Skip to main content

The Role of Plant Growth-Promoting Rhizobacteria to Modulate Proline Biosynthesis in Plants for Salt Stress Alleviation

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 12))

Abstract

Soil salinization causes serious problem to environmental resources and human health in many countries. Around 1.5 billion hectares of cultivated lands are present in the world. It is estimated that almost 5% of the cultivated land (77 million) and 6% of total surface land is affected by salinity. Agricultural crops and their productivity are severely affected by salt stress. Many physiological mechanisms within the plants are regulated when exposed to salt stress. The salinity tolerance measurement has a great demand to asses the regulatory variations, growth, and survival parameters. Microorganisms that colonize the roots could play a significant role in this aspect. Rhizobacteria which possess properties such as salt tolerance, nutrient uptake ability, synthesis of compatible solutes, production of plant growth-promoting hormones, biocontrol potential, and their interaction with crop plants is known as plant growth-promoting rhizobacteria (PGPRs). Proline is one of the essential compatible solute for both plant and bacteria to respond against osmotic imbalance and ionic toxicity. Proline biosynthesis occurs in cytosol and mitochondria of a cell and modulates their functions in various cellular physiological pathways. It can also influence the proliferation and apoptosis of cell and regulate specific gene expression to alleviate salt stress. Rhizobacteria having plant growth promoting characteristics can be used as a suitable bio-inoculant to promote growth and productivity through different mechanisms in addition to the accumulation of proline as osmoregulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    Article  CAS  PubMed  Google Scholar 

  • Albaladejo I, Meco V, Plasencia F, Flores FB, Bolarin MC, Egea I (2017) Unravelling the strategies used by the wild tomato species Solanum pennellii to confront salt stress: from leaf anatomical adaptations to molecular responses. Environ Exp Bot 135:1–12

    Article  CAS  Google Scholar 

  • Al-Garni SMS (2006) Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. Afr J Biotechnol 5(2):133–142

    CAS  Google Scholar 

  • Ali SZ, Sandhya V, Rao LV (2014) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64(2):493–502

    Article  CAS  Google Scholar 

  • Arevalo-Ferro C, Reil G, Görg A, Eberl L, Riedel K (2005) Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics. Syst Appl Microbiol 28(2):87–114

    Article  CAS  PubMed  Google Scholar 

  • Arkhipova T, Prinsen E, Veselov S, Martinenko E, Melentiev A, Kudoyarova G (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292(1–2):305–315

    Article  CAS  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173(4):808–816

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59(8):2029–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aseri G, Jain N, Panwar J, Rao A, Meghwal P (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic 117(2):130–135

    Article  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora-Morphol Distrib Funct Ecol Plants 199(5):361–376

    Article  Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris P (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    Article  CAS  Google Scholar 

  • Baetz U, Eisenach C, Tohge T, Martinoia E, De Angeli A (2016) Vacuolar chloride fluxes impact ion content and distribution during early salinity stress. Plant Physiol 172:1167–1181. 00183.02016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bal HB, Das S, Dangar TK, Adhya TK (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol 53(12):972–984

    Article  CAS  PubMed  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252

    Article  CAS  Google Scholar 

  • Barnett NM, Naylor A (1966) Amino acid and protein metabolism in Bermuda grass during water stress. Plant Physiol 41(7):1222–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barriuso J, Solano BR, Gutierrez Manero F (2008) Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98(6):666–672

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biol Fertil Soils 29(3):246–256

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4(4):343–350

    Article  CAS  PubMed  Google Scholar 

  • Borneman J, Skroch PW, O’Sullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62(6):1935–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouizgarne B (2013) Bacteria for plant growth promotion and disease management. In: Bacteria in agrobiology: disease management. Springer, pp 15–47

    Google Scholar 

  • Bremer E (2000) Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria. In: Bacterial stress responses. pp 79–97

    Google Scholar 

  • Casanovas EM, Barassi CA, Andrade FH, Sueldo RJ (2003) Azospirillum-inoculated maize plant responses to irrigation restraints imposed during flowering. Cereal Res Commun 31:395–402

    Google Scholar 

  • Cayley S, Lewis B, Record M (1992) Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol 174(5):1586–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S (2013) Migrate or evolve: options for plant pathogens under climate change. Glob Chang Biol 19(7):1985–2000

    Article  PubMed  Google Scholar 

  • Chatzipavlidis I, Kefalogianni I, Venieraki A, Holzapfel W (2013) Commission on genetic resources for food and agriculture. Status and trends of the conservation and sustainable use of microorganisms in Agroindustrial processes. FAO

    Google Scholar 

  • Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22(1):27–34

    Article  CAS  Google Scholar 

  • Chen CT, Chen L-M, Lin CC, Kao CH (2001) Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci 160(2):283–290

    Article  CAS  PubMed  Google Scholar 

  • Choudhary N, Sairam R, Tyagi A (2005) Expression of Δ1-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.) Ind J Biochem Biophysics 42:366–372

    Google Scholar 

  • Csonka LN (1981a) Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol Gen Genet MGG 182(1):82–86

    Article  CAS  PubMed  Google Scholar 

  • Csonka LN (1981b) The role of proline in osmoregulation in Salmonella typhimurium and Escherichia coli. In: Trends in the biology of fermentations for fuels and chemicals. Springer, pp 533–542

    Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45(1):569–606

    Article  CAS  PubMed  Google Scholar 

  • Csonka L, Gelvin S, Goodner B, Orser C, Siemieniak D, Slightom J (1988) Nucleotide sequence of a mutation in the proB gene of Escherichia coli that confers proline overproduction and enhanced tolerance to osmotic stress. Gene 64(2):199–205

    Article  CAS  PubMed  Google Scholar 

  • Daei G, Ardekani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166(6):617–625

    Article  CAS  PubMed  Google Scholar 

  • Dardanelli MS, de Cordoba FJF, Espuny MR, Carvajal MAR, Díaz MES, Serrano AMG, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40(11):2713–2721

    Article  CAS  Google Scholar 

  • del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39(1):82–90

    Article  CAS  PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4(2):215–223

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov SZ (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47(2):197–205

    Article  CAS  Google Scholar 

  • Elthon TE, Stewart CR (1981) Submitochondrial location and electron transport characteristics of enzymes involved in proline oxidation. Plant Physiol 67(4):780–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabro G, Kovács I, Pavet V, Szabados L, Alvarez ME (2004) Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant-Microbe Interact 17(4):343–350

    Article  CAS  PubMed  Google Scholar 

  • Farago M, Mullen W (1979) Plants which accumulate metals. Part IV. A possible copper-proline complex from the roots of Armeria maritima. Inorg Chim Acta 32:L93–L94

    Article  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers T, Troke P, Yeo A (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28(1):89–121

    Article  CAS  Google Scholar 

  • Floyd RA, Nagy IZ (1984) Formation of long-lived hydroxyl free radical adducts of proline and hydroxyproline in a Fenton reaction. Biochim Biophys Acta 790(1):94–97

    Article  CAS  PubMed  Google Scholar 

  • Funck D, Eckard S, Müller G (2010) Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis. BMC Plant Biol 10(1):70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119(3):329–339

    Article  CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240

    Article  Google Scholar 

  • Gul B, Ansari R, Flowers TJ, Khan MA (2013) Germination strategies of halophyte seeds under salinity. Environ Exp Bot 92:4–18

    Article  CAS  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:6284547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han H, Lee K (2005) Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1(3):216–221

    Google Scholar 

  • Handa S, Bressan RA, Handa AK, Carpita NC, Hasegawa PM (1983) Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol 73(3):834–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare P, Cress W (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21(2):79–102

    Article  CAS  Google Scholar 

  • Hare P, Cress W, Van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J Exp Bot 50(333):413–434

    CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122(4):1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C, Delauney AJ, Verma D (1992) A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci 89(19):9354–9358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua S-ST, Tsai VY, Lichens GM, Noma AT (1982) Accumulation of amino acids in Rhizobium sp. strain WR1001 in response to sodium chloride salinity. Appl Environ Microbiol 44(1):135–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Bie Z, Liu Z, Zhen A, Wang W (2009) Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber. Soil Sci Plant Nutr 55(5):698–704

    Article  CAS  Google Scholar 

  • Imhoff JF (1986) Osmoregulation and compatible solutes in eubacteria. FEMS Microbiol Rev 2(1–2):57–66

    Article  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1 (pRO101) in 2, 4-D contaminated soil. Plant Soil 189(1):139–144

    Article  CAS  Google Scholar 

  • Jha PN, Gupta G, Jha P, Mehrotra R (2013) Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. Greener J Agric Sci 3(2):73–84

    Google Scholar 

  • Jha Y, Sablok G, Subbarao N, Sudhakar R, Fazil M, Subramanian R, Squartini A, Kumar S (2014) Bacterial-induced expression of RAB18 protein in Orzya sativa salinity stress and insights into molecular interaction with GTP ligand. J Mol Recognit 27(9):521–527

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan B, Joe MM, Islam MR, Sa T (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56(2):77–86

    Article  CAS  Google Scholar 

  • Kasotia A, Varma A, Choudhary DK (2015) Pseudomonas-mediated mitigation of salt stress and growth promotion in glycine max. Agric Res 4(1):31–41. https://doi.org/10.1007/s40003-014-0139-1

    Article  CAS  Google Scholar 

  • Kaul S, Sharma S, Mehta I (2008) Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids 34(2):315–320

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121(1):1–6

    Article  CAS  Google Scholar 

  • Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8(8):1323–1335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knox OGG, Killham K, Mullins CE, Wilson MJ (2003) Nematode-enhanced microbial colonization of the wheat rhizosphere. FEMS Microbiol Lett 225(2):227–233. https://doi.org/10.1016/s0378-1097(03)00517-2

    Article  CAS  PubMed  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldan A (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manag 22(3):298–304

    Article  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65(2–3):245–252

    Article  CAS  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19(9):998–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutts S, Majerus V, Kinet JM (1999) NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol Plant 105(3):450–458

    Article  CAS  Google Scholar 

  • Maathuis FJ, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84(2):123–133

    Article  CAS  Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876. https://doi.org/10.3389/fpls.2016.00876

    Article  PubMed  PubMed Central  Google Scholar 

  • Mäkelä A, Landsberg J, Ek AR, Burk TE, Ter-Mikaelian M, Ã…gren GI, Oliver CD, Puttonen P (2000) Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol 20(5–6):289–298

    Article  PubMed  Google Scholar 

  • Mansour MMF, Ali EF (2017) Evaluation of proline functions in saline conditions. Phytochemistry 140:52–68

    Article  CAS  PubMed  Google Scholar 

  • Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232(2):533–543

    Article  CAS  PubMed  Google Scholar 

  • Matysik J, Alia, Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572

    Article  CAS  PubMed  Google Scholar 

  • Measures J (1975) Role of amino acids in osmoregulation of non-halophilic bacteria. Nature 257(5525):398

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74(2):533–542

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Nawaz S (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol 63(1):225–232

    Article  CAS  Google Scholar 

  • Omar S, Abdel-Sater M, Khallil A, Abd-Alla M (1994) Growth and enzyme activities of fungi and bacteria in soil salinized with sodium chloride. Folia Microbiol 39(1):23–28

    Article  CAS  Google Scholar 

  • Ondrasek G, Rengel Z, Romic D, Savic R (2010) Environmental salinisation processes in agro-ecosystem of Neretva River estuary. Növénytermelés 59(Supplement):223–226

    Google Scholar 

  • Perroud B, Le Rudulier D (1985) Glycine betaine transport in Escherichia coli: osmotic modulation. J Bacteriol 161(1):393–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pessarakli M (2016) Handbook of plant and crop stress. CRC Press, Boca raton

    Book  Google Scholar 

  • Phang JM (1985) The regulatory functions of proline and pyrroline-5-carboxylic acid. Curr Top Cell Regul 25:91–132

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55(403):1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Qurashi AW, Sabri AN (2013) Osmolyte accumulation in moderately halophilic bacteria improves salt tolerance of chickpea. Pak J Bot 45:1011–1016

    CAS  Google Scholar 

  • Rabie G (2005) Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza 15(3):225–230

    Article  CAS  PubMed  Google Scholar 

  • Rayapati PJ, Stewart CR, Hack E (1989) Pyrroline-5-carboxylate reductase is in pea (Pisum sativum L.) leaf chloroplasts. Plant Physiol 91(2):581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Requena JR, Chao C-C, Levine RL, Stadtman ER (2001) Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci 98(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Roosens NH, Thu TT, Iskandar HM, Jacobs M (1998) Isolation of the ornithine-δ-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol 117(1):263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rustgi S, Joshi A, Moss H, Riesz P (1977) ESR of spin-trapped radicals in aqueous solutions of amino acids: reactions of the hydroxyl radical. Int J Radiat Biol Relat Stud Phys Chem Med 31(5):415–440

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28(4):1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30

    Google Scholar 

  • Sannazzaro AI, Ruiz OA, Albertó EO, Menéndez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285(1):279–287

    Article  CAS  Google Scholar 

  • Saradhi PP, Mohanty P (1997) Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J Photochem Photobiol B Biol 38(2–3):253–257

    Google Scholar 

  • Saradhi PP, AliaArora S, Prasad K (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation. Biochem Biophys Res Commun 209(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Oshima A, Ishida A, Nagata S (2013) Effect of overexpression of proline dehydrogenase on high saline adaptation through proline utilization in Escherichia coli. Afr J Microbiol Res 7(3):245–251

    CAS  Google Scholar 

  • Seckin B, Sekmen AH, Türkan I (2009) An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J Plant Growth Regul 28(1):12

    Article  CAS  Google Scholar 

  • Selvakumar G, Kim K, Hu S, Sa T (2014) Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in alleviation of salt stress. In: Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, pp 115–144

    Google Scholar 

  • Serraj R, Sinclair T (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25(2):333–341

    Article  PubMed  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164(9):1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157(1):292–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31(2):195–206

    Article  CAS  Google Scholar 

  • Singh S (2014) A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 117(5):1221–1244. https://doi.org/10.1111/jam.12612

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26(1):49–71

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28(4):1057–1060

    Article  CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30(4):205–240

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Szoke A, Miao G-H, Hong Z, Verma DPS (1992) Subcellular location of δ1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol 99(4):1642–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabur S, Demir K (2010) Role of some growth regulators on cytogenetic activity of barley under salt stress. Plant Growth Regul 60(2):99–104

    Article  CAS  Google Scholar 

  • Trelstad RL, Lawley KR, Holmes LB (1981) Nonenzymatic hydroxylations of proline and lysine by reduced oxygen derivatives. Nature 289(5795):310–312

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AK, Nagarajan T, Verma SC, Le Rudulier D (2002) Inhibition of biosynthesis and activity of nitrogenase in Azospirillum brasilense Sp7 under salinity stress. Curr Microbiol 44(5):363–367

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay S, Singh J, Singh D (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21(2):214–222

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14(4):605–611

    Article  CAS  PubMed  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56(11):1274–1288

    Article  CAS  PubMed  Google Scholar 

  • Van Loon L (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119(3):243–254

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Whatmore AM, Reed RH (1990) Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. Microbiology 136(12):2521–2526

    CAS  Google Scholar 

  • Wu JT, Hsieh MT, Kow LC (1998) Role of proline accumulation in response to toxic copper in Chlorella sp. (Chlorophyceae) cells. J Phycol 34(1):113–117

    Article  Google Scholar 

  • Yang S-L, Lan S-S, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol 166(15):1694–1699

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46(1):49–54

    Article  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7(5):751–760

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:32467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarea M, Hajinia S, Karimi N, Goltapeh EM, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–146

    Article  CAS  Google Scholar 

  • Zhang H, Kim M-S, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21(6):737–744

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Strategic Initiative for Microbiomes in Agriculture and Food, Ministry of Agriculture (914004-4), Food and Rural Affairs, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongmin Sa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, S. et al. (2019). The Role of Plant Growth-Promoting Rhizobacteria to Modulate Proline Biosynthesis in Plants for Salt Stress Alleviation. In: Sayyed, R., Arora, N., Reddy, M. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-13-6536-2_1

Download citation

Publish with us

Policies and ethics