Skip to main content

Plant Growth-Promoting Rhizobacteria: An Overview in Agricultural Perspectives

  • Chapter
  • First Online:

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 13))

Abstract

Soil microbiology is a millennium dollar important field in the agriculture sector in terms of growth, development, and high yield. Earlier efforts were in the direction of use of chemical fertilizers to get fast and quick results. But during the last decades, some harmful effects of these seem to be showing discouraging results for rhizospheric microflora. Plant growth-promoting rhizobacterial world is an amazing and magical invisible world with promising results. Commonly available PGPR genera include bacterial strains such as Agrobacterium, Arthrobacter, Azotobacter, Azospirillum, Bacillus, Caulobacter, Chromobacterium, Flavobacterium, Micrococcus, Pseudomonas, etc. If their colonization is encouraged by creating favorable conditions for their growth, then the cost of an external phytohormone, growth enhancers, and nitrogen fixers can be minimized. This review focuses on some of the significant characteristics of direct mechanism of action of PGPR which should be focused more and should be implemented successfully under various agricultural lands where cultivation practices are literally difficult.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas S, Latif HH, Elsherbin Y (2013) Effect of 24 epibrassinoids on physiology and genetic changes on two variations of pepper under salt stress condition. Pak J Bot 45:1273–1284

    Google Scholar 

  • Ahemad M, Khan MS (2010) Influence of selective herbicides on plant growth promoting traits of phosphate solubilizing Enterobacter asburiae strain P$2. Res J Microbiol 5:849–857

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011) Effect of insecticides on plant growth promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. strain P$19. Pestic Biochem Physiol 100:51–56

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012a) Ecological assessment of biotoxicity of pesticide towards plant growth promoting activities of pea (Pisum sativum) specific Rhizobium sp. strain MRP 1. Emirates J Food Agric 24:334–343

    Google Scholar 

  • Ahemad M, Khan MS (2012b) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris) rhizosphere. Chemosphere 86:945–950

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibretb M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud University 26(1):1–20

    Article  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315. https://doi.org/10.1007/s11104-007-9233-5

    Article  CAS  Google Scholar 

  • Arora NK, Tewari S, Singh R (2013) Multifaceted plant-associated microbes and their mechanism diminish the concept of direct and indirect PGPR. In: Arora NK (ed) Plant-microbe symbiosis fundamentals and advances. Springer, Singapore, pp 411–449

    Chapter  Google Scholar 

  • Arshad M, Frankenberger WTJ (1998) Plant growth regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:27–42

    Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agriculture importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56:1761–1778. https://doi.org/10.1093/jxb/eri197

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, Trejo A, de BLE (2011) Development of two culture media for mass cultivation of Azospirillum sp. and for production of inoculants to enhance plant growth. Biol Fertil Soils. https://doi.org/10.1007/S00374-011-055503

  • Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid Khaled AS (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol (1):53–57. https://doi.org/10.1016/j.cub.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  • Bent E, Tuzun S, Chanway CP (2001) Alternation in plant growth and in root hormone levels of lodge pines inoculated with rhizobacteria. Canadian J Microbiol 47:793–800

    Article  CAS  Google Scholar 

  • Bhattacharya PN, Jha DK (2012) Plant growth promoting rhizobacteria (PGPR) emergence in agriculture. World J microbial Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Bilkay IS, Karakog S, Aksoz N (2010) Indole acetic acid and gibberellic acid production in Aspergillus niger. Turk J Biol 34:313–318

    CAS  Google Scholar 

  • Bulgaelli D, Schlaeppi K, Spaepen S, Ver Loren Van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. https://doi.org/10.1146/annurev-aplant-050312-12

    Article  Google Scholar 

  • Chauhan A, Guleria S, Bulger P, Walia A, Mahajan R, Mehta P, Shirkot CK (2017) Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from the rhizosphere of Valeriana jatamansi and its growth promotional effect. Brazilian J Microbiol 28(2):294–304

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, Lugtenberg BJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanisms of action, Indian J Microbiol, 47(4):289–297

    Article  CAS  PubMed  Google Scholar 

  • Clark FE (1949) Soil microorganisms and plant growth. Adv Agron 1:241–288

    Article  CAS  Google Scholar 

  • Constantinescu F (2001) Extraction and identification of antifungal metabolites produced by some Bacillus subtilis strains. Analele Institutului de Cercetaari Pentru ereale Protectia Plantleor 31:17–23

    Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens, vol 33. American Phytopathological Society, St Paul

    Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonate in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  CAS  PubMed  Google Scholar 

  • Crowley DA (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron Nutrition in plant and rhizosphere. Springer, Dordrecht

    Google Scholar 

  • Dagnow F, Assefa F, Gebrekidan H, Argaw A (2015) Characterization of plant growth promoting bacteria from sugarcane (Saccharum officinarum L.) Rhizospheric of Wonji-shoa sugar estate and farmers landraces of Ethiopia. Biotechnology 14(2):58–64

    Article  CAS  Google Scholar 

  • Das I, Singh A (2014) Effect of PGPR and organic manures on soil properties of organically cultivated mung beans. The Bioscan 9(1):27–29

    Google Scholar 

  • De Felipe M R, Fijaction (2006) Biologica de dinitrogeno atomsferico en vida libre in Fijacion de nitrogeno: Fundamentos Y aplicaciones Granada: Sociedad Espanola de Microbiologia; Bedmar E, Gonzalo J Lluch C (Eds) Sociedads Espanola de Fijacion de Nitrogeno: Granada Spain 31:9–16.

    Google Scholar 

  • De Souza JT, Weller DM, Rajjmakers JM (2003) Frequency diversity and activity of 2,4 diacetyl phloroglucinol producing fluorescent Pseudomonas sp. in Dutch take all decline soils. Phytopathology 93:54–63

    Article  PubMed  Google Scholar 

  • De Weert S, Vermeiren H, Mulders IHM, Flagella-driven Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Gracia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis towards Podosphaera fusca. Mol Plant-Microbe Interact 20:430–440

    Article  CAS  Google Scholar 

  • Dodd AC, Bolimov AA, Sobeih WY, Safronva VI, Grierson D, Davis W (2010) Will modifying plant ethylene status improve plant productivity in water-limited environment? 4th International Crop Science Congress, Brisbane, Australia 26 Sep- 01 Oct 2004, pp 501–512

    Google Scholar 

  • Dunne C, Moenne Loccoz Y, McCarthy J, Higgins P, Powell J, Dowling DN, O Gara F (1998) Combining proteolytic and phloroglucinol producing bacteria for improved biocontrol of Pythium mediated damping off of sugar beet. Pathology 47:299–307

    Google Scholar 

  • Edreva A (2004) A novel strategy for plant protection: induced resistance. J Cell Mol Biol 3:61–69

    Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Non-Streptomycetes actinomycetes as biocontrol agents of soilborne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

    Article  CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soil-borne plant pathogens by a beta 1 3 glucanase producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic J, Duan CZCJ, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Revin Plant Sci 26(5–6):227–242

    Article  CAS  Google Scholar 

  • Govindrajan M, Balabdreau J, Kwon SW (2007) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    Article  Google Scholar 

  • Hass D, Defago G (2005) Biological control of soil-borne pathogenicity fluorescent Pseudomonas. Nat Rev Microbiol 3:307–319

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Herman MAB, Naault BA, Smart CD (2008) Effects of plant growth promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Prot 27:996–1002

    Article  Google Scholar 

  • Heydari S, Moghadam PR, Arab SM (2008) Hydrogen cyanide production ability by Pseudomonas fluorescence bacteria and their inhibitory potential on weed. In: Proceeding competition for the resource in a changing world: new drive for rural development. Tropentag, Hohenheilm, pp 7–9

    Google Scholar 

  • Hiltner L (1904) Over recent experiences and problems in the field of soil bacteriology and special those into account the Grundungung and fallow Arb Deutsche Agricultural Enges. 98:59–78. https://doi.org/10.1023/B:WIBI.0000023826.30426.f5

    Article  CAS  Google Scholar 

  • Hussain A, Hasnain S (2009) Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr J Microbiol Res 3:704–712

    CAS  Google Scholar 

  • Janeiczko A, Oklestkova J, pociecha E, Koscielniak J, Mirek M (2011) Physiological effects and transport of 24 epibrassinolide in heat stressed barley. Acta Physiol Plant 33:1249–1259

    Article  CAS  Google Scholar 

  • Jog R, Pandya M, Kumar GN, Kumar SR (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces sp. isolated from wheat roots and rhizosphere and their applications in improving plant growth. Microbiology 160:778–788

    Article  CAS  PubMed  Google Scholar 

  • Jung WJ, An KN, Jin YL, Park RD, Lim KT, Kim KY, Kim T (2003) Biological control of damping off caused by Rhizoctonia solani using chitinase producing Paenibacillus illinoisensis KJA-424. Soil Biol Biochem 35:1261–1264

    Article  CAS  Google Scholar 

  • Kabir L, Kim SW, Kim YS, Lee YS (2013) Biocontrol of late blight and plant growth promotion in tomato using Rhizobacterial isolates. J Microbiol Biotechnol 23:897–904

    Article  Google Scholar 

  • Kaki AA, Chaouche NK, Dehimat L, Milet A, Youcef Ali M, Ongena M, Thonart P (2013) Biocontrol and plant growth promotion characterization of Bacillus sp. isolated from Calendula officinalis rhizosphere. Indian J Microbiol 53:447–452

    Article  CAS  Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soilborne strain IC 14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotium diseases. Soil Biol Biochem 35:323–331

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchnko LV, Shaposhnikov AI, Makarova N, Lungtnberg E (2006) Effect of tomato pathogen Fusarium oxysporium sp. radices lycopersici and of the biocontrol bacterium Pseudomonas florescence WCs365 on the composition of organic acids and sugars in tomato root exudates. Mol Plant-Microbe Interact 19(10):1121–1126

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Carlson R, Tharpe W, Schell MA (1999) Characterisation of a gene involved in the biosynthesis of a novel antibiotic from Burkholderia cepacia BC 11 and their role in biological control of Rhizoctonia solani. Appl Env Microbiol l64:3939–3947

    Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Khan Al WM, Kang SM (2014) Bacterial endophyte Sphingomonas sp. LK 11 producers gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695

    Article  PubMed  CAS  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005) Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95:1157–1116

    Article  CAS  PubMed  Google Scholar 

  • Kraemer SM (2005) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18

    Article  CAS  Google Scholar 

  • Kumar A, Singh V, Singh P, Singh S, Singh P, Pandey K (2016) Plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocata Agri Biotechnol 8:1–7

    Article  Google Scholar 

  • Liu XM, Zhag FD, Zhang SQ, He XS (2012) Preparation and testing of cementing and coating nano subnanocomposites of slow/controlled release fertilizer. Agric Sci China 5:700–706

    Article  Google Scholar 

  • Liu K, Garret C, Fadamiro H, Kloepper JW (2016) Induction of systemic resistance in Chinese cabbage against black rot by plant growth promoting rhizobacteria. Biol Control 99:8–13

    Article  Google Scholar 

  • Lungtenberg B, Kamilova F (2009) Plant growth promoting rhizobacteria. Ann Rev of Microbio l63(1):541–556

    Article  CAS  Google Scholar 

  • Milner JL, Sio Suh L, Lee JC, He U, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW 85. Appl Environ Microbiol 62:3061–3065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moyne AL, Shalby R, Cleveland TE, Tuzun S (2001) Bacillomycin D an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629

    Article  CAS  PubMed  Google Scholar 

  • Munoz Rojas J, Caballero Mellado J (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46:454–464

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Naveed M, Zahir ZA, Asghar HN (2013) Plant-microbe interactions for sustainable agriculture: fundamentals and recent advances. In: Arora NK (ed) Plant-microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 1–103

    Google Scholar 

  • Nakayama T, Homma Y, Hashidoko Y, Mizutani J, Tahara S (1999) Possible role of xanthobaccin produced by Stenotrophomonas sp. strain SB-K-88 in the suppression of sugar beet damping off disease. App and Env Microbiol 65:4334–4339

    CAS  Google Scholar 

  • Nielson MN, Sorensen J, Fels J, Pedersen HC (1998) Secondary metabolite and endochitinase dependent antagonism toward plant pathogenic microfungi of Pseudomonas fluorescence isolated from sugar beet rhizosphere. App and Env Microbiol 64:3563–3569

    Google Scholar 

  • Nielson TH, Sorensen D, Tobiasen C, Andersen JB, Christophensen C, Givskov M, Sorensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas sp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

    Article  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nat Rev Microbiol 6:763–775. https://doi.org/10.1038/nrmicro1987

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Sayyed R, Saraf M (2016) Bacterial determinants and plant Defense induction: their role as biocontrol agents in sustainable. In: Hakeem KR, Akhtar MS (eds) Plant soil and microbes. Springer-Nature, Singapore, pp 187–204

    Google Scholar 

  • Pathak R, Shrestha A, Lamichhane J, Gauchan D (2017) PGPR in biocontrol: mechanisms and roles in disease suppression. Int J Agron and Agri Res 11:69–80

    Google Scholar 

  • Pcypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Env Microbiol 51:553–563

    Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150. https://doi.org/10.1007/s00253-007-0909-9

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Van Pelt JA, Ton J, Bachmann S, Mueller MJ, Buchala AJ (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–134. https://doi.org/10.1006/pmpp.2000.0291

    Article  CAS  Google Scholar 

  • Powar CB, Daginawala HF (2010) General Microbiology, vol 1. Himalaya Publishing House, New Delhi, pp 594–624

    Google Scholar 

  • Powell JF, Vargas JM, Nair MG, Detweiler AR, Chandra A (2000) Management of dollar spot on creeping bentgrass with metabolites of Pseudomonas aureofaciens (TX-1). Plant Dis 84:19–24

    Article  CAS  PubMed  Google Scholar 

  • Ramyasmruthi S, Pallavi O, Pallavi S, Tilak K, Srividya S (2012) Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from Solanaceae rhizosphere effective against broad-spectrum fungal phytopathogens. Asian J Plant Sci and Res 2(1):16–24

    CAS  Google Scholar 

  • Reman R, Croonenborghs A, Gutoerrez RT, Michiels J, Vanderleyden J (2007) Effects of plant growth promoting rhizobacteria on modulation of Phaseolus vulgaris (L) are dependent on plant P nutrition. Euro J Plant Pathol 119:341–351

    Article  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. https://doi.org/10.1007/s11104-009-9895-2

    Article  CAS  Google Scholar 

  • Rivas R, Peix A, Mateos PF, Trujillo ME, Martinezmolina E (2006) Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea indifferent Spanish soils. Plant Soil 287:23–33

    Article  CAS  Google Scholar 

  • Rokhbaksh-Zamin D, Sachdev N, Kazemi Pour A, Pardesi KR, Ziniarde PK, Dhakephalkar BA, Chopde BA (2011) Characterization of plant growth promoting traits of Acinetobacter species isolated from the rhizosphere of Penniserum glaucum. J Microbiol Biotechnol 21:556–566

    Google Scholar 

  • Rye CM, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39:282–289

    Article  Google Scholar 

  • Sakamoto T, Yoichi M, Kanako I, Masatomo K, Hironori I, Toshiaki K, Shuichi I, Makoto M, Hiroshi T (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21:909–913

    Article  CAS  PubMed  Google Scholar 

  • Saraf M, Jha CK and Patil D (2011) The role of ACC deaminase producing PGPR in sustainable agriculture In: Maheshwari D.K., (Eds.) Plant growth and health-promoting bacteria Microbiology Series editor Steinbuchel A, Springer Germany, pp 365–386.

    Google Scholar 

  • Sayyed RZ, Ilyas N, Tabassum B, Hashem A, Abd_Allah EF, Jadhav HP (2019) Plausible role of plant growth-promoting Rhizobacteria in future climatic scenario. In: Sobti R, Arora N, Kothari R (eds) Environmental biotechnology: for sustainable future. Springer, Singapore, pp 175–197

    Chapter  Google Scholar 

  • Sea HS, Song JT, Chong JJ, Lee YH, Hwang I, Lee JS, Yang DC (2001) Jasmonic acid carboxymethyl transfers: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad SciUSA 98:4788–4793

    Article  Google Scholar 

  • Senthil R, Selvaraj S, Anand T, Raguchander T, Samiyappan R (2011) Efficacy of liquid Pseudomonas fluorescent (Pfi) against sugarcane red rot caused by Colletotrichum falcatum under field conditions. Intl Sugar J 113:888–893

    CAS  Google Scholar 

  • Senthilraja G, Anand T, Kennedy JS, Raguchander T, Samiyappan R (2013) Plant growth promoting rhizobacteria (PGPR) and entomophagous fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiol Mol Plant Pathol 82:10–19

    Article  CAS  Google Scholar 

  • Sharma S, Sayyed RZ, Trivedi MH, Thivakaran AG (2013) Phosphate solubilising microbes: a sustainable approach for managing phosphorus deficiency in agriculture soil. Springer Plus 2:587. https://doi.org/10.1186/2193-1801-2-587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shilev S (2013) Soil Rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Arora NK (ed) Plant-microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 147–150

    Chapter  Google Scholar 

  • Shinde DB, Cheruku B, Jadhav AC (2008) Influence of plant growth promoting rhizobacteria on nutrient availability and rhizobacterial population in groundnut cropped soil. J Maharashtra Agric Univ 33(3):335–338

    Google Scholar 

  • Sokolova MG, Akimova GP, Vaishiia OB (2011) Effect of phytohormones synthesized by rhizospheric bacteria on plants. Prikl Biokhim Mikrobiol 47:302–307

    CAS  PubMed  Google Scholar 

  • Someya N, Tsuchiya K, Yoshida T, Noguchi MT, Akutsu K, Sawada H (2007) Co-inoculation of an antibiotic-producing bacterium and a lytic enzyme producing bacterium for the biocontrol of tomato wilt caused by Fusarium oxysporium sp. lycopersici. Biocontr Sci 12:1–6

    Article  CAS  Google Scholar 

  • Sophareth M, Chan S, Naing KW, Lee YS, Hyun HN, Kim YC, Kim KY (2013) Biocontrol of late blight (Phytophthora capsici) disease and growth promotion of peeper by Burkholderia cepacia MPC -7. The Plant Pathol J 29(1):67–76. https://doi.org/10.5423/PPJ.OA.07.2012.0114

    Article  Google Scholar 

  • Sorensen J (1997) The rhizosphere as habitat for soil micro-organism. In: Van Elsas JD, Trevors JD, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 21–45

    Google Scholar 

  • Stella D, Sivasakthivelan P (2009) Effect of different organic amendments addition into Azospirillum bioinoculants with lignite as career material. Bot Res Intl 2(4):229–232

    Google Scholar 

  • Suman PR, Jain VK, Arman V (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Tazawa J, Watanabe K, Yoshida H, Sato M, Homma Y (2000) Simple method of detection of the strains of fluorescent Pseudomonas sp. producing antibiotics pyrrolnitrin and phloroglucinol. Soil Microorg 54:61–67

    Google Scholar 

  • Tilak KV, BR Ranganyaki N, Pal KK, De R, Saxena AK (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Tiwari S, Arora NK (2013) Transactions among microorganisms and plant in the composite Rhizosphere. In: Arora NK (ed) Plant-microbe symbiosis, fundamentals and advances. Springer, New Delhi, pp 1–50

    Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon T, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities and comparative analysis of PR-1 type6 proteins. Physiol and Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Velusamy P, Immanuel JE, Gnanamannickam SS, Thomashow L (2006) Biological control of rice bacterial blight by plant-associated bacteria producing 2 4-diacetylphloroglucinol. Can J Microbiol 52:56–65

    Article  CAS  PubMed  Google Scholar 

  • Viceros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Vivekananthan R, Ravi M, Ramanathan A, Samiyappan R (2004) Lytic enzymes induced by Pseudomonas fluorescence and other biocontrol organisms mediate defense against the anthracnose pathogen in mango. World J Microbiol Biotechnol 20(3):235–244

    Article  CAS  Google Scholar 

  • Wani SA, Chand S, Ali T (2013) Potential use of Azotobacter chrococcum in crop production: an overview. Curr Agric Res J 1:35–38

    Article  Google Scholar 

  • Winkelmann G (2007) Ecology of siderophore with special reference to the fungus. Biometals 20:379–392

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Christansan S, Isakeit T, Eneelberth J, Meeley R, Hayward A, Emery RJ, Kolomoiets MV (2012) Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 24:1420–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaxley JR, Ross JJ, Sherriff LJ, Reid JB (2001) Gibberellin biosynthesis mutations and root development in pea. Plant Physiol 125:627–633. https://doi.org/10.1104/pp.125.2.627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeller SL, Brand H, Schmid B (2007) Host plant sensitivity of Rhizobacteria in a crop/weed model system. Plos One 2(suppl 9):846:37

    Article  CAS  Google Scholar 

  • Zhang Y, Fernando WGD (2004) Zwittermicin A detection in Bacillus sp. controlling Sclerotinia sclerotiorum on canola. Phytopathology 94:116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zope, V.P., El Enshasy, H.A., Sayyed, R.Z. (2019). Plant Growth-Promoting Rhizobacteria: An Overview in Agricultural Perspectives. In: Sayyed, R. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6986-5_13

Download citation

Publish with us

Policies and ethics