mulkidjanian, A. Y., Koonin, E. V., Makarova, K. S., Mekhedov, S. L., Sorokin, A., Wolf, Y. I., Dufresne, A., et al. (2006). The cyanobacterial genome core and the origin of photosynthesis. Proceedings of National Academy of Science USA, 103, 13126–13131.

    Article  CAS  Google Scholar 

  • Munsch, P., & Olivier, J. M. (1995). Biocontrol of bacterial blotch of the cultivated mushroom with lytic phages: Some practical considerations. In T. J. Elliott (Ed.), Science and cultivation of edible fungi. Proceedings of the 14th international congress (Vol. II, pp. 595–602). Rotterdam: Balkema, AA.

    Google Scholar 

  • Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2009). Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Canadian Journal of Microbiology, 55, 1302–1309. https://doi.org/10.1139/W09-092.

    Article  CAS  PubMed  Google Scholar 

  • Nakkeeran, S., & Fernando, W. G. D. (2005). Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In Z. A. Siddiqui (Ed.), PGPR: biocontrol and biofertilization (pp. 257–296). Dordrecht: Springer.

    Google Scholar 

  • Nandakumar, R., Babu, S., Viswanathan, R., Raguchander, T., & Samiyappan, R. (2001). Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biology and Biochemistry, 33, 603–612.

    Article  CAS  Google Scholar 

  • Nardi, S., Concheri, G., Pizzeghello, D., Sturaro, A., Rella, R., & Parvoli, G. (2000). Soil organic matter mobilization by root exudates. Chemosphere, 41, 653–658.

    Article  CAS  PubMed  Google Scholar 

  • Narula, N., Kothe, E., & Behl, R. K. (2009). Role of root exudates in plant-microbe interactions. Journal of Applied Botany and Food Quality Angewandte Botanik, 82, 122–130.

    CAS  Google Scholar 

  • Naseem, H., & Bano, A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9, 689–701.

    Article  Google Scholar 

  • Nautiyal, C. S., Srivastava, S., Chauhan, P. S., Seem, K., Mishra, A., & Sopory, S. K. (2013). Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiology and Biochemistry, 66, 1–9. https://doi.org/10.1016/j.plaphy.2013.01.020.

    Article  CAS  PubMed  Google Scholar 

  • Nayak, S., Prasanna, R., Prasanna, B. M., & Sahoo, D. B. (2007). Analysing diversity among Indian isolates of Anabaena (Nostocales, Cyanophyta) using morphological, physiological and biochemical characters. World Journal of Microbiology and Biotechnology, 23, 1575–1584.

    Article  CAS  Google Scholar 

  • Negi, S., Ivanchenko, M. G., & Muday, G. K. (2008). Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. The Plant Journal, 55, 175–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrao, S., Schmockel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Neil, D. L., Romero, S., Kandula, J., Stark, C., Stewart, A., & Larsen, S. (2001). Bacteriophages: A potential biocontrol agent against walnut blight (Xanthomonas campestris pv. juglandis). New Zealand Plant Protection, 54, 220–224.

    Article  Google Scholar 

  • Newman, M. A., Sundelin, T., Nielsen, J. T., & Erbs, G. (2013). MAMP (microbe associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science, 4, 139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen, D. D., et al. (2016). Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides. Nature Microbiology, 2, 16197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, B., Vater, J., Rueckert, C., Blom, J., Lehmann, M., Ru, J., Chen, X., Wang, Q., & Borriss, R. (2013). Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiology, 13, 137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, S. Q., Li, H. R., Pare, P. W., Aziz, M., Wang, S. M., Shi, H. Z., et al. (2016). Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant and Soil, 407, 217–230. https://doi.org/10.1007/s11104-015-2767-z.

    Article  CAS  Google Scholar 

  • Noble, A. D., Ruaysoongern, S., Penning de Vries, F. W. T. et al. (2004) Enhancing the agronomic productivity of degraded soils in Northeast Thailand through clay-based interventions. In V. Seng, E. Craswell, S. Fukai, & K. Fischer (Eds.), Water and agriculture (Vol. 116, pp. 147–160, ACIAR Proceedings 2004). ACIAR, Canberra.

    Google Scholar 

  • Nowak, J., & Shulaev, V. (2003). Priming for transplant stress resistance in vitro propagation. In vitro Cellular and Developmental Biology—Plant, 39, 107–124.

    Article  Google Scholar 

  • O’Callaghan, M. (2016). Microbial inoculation of seed for improved crop performance: Issues and opportunities. Applied Microbiology and Biotechnology, (13), 5729–5746.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Obradovic, A., Jones, J. B., Momel, M. T., & Olson, S. M. (2004). Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Disease, 88, 736–740.

    Article  CAS  PubMed  Google Scholar 

  • Obradovic, A., Jones, J. B., Balogh, B., & Momol, M. T. (2008). Integrated management of tomato bacterial spot. In A. Ciancio & K. G. Mukerji (Eds.), Integrated management of disease caused by fungi, phytoplasma and bacteria (pp. 211–221). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Oldroyd, G. E. (2013). Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews. Microbiology, 11, 252–263. https://doi.org/10.1038/nrmicro2990.

    Article  CAS  PubMed  Google Scholar 

  • Ongena, M., Henry, G., Adam, A., Jourdan, E., & Thonart, P. (2009). Plant defense reactions stimulated following perception of Bacillus lipopeptides. In 8th International PGPR Workshop, USA, p. 43.

    Google Scholar 

  • Ovadis, M., Liu, X., Gavriel, S., Ismailov, Z., Chet, I., & Chernin, L. (2004). The global regulator genes from biocontrol strain Serratia plymuthica IC1270: Cloning, sequencing, and functional studies. Journal of Bacteriology, 186, 4986–4993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, C. S., Paulitz, T. C., & Baker, R. (1988). Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and non pathogenic isolates of Fusarium oxysporum. Phytopathology, 78, 190–194.

    Article  Google Scholar 

  • Paul, M. J., Primavesi, L. F., Jhurreea, D., & Zhang, Y. (2008). Trehalose metabolism and signaling. Annual Review of Plant Biology, 59, 417–441.

    Article  CAS  PubMed  Google Scholar 

  • Peay, K. G., Bidartondo, M. I., & Arnold, A. E. (2010). Not every fungus is everywhere: Scaling to the biogeography of fungal–plant interactions across roots, shoots and ecosystems. New Phytologist, 185, 878–882.

    Article  Google Scholar 

  • Peiffer, J. A., et al. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 110, 6548–6553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peret, B., De Rybel, B., Casimiro, I., Benkova, E., Swarup, R., Laplaze, L., Beeckman, T., & Bennett, M. J. (2009). Arabidopsis lateral root development: An emerging story. Trends in Plant Science, 14, 399–408.

    Article  CAS  PubMed  Google Scholar 

  • Pereyra, M. A., Zalazar, C. A., & Barassi, C. A. (2006). Root phospholipids in Azospirillum-inoculated wheat seedlings exposed to water stress. Plant Physiology and Biochemistry, 44, 873–879.

    Article  CAS  PubMed  Google Scholar 

  • Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews. Microbiology, 11, 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Pieterse, C. M. J., Van Wees, S. C. M., Hoffland, E., Vanpelt, J. A., & Vanloon, L. C. (1996). Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell, 8, 1225–1237.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse, C. M., Van Wees, S. C. M., van Pelt, J. A., Knoester, M., Lann, R., Gerrits, H., Weisbeek, P. J., & van Loon, L. C. (1998). A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 10, 1571–1580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrangelo, A. (2002). Mechanism of iron toxicity. In C. Hershko (Ed.), Iron chelation theraphy (Vol. 509, 1st ed., pp. 19–43). New York: Kluwer Academic/Plenum Publishers.

    Chapter  Google Scholar 

  • Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., & Crecchio, C. (2015). Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process- a review. Biology and Fertility of Soils, 51, 403–415.

    Article  CAS  Google Scholar 

  • Pinedo, I., Ledger, T., Greve, M., & Poupin, M. J. (2015). Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Frontiers in Plant Science, 6, 466. https://doi.org/10.3389/fpls.2015.00466.

    Article  PubMed  PubMed Central  Google Scholar 

  • Powell, P. E., Cline, G. R., Reid, C. P. P., & Szaniszlo, P. J. (1980). Occurrence of hydroxamate siderophore iron chelators in soils. Nature, 287, 833–834.

    Article  CAS  Google Scholar 

  • Pradhan, D., Mishra, D., Kim, D. J., Jong, G. A., Chaudhury, G. R., & Lee, S. W. (2010). Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles. Journal of Hazardous Materials, 175, 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Press, C. M., Wilson, M., Tuzun, S., & Kloepper, J. W. (1997). Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Molecular Plant-Microbe Interactions, 10, 761–768.

    Article  CAS  Google Scholar 

  • Provorov, N. A., & Tikhonovich, I. A. (2003). Genetic resources for improving nitrogen fixation in legume–rhizobia symbiosis. Genetic Resources and Crop Evolution, 50, 89–99.

    Article  CAS  Google Scholar 

  • Provorov, N. A., Saimnazarov, U. B., Bahromov, I. U., Pulatova, D. Z., Kozhemyakov, A. P., & Kurbanov, G. A. (1998). Effect of rhizobia inoculation on the seed (herbage) production of mungbean (Phaseolus aureus Roxb.) grown at Uzbekistan. Journal of Arid Environments, 39, 569–575.

    Article  Google Scholar 

  • Qurashi, A. W., & Sabri, A. N. (2012). Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Brazilian Journal of Microbiology, 43, 1183–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramamoorthy, V., & Samiyappan, R. (2001). Induction of defence related genes in Pseudomonas fluorescens treated chilli plants in response to infection by Colletotrichum capsici. Journal of Mycology and Plant Pathology, 31, 146–155.

    CAS  Google Scholar 

  • Ravel, J., & Cornelis, P. (2003). Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends in Microbiology, 11, 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Ravensdale, M., Blom, T. J., Gracia-Garza, J. A., Svircev, A. M., & Smith, R. J. (2007). Bacteriophages and the control of Erwinia carotovora subsp. carotovora. Canadian Journal of Plant Pathology, 29, 121–130.

    Article  Google Scholar 

  • Reddy, N., & Yang, Y. (2005). Biofibers from agricultural byproducts for industrial applications. Trends Biotechnology, 23, 22–27.

    Article  CAS  Google Scholar 

  • Reddy, G., Pradhan, S., Manorama, R., & Shivaji, S. (2010). Cryobacterium roopkundense sp. nov., a psychrophilic bacterium isolated from glacial soil. International Journal of Systematic and Evolutionary Microbiology, 60(4), 866–870.

    Article  CAS  PubMed  Google Scholar 

  • Reguera, M., Peleg, Z., & Blumwald, E. (2012). Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochimica et Biophysica Acta, 1819, 186–194.

    Article  CAS  PubMed  Google Scholar 

  • Rivero, R. M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., & Blumwald, E. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences of the United States of America, 104, 19631–19636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberson, E. B., & Firestone, M. K. (1992). Relationship between desiccation and exopolysaccharide production in soil Pseudomonas sp. Applied and Environmental Microbiology, 58, 1284–1291.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez, S. J., Suarez, R., Caballero, M. J., & Itturiaga, G. (2009). Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiology Letters, 296, 52–59.

    Article  CAS  Google Scholar 

  • Rojas-Tapias, D., Moreno-Galván, A., Pardo-Díaz, S., Obando, M., Rivera, D., & Bonilla, R. (2012). Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 61, 264–272.

    Article  Google Scholar 

  • Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M. L., Gandolfi, C., Casati, E., Previtali, F., Gerbino, R., Pierotti Cei, F., Borin, S., Sorlini, C., Zocchi, G., & Daffonchio, D. (2015). Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology, 17, 316–331.

    Article  PubMed  Google Scholar 

  • Ruggiero, C. E., Neu, M. P., Matonic, J. H., & Reilly, S. D. (2000). Interactions of Pu with desferrioxamine siderophores can affect bioavailability and mobility. Actinide Research Quarterly, 2000, 16–18.

    Google Scholar 

  • Ryan, P. R., Delhaize, E., & Jones, D. L. (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527–560.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes: Recent developments and applications. FEMS Microbiology Letters, 278, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, P. R., Dessaux, Y., Thomashow, L. S., & Weller, D. M. (2009a). Rhizosphere engineering and management for sustainable agriculture. Plant and Soil, 321, 363–383.

    Article  CAS  Google Scholar 

  • Ryan, P. R., Dessaux, Y., Thomashow, L. S., & Weller, D. M. (2009b). Rhizosphere engineering and management for sustainable agriculture. Plant and Soil, 321, 363–383.

    Article  CAS  Google Scholar 

  • Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Pare, P. W. (2004a). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134, 1017–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu, C. M., Murphy, J. F., Mysore, K. S., & Kloepper, J. W. (2004b). Plant growth-promoting rhizobacterial systemically protect Arabidopsis thaliana against cucumber mosaic virus by a salicylic acid and NPR1- independent and jasmonic acid-dependent signaling pathway. The Plant Journal, 39, 381–392.

    Article  CAS  PubMed  Google Scholar 

  • Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology, 34, 635–648.

    Article  CAS  Google Scholar 

  • Saleh, S. S., & Glick, B. R. (2001). Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and Pseudomonas putida UW4. Canadian Journal of Microbiology, 47, 698–705.

    Article  CAS  PubMed  Google Scholar 

  • Sandhya, V., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology and Fertility of Soils, 46, 17–26.

    Article  CAS  Google Scholar 

  • Sandhya, V., Ali, S. Z., Grover, M., Reddy, G., & Venkateswaralu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation, 62, 21–30.

    Google Scholar 

  • Sang-Mo, K., Radhakrishnan, R., Khan, A. L., Min-Ji, K., Jae-Man, P., Bo-Ra, K., Dong-Hyun, S., & In-Jung, L. (2014). Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry, 84, 115–124.

    Article  CAS  Google Scholar 

  • Saxena, A. K., Yadav, A. N., Rajawat, M. V. S., Kaushik, R., Kumar, R., et al. (2016). Microbial diversity of extreme regions: An unseen heritage and wealth. Indian Journal of Plant Genetics Resources, 29(3), 246–248.

    Article  Google Scholar 

  • Schnabel, E. L., & Jones, A. L. (2001). Isolation and characterization of five Erwinia amylovora bacteriophages and assessment of phage resistance in strains of Erwinia amylovora. Applied and Environmental Microbiology, 67(1), 59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seaton, S. C., & Silby, M. W. (2014). Genetics and functional genomics of the Pseudomonas fluorescens group. Genomics of Plant Associated Bacteria, ed al (pp. 99–125). DCGe. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Selvakumar, G., Panneerselvam, P., & Ganeshamurthy, A. N. (2012). Bacterial mediated alleviation of abiotic stress in crops. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Stress management (pp. 205–224). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Sessitsch, A., Reiter, B., & Berg, G. (2004). Endophytic bacterial communities of field-grown potato plants and their plant growth-promoting and antagonistic abilities. Canadian Journal of Microbiology, 50, 239–249.

    Article  CAS  PubMed  Google Scholar 

  • Shakir, M. A., Asghari, B., & Arshad, M. (2012). Rhizosphere bacteria containing ACC deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environment, 31, 108–112.

    CAS  Google Scholar 

  • Shao, H. B., Chu, L. Y., Jaleel, C. A., Manivannan, P., Panneerselvam, R., & Shao, M. A. (2009). Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Critical Reviews in Biotechnology, 29, 131–151.

    Article  CAS  PubMed  Google Scholar 

  • Shen, L., Liu, Y., Gu, Z., Xu, B., Wang, N., et al. (2015). Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core. International Journal of Systematic and Evolutionary Microbiology, 65(7), 2124–2129.

    Article  CAS  PubMed  Google Scholar 

  • Shintu, P. V., & Jayaram, K. M. (2015). Phosphate solubilising bacteria (Bacillus polymyxa) - an effective approach to mitigate drought in tomato (Lycopersicon esculentum Mill.). Tropical Plant Research, 2, 17–22.

    Google Scholar 

  • Shinwari, K. I., Shah, A. U., Afridi, M. I., Zeeshan, M., Hussain, H., Hussain, J., & Ahmad, O. (2015). Application of plant growth promoting rhizobacteria in bioremediation of heavy metal polluted soil. Asian Journal of Multidisciplinary Studies, 3, 179–185.

    Google Scholar 

  • Shivaji, S., Ray, M., Rao, N. S., Saisree, L., Jagannadham, M., et al. (1992). Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher oasis, Antarctica. International Journal of Systematic and Evolutionary Microbiology, 42(1), 102–106.

    Google Scholar 

  • Shtark, O. Y., Borisov, A. Y., Zhukov, V. A., Provorov, N. A., & Tikhonovich, I. A. (2010). Intimate associations of beneficial soil microbes with host plants. In R. Dixon & E. Tilston (Eds.), Soil microbiology and sustainable crop production (pp. 119–196). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Shukla, P. S., Agarwal, P. K., & Jha, B. (2012). Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of Halotolerant plant-growth-promoting Rhizobacteria. Journal of Plant Growth Regulation, 31, 195–206.

    Article  CAS  Google Scholar 

  • Shunmugam, S., Hinttala, R., Lehtimäki, N., Mittinen, M., Uusimaa, J., Majamma, K., Sivonen, K., et al. (2013). Nodularia spumigena extract induces upregulation of mitochondrial respiratory chain complexes in spinach (Spinacia oleracea L.). Acta Physiologiae Plantarum, 35, 969–974.

    Article  CAS  Google Scholar 

  • Shunmugam, S., Jokela, J., Wahlsten, M., Battchikova, N., Rehman, A. U., Vass, I., Karonen, M., et al. (2014). Secondary metabolite from Nostoc XPORK14A inhibits photosynthesis and growth of Synechocystis PCC 6803. Plant, Cell and Environment, 37, 1371–1381.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S., & Kapoor, K. K. (1999). Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biology and Fertility of Soils, 28(2), 139–144.

    Article  CAS  Google Scholar 

  • Sizer, F., & Whitney, E. (2007). Nutrition: Concepts and controversies. Cengage Learning, 26.

    Google Scholar 

  • Somerville, C., & Briscoe, L. (2001). Genetic engineering and water. Science, 292, 2217–2217.

    Article  CAS  PubMed  Google Scholar 

  • Spaepen, S., & Vanderleyden, J. (2011a). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3(4), a001438.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Spaepen, S., & Vanderleyden, J. (2011b). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3, a001438. https://doi.org/10.1101/cshperspect.a001438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole- 3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31, 425–448.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson, J. R., Villoria, N., Byerlee, D., Kelley, T., & Maredia, M. (2013). Green revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proceedings of the National Academy of Sciences of the United States of America, 110, 8363–8368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell, V. O., Johnson, K. B., Sugar, D., & Loper, J. E. (2010). Control of fire blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1 applied as single strains and mixed inocula. Phytopathology, 100, 1330–1339.

    Article  CAS  PubMed  Google Scholar 

  • Suarez, R., Wong, A., Ramirez, M., Barraza, A., OrozcoMdel, C., Cevallos, M. A., et al. (2008). Improvement of drought tolerance and grain yield in common bean by over expressing trehalose-6-phosphate synthase in rhizobia. Molecular Plant-Microbe Interactions, 21, 958–966.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian, K. S., & Tarafdar, J. C. (2011). Prospects of nanotechnology in Indian farming. Indian Journal of Agricultural Sciences, 8, 887–893.

    Google Scholar 

  • Subramanian, S., Ricci, E., Souleimanov, A., & Smith, D. L. (2016a). A proteomic approach to lipo-chitooligosaccharide and thuricin 17 effects on soybean germinationunstressed and salt stress. PLoS One, 11, e0160660. https://doi.org/10.1371/journal.pone.0160660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian, S., Souleimanov, A., & Smith, D. L. (2016b). Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in Arabidopsis thaliana. Frontiers in Plant Science, 7, 1314. https://doi.org/10.3389/fpls.2016.01314.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sueldo, R. J., Invernati, A., Plaza, S. G., & Barassi, C. A. (1996). Osmotic stress in wheat seedlings: Effects on fatty acid composition and phospholipid turnover in coleoptiles. Cereal Research Communications, 24, 77–84.

    CAS  Google Scholar 

  • Sulakvelidze, A., & Barrow, P. (2005). Phage therapy in animals and agribusiness, in bacteriophages: Biology and applications. In E. Kutter & A. Sulakvelidze (Eds.), Bacteriophage: Biology and applications (pp. 335–380). Boca Raton: CRC Press.

    Google Scholar 

  • Summers, W. C. (2001). Bacteriophage therapy. Annual Reviews Microbiology, 55, 437–451.

    Article  CAS  Google Scholar 

  • Sun, H., Tao, J., Gu, P., Xu, G., & Zhang, Y. (2016). The role of strigolactones in root development. Plant Signaling & Behavior, 11(1).

    Google Scholar 

  • Swarup, R., Perry, P., Hagenbeek, D., Van Der Straeten, D., Beemster, G. T. S., Sandberg, G., Bhalerao, R., Ljung, K., & Bennett, M. J. (2007). Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell, 19, 2186–2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tak, H. I., Ahmad, F., & Babalola, O. O. (2013). Advances in the application of plant GrowthPromoting Rhizobacteria in phytoremediation of heavy metals. Reviews of Environmental Contamination and Toxicology, 223(223), 33–52.

    CAS  PubMed  Google Scholar 

  • Tank, N., & Saraf, M. (2010). Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. Journal of Plant Interactions, 5, 51–58.

    Article  CAS  Google Scholar 

  • Teale, W. D., Paponov, I. A., & Palme, K. (2006). Auxin in action: Signalling, transport and the control of plant growth and development. Nature Reviews. Molecular Cell Biology, 7, 847–859. https://doi.org/10.1038/nrm2020.

    Article  CAS  PubMed  Google Scholar 

  • Thiel, T., & Pratte, B. (2001). Effect on heterocyst differentiation of nitrogen fixation in vegetative cells of the cyanobacterium Anabaena variabilis ATCC 29413. Journal of Bacteriology, 183, 280–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, C. A. (1965). Effect of photoperiod and nitrogen on reaction of sesame to pseudomonas sesame and Xanthomonas sesami. Plant Disease Report, 49, 119–120.

    Google Scholar 

  • Timmusk, S., & Wagner, E. G. (1999). The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses. Molecular Plant-Microbe Interactions, 12, 951.

    Article  CAS  PubMed  Google Scholar 

  • Timmusk, S., Islam, A., Abd El, D., Lucian, C., Tanilas, T., Ka nnaste, A., et al. (2014). Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles. PLoS One, 9, 1–13.

    Article  CAS  Google Scholar 

  • Upadhyay, S. K., Singh, J. S., Saxena, A. K., & Singh, D. P. (2011a). Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biology, 14, 605–611.

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay, S. K., Singh, J. S., & Singh, D. P. (2011b). Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere, 21, 214–222. https://doi.org/10.1016/S1002-0160(11)60120-3.

    Article  CAS  Google Scholar 

  • Vaishnav, A., Kumari, S., Jain, S., Varma, A., & Choudhary, D. K. (2015a). Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. Journal of Applied Microbiology, 119, 539–551. https://doi.org/10.1111/jam.12866.

    Article  CAS  PubMed  Google Scholar 

  • Vaishnav, A., Kumari, S., Jain, S., Varma, A., & Choudhary, D. K. (2015b). Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. Journal of Applied Microbiology, 119, 539–551.

    Article  CAS  PubMed  Google Scholar 

  • Van Loon, C. (1997). Induced resistance in plants and the role of pathogenesis related proteins. European Journal of Plant Pathology, 103, 753–765.

    Article  Google Scholar 

  • Van Loon, L. C., Bakker, P. A. H., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.

    Article  PubMed  Google Scholar 

  • Van Maris, A. J., Winkler, A. A., Kuyper, M., de Laat, W. T., van Dijken, J. P., & Pronk, J. T. (2007). Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose isomerase as a key component. Advances in Biochemical Engineering/Biotechnology, 108, 179–204.

    Google Scholar 

  • Van Peer, R., Niemann, G. J., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology, 81, 728–734.

    Article  Google Scholar 

  • Van Trappen, S., Vandecandelaere, I., Mergaert, J., & Swings, J. (2005). Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. International Journal of Systematic and Evolutionary Microbiology, 55(2), 769–772.

    Article  PubMed  CAS  Google Scholar 

  • Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206, 1196–1206.

    Article  Google Scholar 

  • Vanni, M. (2002). Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics, 33, 341–370.

    Article  Google Scholar 

  • Vardharajula, S., Zulfikar Ali, S., Grover, M., Reddy, G., & Bandi, V. (2011). Drought-tolerant plant growth promoting Bacillus spp., effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6, 1–14.

    Article  CAS  Google Scholar 

  • Vargas, L., Santa Brigida, A. B., Mota Filho, J. P., de Carvalho, T. G., Rojas, C. A., et al. (2014). Drought tolerance conferred to sugarcane by association with gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS ONE, 9(12), e114744. https://doi.org/10.1371/journal.pone.0114744. eCollection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venturi, V., & Fuqua, C. (2013). Chemical signaling between plants and plant-pathogenic bacteria. Annual Review of Phytopathology, 51, 17–37.

    Article  CAS  PubMed  Google Scholar 

  • Verma, P., Yadav, A. N., Khannam, K. S., Panjiar, N., Kumar, S., et al. (2015). Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annales de Microbiologie, 65(4), 1885–1899.

    Article  CAS  Google Scholar 

  • Verslues, P. E. (2017). Time to grow: Factors that control plant growth during mild to moderate drought stress. Plant Cell and Environment, 40, 177–179.

    Article  CAS  Google Scholar 

  • Vértesy, L., Aretz, W., Fehlhaber, H. W., & Kogler, H. (1995). Salimycin A-D, Antibiotoka aus Streptomyces violaveus, DSM 8286, mit Siderophor- Aminoglycosid-Struktur. Helvetica Chimica Acta, 78, 46–60.

    Article  Google Scholar 

  • Vessey, J. K. (2003). Plant growth-promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.

    Article  CAS  Google Scholar 

  • Vidhyasekaran, P., Kamala, N., Ramanathan, A., Rajappan, K., Paranidharan, V., & Velazhahan, R. (2001). Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae pv. oryzae in rice leaves. Phytoparasitica, 29(2), 155–166.

    Article  Google Scholar 

  • Viikari, L., Alapuranen, M., Puranen, T., Vehmaanpera, J., & Siika-Aho, M. (2007). Thermostable enzymes in lignocellulose hydrolysis. Advances in Biochemical Engineering/Biotechnology, 108, 121–145.

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan, R., & Samiyappan, R. (1999). Induction of systemic resistance by plant growth-promoting rhizobacteria against red rot disease caused by Colletotrichum falcatum went in sugarcane. In Proceedings of the Sugar Technology Association of India (Vol. 61, pp. 24–39). New Delhi: Sugar Technology Association.

    Google Scholar 

  • Vivekananthana, R., Ravia, M., SaravanaKumara, D., Kumarb, N., Prakasama, V., & Samiyappan, R. (2004). Microbially induced defense related proteins against postharvest anthracnose infection in mango. Crop Protection, 23, 1061–1067.

    Article  CAS  Google Scholar 

  • Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13–24.

    Article  PubMed  Google Scholar 

  • Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany, 64, 1263–1280.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H. R., Wang, M. Z., & Yu, L. H. (2009a). Effects of dietary protein sources on the rumen microorganisms and fermentation of goats. Journal of Animal and Veterinary Advances, 7, 1392–1401.

    Google Scholar 

  • Wang, Z., Gerstein, M., & Snyder, M. (2009b). RNA-Seq: A evolutionary tool for transcriptomics. Nature Reviews. Genetics, 10, 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C. J., Yang, W., Wang, C., Gu, C., Niu, D. D., Liu, H. X., et al. (2012). Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting Rhizobacterium strains. PLoS One, 7, 1–10.

    Google Scholar 

  • Wei, G., Kloepper, J. W., & Tuzun, S. (1996). Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology, 86, 221–224.

    Article  Google Scholar 

  • Weisbeek, P. J., Van der Hofstad, G. A. J. M., Schippers, B., & Marugg, J. D. (1986). Genetic analysis of the iron uptake system of two plant growth promoting Pseudomonas strains. NATO ASI Series A, 117, 299–313.

    CAS  Google Scholar 

  • Weller, D. M. (1988). Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379–407.

    Article  Google Scholar 

  • Werner, D. (2005). Production and biological nitrogen fixation of tropical legumes. In Nitrogen fixation in agriculture, forestry, ecology, and the environment (pp. 1–13). Springer.

    Google Scholar 

  • Weyens, N., Beckers, B., Schellingen, K., Ceulemans, R., Van der Lelie, D., Newman, L., et al. (2015). The potential of the Ni-resistant TCE-degrading Pseudomonas putida W619-TCE to reduce phytotoxicity and improve phytoremediation efficiency of poplar cuttings on a Ni-TCE Co-contamination. International Journal of Phytoremediation, 17, 40–48. https://doi.org/10.1080/15226514.2013.828016.

    Article  CAS  PubMed  Google Scholar 

  • Whilmotte, A. (1994). Molecular evolution and taxonomy of the cyanobacteria. In D. A. Bryant (Ed.), The molecular biology of cyanobacteria (pp. 1–25). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52(1), 487–511.

    Article  CAS  PubMed  Google Scholar 

  • Whitehead, N. A., Barnard, A., Slater, M. L., Simpson, H. N. J. L., & Salmond, G. P. C. (2001). Quorum-sensing in Gram-negative bacteria. FEMS Microbiology Reviews, 25, 365–404.

    Article  CAS  PubMed  Google Scholar 

  • Wintermans, P. C., Bakker, P. A., & Pieterse, C. M. (2016). Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Molecular Biology, 90, 623–634. https://doi.org/10.1007/s11103-016-0442-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiszniewska, A., Hanus-Fajerska, E., Grabski, K., & Tukaj, Z. (2013). Promoting effects of organic medium supplements on the micropropagation of promising ornamental Daphne species (Thymelaeaceae). In Vitro Cellular and Developmental Biology-Plant, 49, 51–59.

    Article  CAS  Google Scholar 

  • Xiong, L., Wang, R.-G., Mao, G., & Koczan, J. M. (2006). Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiology, 142, 1065–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav, A. N. (2015). Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. Ph.D Thesis- IARI, New Delhi, India, p. 234.

    Google Scholar 

  • Yadav, A. N., Sachan, S. G., Verma, P., & Saxena, A. K. (2015a). Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. Journal of Bioscience and Bioengineering, 119(6), 683–693.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, A. N., Sachan, S. G., Verma, P., Tyagi, S. P., Kaushik, R., et al. (2015b). Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World Journal of Microbiology and Biotechnology, 31(1), 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Yakimov, M. M., Giuliano, L., Gentile, G., Crisafi, E., Chernikova, T. N., et al. (2003). Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. International Journal of Systematic and Evolutionary Microbiology, 53(3), 779–785.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H., Knapp, J., Koirala, P., Rajagopal, D., Peer, W. A., Silbart, L. K., Murphy, A., & Gaxiola, R. A. (2007). Enhanced phosphorus nutrition in monocots and dicots overexpressing a phosphorus-responsive type IH+-pyrophosphatase. Plant Biotechnology Journal, 5, 735–745.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Kloepper, J. W., & Ryu, C. M. (2009a). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14, 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Kloepper, J. W., & Ryu, C. M. (2009b). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14, 1–4. https://doi.org/10.1016/j.tplants.2008.10.004.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S., Vanderbeld, B., Wan, J., & Huang, Y. (2010). Narrowing down the targets, towards successful genetic engineering of drought-tolerant crops. Molecular Plant, 3, 469–490.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M. M., et al. (2011). Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Phytopathology, 101, 1481–1491.

    Article  PubMed  Google Scholar 

  • Yao, L. X., Wu, Z. S., Zheng, Y. Y., Kaleem, I., & Li, C. (2010). Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology, 46, 49–54. https://doi.org/10.1016/j.ejsobi.2009.11.002.

    Article  CAS  Google Scholar 

  • Yin, H. F., Chen, C. J., Yang, J., Weston, D. J., Chen, J. G., Muchero, W., Ye, N., Tschaplinski, T. J., Wullschleger, S. D., Cheng, Z. M., Tuskan, G. A., & Yang, X. H. (2014). Functional genomics of drought tolerance in bioenergy crops. Critical Reviews in Plant Sciences, 33, 205–224.

    Article  Google Scholar 

  • Yuwono, T., Handayani, D., & Soedarsono, J. (2005). The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Australian Journal of Agricultural Research, 56, 715–721.

    Article  Google Scholar 

  • Zaccardelli, M., Saccardi, A., Gambin, E., & Mazzuchi, U. (1992). Xanthomonas campestris pv. Pruni bacteriophages on peach trees and their potential use for biological control. Phytopathol. Méditerranée, 31, 133–140.

    Google Scholar 

  • Zachariah, S., Kumari, P., & Das, S. K. (2016). Psychrobacter pocilloporae sp. nov., isolated from a coral, Pocillopora eydouxi. International Journal of Systematic and Evolutionary Microbiology, 66(12), 5091–5098.

    Article  CAS  PubMed  Google Scholar 

  • Zahir, Z. A., Munir, A., Asghar, H. N., Shaharoona, B., & Arshad, M. (2008). Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. Journal of Microbiology and Biotechnology, 18, 958–963.

    CAS  PubMed  Google Scholar 

  • Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63, 968–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zahran, H. H. (2001). Rhizobia from wild legumes: Diversity, taxonomy, ecology, nitrogen fixation and biotechnology. Journal of Biotechnology, 91, 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Zaidi, A., Khan, M. S., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica, 56, 263–284.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H., & Paré, P. W. (2008). Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions, 21, 737–744. https://doi.org/10.1094/MPMI-21-6-0737.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Murzello, C., Sun, Y., Kim, M. S., Xie, X., Jeter, R. M., Zak, J. C., Dowd, S. E., & Pare, P. W. (2010a). Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe bacillus subtilis (GB03). Molecular Plant-Microbe Interactions, 23, 1097–1104.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H. M., Murzello, C., Sun, Y., Kim, M. S., Xie, X. T., Jeter, R. M., Zak, J. C., Dowd, S. E., & Pare, P. W. (2010b). Choline and osmotic-stress tolerance induced in arabidopsis by the soil microbe Bacillus subtilis (GB03). Molecular Plant-Microbe Interactions, 23, 1097–1104.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D. C., Busse, H. J., Liu, H. C., Zhou, Y. G., Schinner, F., et al. (2011). Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. International Journal of Systematic and Evolutionary Microbiology, 61(3), 587–591.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z., Jiang, F., Wang, S., Peng, F., Dai, J., et al. (2012). Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil. International Journal of Systematic and Evolutionary Microbiology, 62(8), 1963–1969.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, C., Ma, Z., Zhu, L., Xiao, X., Xie, Y., Zhu, J., et al. (2016). Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. International Journal of Molecular Sciences, 17, 976. https://doi.org/10.3390/ijms17060976.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parray, J.A., Yaseen Mir, M., Shameem, N. (2019). Rhizosphere Engineering and Agricultural Productivity. In: Sustainable Agriculture: Biotechniques in Plant Biology . Springer, Singapore. https://doi.org/10.1007/978-981-13-8840-8_3

Download citation

Publish with us

Policies and ethics