Skip to main content

Nanostructures and Nanomaterials for Solid-State Batteries

  • Chapter
  • First Online:
Book cover Nanostructures and Nanomaterials for Batteries

Abstract

(All-)solid-state batteries promise higher energy densities, longer shelf life, and lower packaging cost than batteries with conventional liquid electrolytes. The fast development of superionic conductors flourishes the studies on all-solid-state batteries, and therefore the history and general knowledge about solid-state electrolytes (SSEs) are firstly summarized in this chapter. And then, more attentions are paid to the application of nanostructures and nanomaterials to deal with the incompatibility between electrode and SSEs and the limited kinetic process in composite electrodes. Last but not the least, an overall consideration on constructing all-solid-state batteries including temperature and stress is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SSEs:

Solid-state electrolytes

LGPS:

Li10Ge2PS12

PEO:

Poly(ethylene oxide)

PAN:

Poly(acrylonitrile)

PMMA:

Poly(methyl methacrylate)

PVDF:

Poly(vinylidene fluoride)

PVDF-HFP:

Poly(vinylidene fluoride-hexafluoropropylene)

LiTFSI:

Lithium bis(trifluoromethanesulfonyl)imide

LiPON:

Lithium phosphorus oxynitride

LISICON:

Li+ super ion conductor

NASICON:

Na+ super ion conductor

LLTO:

Li0.33La0.56TiO3

LATP:

Li1.3Al0.3Ti1.7(PO4)3

LAGP:

Li1.3Al0.3Ge1.7(PO4)3

LLZO:

Li7La3Zr2O12

LSV:

Linear sweep voltammetry

CV:

Cyclic voltammetry

EIS:

Electrochemical impedance spectroscopy

NCM:

Lithium nickel cobalt manganese oxide

NCA:

Lithium nickel cobalt aluminum oxide

LCO:

LiCoO2

rGO:

Reduced graphene oxide

CNT:

Carbon nanotube

LIBs:

Lithium ion batteries

AFM:

Atomic force microscopy

References

  1. Kamaya, N., Homma, K., Yamakawa, Y., et al. (2011). A lithium superionic conductor. Nature Materials, 10, 682–686.

    Article  CAS  Google Scholar 

  2. Hull, S. (2004). Superionics: Crystal structures and conduction processes. Reports on Progress in Physics, 67, 1233–1314.

    Article  CAS  Google Scholar 

  3. Owens, B. B., & Argue, G. R. (1967). High conductivity solid electrolytes-MAg4I5. Science, 157, 308–310.

    Article  CAS  Google Scholar 

  4. Bradley, J. N., & Greene, P. D. (1967). Solids with high ionic conductivity in group 1 halide systems. Transactions of the Faraday Society, 63, 424–430.

    Article  CAS  Google Scholar 

  5. Chen, C.-C., Fu, L., & Maier, J. (2016). Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature, 536, 159–164.

    Article  CAS  Google Scholar 

  6. Whitting, M. S., & Huggins, R. A. (1971). Measurement of sodium ion transport in beta alumina using reversible solid electrodes. Journal of Chemical Physics, 54, 414–416.

    Google Scholar 

  7. Whittingham, M. S., & Huggins, R. A. (1971). Transport properties of silver beta-alumina. Journal of the Electrochemical Society, 118, 1–6.

    Article  CAS  Google Scholar 

  8. Bachman, J. C., Muy, S., Grimaud, A., et al. (2016). Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chemical Reviews, 116, 140–162.

    Article  CAS  Google Scholar 

  9. Fenton, D. E., Parker, J. M., & Wright, P. V. (1973). Complexes of alkali-metal ions with poly(ethylene oxide). Polymer, 14, 589–589.

    Google Scholar 

  10. Armand, M. (1994). The history of polymer electrolytes. Solid State Ionics, 69, 309–319.

    Article  CAS  Google Scholar 

  11. Meyer, W. H. (1998). Polymer electrolytes for lithium-ion batteries. Advanced Materials, 10, 439–448.

    Article  CAS  Google Scholar 

  12. Croce, F., Appetecchi, G. B., Persi, L., et al. (1998). Nanocomposite polymer electrolytes for lithium batteries. Nature, 394, 456–458.

    Article  CAS  Google Scholar 

  13. Chazalviel, J. N. (1990). Electrochemical aspects of the generation of ramifield metallic electrodeposits. Physical Review A, 42, 7355–7367.

    Article  CAS  Google Scholar 

  14. Bouchet, R., Maria, S., Meziane, R., et al. (2013). Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature Materials, 12, 452–457.

    Article  CAS  Google Scholar 

  15. Seino, Y., Ota, T., Takada, K., et al. (2014). A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy & Environmental Science, 7, 627–631.

    Article  CAS  Google Scholar 

  16. Li, J., Ma, C., Chi, M., et al. (2015). Solid electrolyte: The key for high-voltage lithium batteries. Advanced Energy Materials, 5, 1401408.

    Article  CAS  Google Scholar 

  17. Bates, J. B., Dudney, N. J., Gruzalski, G. R., et al. (1992). Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics, 53–56, 647–654.

    Article  Google Scholar 

  18. Kanno, R., Hata, T., Kawamoto, Y., et al. (2000). Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system. Solid State Ionics, 130, 97–104.

    Article  CAS  Google Scholar 

  19. Hong, H. Y. P. (1978). Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Materials Research Bulletin, 13, 117–124.

    Article  CAS  Google Scholar 

  20. Kato, Y., Hori, S., Saito, T., et al. (2016). High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy, 1, 16030.

    Article  CAS  Google Scholar 

  21. Goodenough, J. B., Hong, H. Y. P., & Kafalas, J. A. (1976). Fast Na +-ion transport in skeleton structures. Materials Research Bulletin, 11, 203–220.

    Article  CAS  Google Scholar 

  22. Inaguma, Y., Liquan, C., Itoh, M., et al. (1993). High ionic conductivity in lithium lanthanum titanate. Solid State Communications, 86, 689–693.

    Article  CAS  Google Scholar 

  23. Murugan, R., Thangadurai, V., & Weppner, W. (2007). Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition, 46, 7778–7781.

    Article  CAS  Google Scholar 

  24. Aono, H., Sugimoto, E., Sadaoka, Y., et al. (1990). Ionic conductivity of solid electrolytes based on lithium titanium phosphate. Journal of the Electrochemical Society, 137, 1023–1027.

    Article  CAS  Google Scholar 

  25. Blanchard, D., Nale, A., Sveinbjörnsson, D., et al. (2015). Nanoconfined LiBH4 as a fast lithium ion conductor. Advanced Functional Materials, 25, 184–192.

    Article  CAS  Google Scholar 

  26. Boukamp, B. A., & Huggins, R. A. (1978). Fast ionic conductivity in lithium nitride. Materials Research Bulletin, 13, 23–32.

    Article  CAS  Google Scholar 

  27. He, X., Zhu, Y., & Mo, Y. (2017). Origin of fast ion diffusion in super-ionic conductors. Nature Communications, 8, 15893.

    Article  CAS  Google Scholar 

  28. Zugmann, S., Fleischmann, M., Amereller, M., et al. (2011). Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta, 56, 3926–3933.

    Article  CAS  Google Scholar 

  29. Hebb, M. H. (1952). Electrical conductivity of silver sulfide. The Journal of Chemical Physics, 20, 185–190.

    Article  CAS  Google Scholar 

  30. Wagner, C. (1953). Investigations on silver sulfide. The Journal of Chemical Physics, 21, 1819–1827.

    Article  CAS  Google Scholar 

  31. Sata, N., Eberman, K., Eberl, K., et al. (2000). Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature, 408, 946–949.

    Article  CAS  Google Scholar 

  32. Guo, Y.-G., Hu, Y.-S., Lee, J.-S., et al. (2006). High-performance rechargeable all-solid-state silver battery based on superionic AgI nanoplates. Electrochemistry Communications, 8, 1179–1184.

    Article  CAS  Google Scholar 

  33. Maekawa, H., Iwatani, T., Shen, H., et al. (2008). Enhanced lithium ion conduction and the size effect on interfacial phase in Li2ZnI4–mesoporous alumina composite electrolyte. Solid State Ionics, 178, 1637–1641.

    Article  CAS  Google Scholar 

  34. Maekawa, H., Tanaka, R., Sato, T., et al. (2004). Size-dependent ionic conductivity observed for ordered mesoporous alumina-LiI composite. Solid State Ionics, 175, 281–285.

    Article  CAS  Google Scholar 

  35. Guo, X. (2011). Can we achieve significantly higher ionic conductivity in nanostructured zirconia? Scripta Materialia, 65, 96–101.

    Article  CAS  Google Scholar 

  36. Hu, Y. W., Raistrick, I. D., & Huggins, R. A. (1977). Ionic Conductivity of lithium orthosilicate—lithium phosphate solid solutions. Journal of the Electrochemical Society, 124, 1240–1242.

    Article  CAS  Google Scholar 

  37. Rodger, A. R., Kuwano, J., & West, A. R. (1985). Li+ ion conducting γ solid solutions in the systems Li4XO4-Li3YO4: X = Si, Ge, Ti; Y = P, As, V; Li4XO4-LiZO2: Z = Al, Ga, Cr and Li4GeO4-Li2CaGeO4. Solid State Ionics, 15, 185–198.

    Article  CAS  Google Scholar 

  38. Kanno, R., & Maruyama, M. (2001). Lithium ionic conductor thio-LISICON—The Li2S-GeS2-P2S5 system. Journal of the Electrochemical Society, 148, A742–A746.

    Article  CAS  Google Scholar 

  39. Takada, K., Inada, T., Kajiyama, A., et al. (2003). Solid-state lithium battery with graphite anode. Solid State Ionics, 158, 269–274.

    Article  CAS  Google Scholar 

  40. Weber, D. A., Senyshyn, A., Weldert, K. S., et al. (2016). Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12. Chemistry of Materials, 28, 5905–5915.

    Article  CAS  Google Scholar 

  41. Bron, P., Johansson, S., Zick, K., et al. (2013). Li10SnP2S12: An affordable lithium superionic conductor. Journal of the American Chemical Society, 135, 15694–15697.

    Article  CAS  Google Scholar 

  42. Deiseroth, H.-J., Kong, S.-T., Eckert, H., et al. (2008). Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility. Angewandte Chemie International Edition, 47, 755–758.

    Article  CAS  Google Scholar 

  43. Kraft, M. A., Culver, S. P., Calderon, M., et al. (2017). Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). Journal of the American Chemical Society, 139, 10909–10918.

    Article  CAS  Google Scholar 

  44. Yu, C., Ganapathy, S., de Klerk, N. J. J., et al. (2016). Unravelling Li-Ion Transport from picoseconds to seconds: Bulk versus interfaces in an argyrodite Li6PS5Cl–Li2S All-solid-state Li-Ion battery. Journal of the American Chemical Society, 138, 11192–11201.

    Article  CAS  Google Scholar 

  45. Aono, H., Sugimoto, E., Sadaoka, Y., et al. (1993). The electrical properties of ceramic electrolytes for LiM x Ti2 − x ( PO 4) 3+ yLi2 O, M = Ge, Sn, Hf, and Zr systems. Journal of the Electrochemical Society, 140, 1827–1833.

    Article  CAS  Google Scholar 

  46. Aono, H., Sugimoto, E., Sadaoka, Y., et al. (1991). Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3). Solid State Ionics, 47, 257–264.

    Article  CAS  Google Scholar 

  47. Adachi, G.-Y., Imanaka, N., & Aono, H. (1996). Fast Li conducting ceramic electrolytes. Advanced Materials, 8, 127–135.

    Google Scholar 

  48. Thangadurai, V., Kaack, H., & Weppner, W. J. F. (2003). Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). Journal of the American Ceramic Society, 86, 437–440.

    Article  CAS  Google Scholar 

  49. Awaka, J., Kijima, N., Takahashi, Y., et al. (2009). Synthesis and crystallographic studies of garnet-related lithium-ion conductors Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12. Solid State Ionics, 180, 602–606.

    Article  CAS  Google Scholar 

  50. Thangadurai, V., Narayanan, S., & Pinzaru, D. (2014). Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chemical Society Reviews, 43, 4714–4727.

    Google Scholar 

  51. Geiger, C. A., Alekseev, E., Lazic, B., et al. (2011). Crystal chemistry and stability of “Li7La3Zr2O12” Garnet: A fast lithium-ion conductor. Inorganic Chemistry, 50, 1089–1097.

    Article  CAS  Google Scholar 

  52. Bernuy-Lopez, C., Manalastas, W., del Amo, J. M. L., et al. (2014). Atmosphere controlled processing of Ga-substituted garnets for high Li-Ion conductivity ceramics. Chemistry of Materials, 26, 3610–3617.

    Article  CAS  Google Scholar 

  53. Li, Y., Han, J.-T., Wang, C.-A., et al. (2012). Optimizing Li+ conductivity in a garnet framework. Journal of Materials Chemistry, 22, 15357–15361.

    Article  CAS  Google Scholar 

  54. Unemoto, A., Matsuo, M., & Orimo, S.-I. (2014). Complex hydrides for electrochemical energy storage. Advanced Functional Materials, 24, 2267–2279.

    Article  CAS  Google Scholar 

  55. Maekawa, H., Matsuo, M., Takamura, H., et al. (2009). Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. Journal of the American Chemical Society, 131, 894–895.

    Article  CAS  Google Scholar 

  56. Matsuo, M., Remhof, A., Martelli, P., et al. (2009). Complex hydrides with (BH4)− and (NH2)−anions as new lithium fast-ion conductors. Journal of the American Chemical Society, 131, 16389–16391.

    Article  CAS  Google Scholar 

  57. Friedrichs, O., Remhof, A., Hwang, S. J., et al. (2010). Role of Li2B12H12 for the formation and decomposition of LiBH4. Chemistry of Materials, 22, 3265–3268.

    Article  CAS  Google Scholar 

  58. Zhao, Y., & Daemen, L. L. (2012). Superionic conductivity in lithium-rich anti-perovskites. Journal of the American Chemical Society, 134, 15042–15047.

    Article  CAS  Google Scholar 

  59. Emly, A., Kioupakis, E., & Van der Ven, A. (2013). Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors. Chemistry of Materials, 25, 4663–4670.

    Article  CAS  Google Scholar 

  60. Braga, M. H., Murchison, A. J., Ferreira, J. A., et al. (2016). Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells. Energy & Environmental Science, 9, 948–954.

    Article  CAS  Google Scholar 

  61. Braga, M. H., Ferreira, J. A., Stockhausen, V., et al. (2014). Novel Li3ClO based glasses with superionic properties for lithium batteries. Journal of Materials Chemistry A, 2, 5470–5480.

    Article  CAS  Google Scholar 

  62. Braga, M. H., Grundish, N. S., Murchison, A. J., et al. (2017). Alternative strategy for a safe rechargeable battery. Energy & Environmental Science, 10, 331–336.

    Article  CAS  Google Scholar 

  63. Fang, H., & Jena, P. (2017). Li-rich antiperovskite superionic conductors based on cluster ions. Proceedings of the National Academy of Sciences, 114, 11046–11051.

    Article  CAS  Google Scholar 

  64. Steingart, D. A., & Viswanathan, V. (2018). Comment on “Alternative strategy for a safe rechargeable battery” by M. H. Braga, N. S. Grundish, A. J. Murchison, & J. B. Goodenough. (2017). Energy & Environmental Science, 10, 331–336. Energy & Environmental Science, 11, 221–222.

    Google Scholar 

  65. Braga, M. H., Subramaniyam, C. M., Murchison, A. J., et al. (2018). Nontraditional, safe, high voltage rechargeable cells of long cycle life. Journal of the American Chemical Society, 140, 6343–6352.

    Article  CAS  Google Scholar 

  66. Groce, F., Gerace, F., Dautzemberg, G., et al. (1994). Synthesis and characterization of highly conducting gel electrolytes. Electrochimica Acta, 39, 2187–2194.

    Article  Google Scholar 

  67. Dautzenberg, G., Croce, F., Passerini, S., et al. (1994). Characterization of PAN-based gel electrolytes. electrochemical stability and lithium cyclability. Chemistry of Materials, 6, 538–542.

    Article  CAS  Google Scholar 

  68. Appetecchi, G. B., Croce, F., & Scrosati, B. (1995). Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochimica Acta, 40, 991–997.

    Article  CAS  Google Scholar 

  69. Choe, H. S., Giaccai, J., Alamgir, M., et al. (1995). Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes. Electrochimica Acta, 40, 2289–2293.

    Article  CAS  Google Scholar 

  70. Muramatsu, H., Hayashi, A., Ohtomo, T., et al. (2011). Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics, 182, 116–119.

    Article  CAS  Google Scholar 

  71. Sahu, G., Lin, Z., Li, J., et al. (2014). Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy & Environmental Science, 7, 1053–1058.

    Article  CAS  Google Scholar 

  72. Busche, M. R., Weber, D. A., Schneider, Y., et al. (2016). In situ monitoring of fast Li-Ion conductor Li7P3S11 crystallization inside a hot-press setup. Chemistry of Materials, 28, 6152–6165.

    Article  CAS  Google Scholar 

  73. Buschmann, H., Dolle, J., Berendts, S., et al. (2011). Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Physical Chemistry Chemical Physics, 13, 19378–19392.

    Article  CAS  Google Scholar 

  74. Sharafi, A., Kazyak, E., Davis, A. L., et al. (2017). Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chemistry of Materials, 29, 7961–7968.

    Article  CAS  Google Scholar 

  75. Han, X., Gong, Y., Fu, K., et al. (2016). Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature Materials, 16, 572–579.

    Article  CAS  Google Scholar 

  76. Hartmann, P., Leichtweiss, T., Busche, M. R., et al. (2013). Degradation of NASICON-type materials in contact with lithium metal: Formation of mixed conducting interphases (MCI) on solid electrolytes. The Journal of Physical Chemistry C, 117, 21064–21074.

    Article  CAS  Google Scholar 

  77. Han, F., Zhu, Y., He, X., et al. (2016). Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes. Advanced Energy Materials, 6, 1501590.

    Article  CAS  Google Scholar 

  78. Han, F., Gao, T., Zhu, Y., et al. (2015). A battery made from a single material. Advanced Materials, 27, 3473–3483.

    Article  CAS  Google Scholar 

  79. Tian, Y., Shi, T., Richards, W. D., et al. (2017). Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy & Environmental Science, 10, 1150–1166.

    Article  CAS  Google Scholar 

  80. Richards, W. D., Miara, L. J., Wang, Y., et al. (2016). Interface stability in solid-state batteries. Chemistry of Materials, 28, 266–273.

    Article  CAS  Google Scholar 

  81. Luo, W., Gong, Y., Zhu, Y., et al. (2017). Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Advanced Materials, 29, 1606042.

    Article  CAS  Google Scholar 

  82. Fu, K., Gong, Y., Fu, Z., et al. (2017). Transient behavior of the metal interface in lithium metal-garnet batteries. Angewandte Chemie International Edition, 56, 14942–14947.

    Article  CAS  Google Scholar 

  83. Reinacher, J., Berendts, S., & Janek, J. (2014). Preparation and electrical properties of garnet-type Li6BaLa2Ta2O12 lithium solid electrolyte thin films prepared by pulsed laser deposition. Solid State Ionics, 258, 1–7.

    Article  CAS  Google Scholar 

  84. Duan, H., Yin, Y.-X., Shi, Y., et al. (2018). Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. Journal of the American Chemical Society, 140, 82–85.

    Article  CAS  Google Scholar 

  85. Luntz, A. C., Voss, J., & Reuter, K. (2015). Interfacial challenges in solid-state Li ion batteries. Journal of Physical Chemistry Letters, 6, 4599–4604.

    Article  CAS  Google Scholar 

  86. Zhou, W., Wang, S., Li, Y., et al. (2016). Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. Journal of the American Chemical Society, 138, 9385–9388.

    Article  CAS  Google Scholar 

  87. Grey, C. P., & Tarascon, J. M. (2016). Sustainability and in situ monitoring in battery development. Nature Materials, 16, 45–56.

    Article  CAS  Google Scholar 

  88. Irvine, J. T. S., Sinclair, D. C., & West, A. R. (1990). Electroceramics: Characterization by impedance spectroscopy. Advanced Materials, 2, 132–138.

    Article  CAS  Google Scholar 

  89. Evans, J., Vincent, C. A., & Bruce, P. G. (1987). Electrochemical measurement of transference numbers in polymer electrolytes. Polymer, 28, 2324–2328.

    Article  CAS  Google Scholar 

  90. Lin, Z., Liu, Z., Dudney, N. J., et al. (2013). Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano, 7, 2829–2833.

    Article  CAS  Google Scholar 

  91. Zhu, Z., Hong, M., Guo, D., et al. (2014). All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. Journal of the American Chemical Society, 136, 16461–16464.

    Article  CAS  Google Scholar 

  92. Yin, Y.-X., Xin, S., Guo, Y.-G., et al. (2013). Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angewandte Chemie International Edition, 52, 13186–13200.

    Article  CAS  Google Scholar 

  93. Yao, X., Huang, N., Han, F., et al. (2017). High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Advanced Energy Materials, 7, 1602923.

    Article  CAS  Google Scholar 

  94. Yue, J., Yan, M., Yin, Y. -X., et al. Progress of the interface design in all-solid-state Li–S batteries. Advanced Functional Materials 1707533.

    Google Scholar 

  95. Kobayashi, T., Imade, Y., Shishihara, D., et al. (2008). All solid-state battery with sulfur electrode and thio-LISICON electrolyte. Journal of Power Sources, 182, 621–625.

    Article  CAS  Google Scholar 

  96. Han, F., Yue, J., Fan, X., et al. (2016). High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Letters, 16, 4521–4527.

    Article  CAS  Google Scholar 

  97. Yao, X., Liu, D., Wang, C., et al. (2016). High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Letters, 16, 7148–7154.

    Article  CAS  Google Scholar 

  98. Lin, Z., Liu, Z., Fu, W., et al. (2013). Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium–sulfur batteries. Angewandte Chemie International Edition, 52, 7460–7463.

    Article  CAS  Google Scholar 

  99. Tanibata, N., Tsukasaki, H., Deguchi, M., et al. (2017). A novel discharge-charge mechanism of a S-P2S5 composite electrode without electrolytes in all-solid-state Li/S batteries. Journal of Materials Chemistry A, 5, 11224–11228.

    Article  CAS  Google Scholar 

  100. Unemoto, A., Ikeshoji, T., Yasaku, S., et al. (2015). Stable interface formation between TiS2 and LiBH4 in bulk-type all-solid-state lithium batteries. Chemistry of Materials, 27, 5407–5416.

    Article  CAS  Google Scholar 

  101. Kim, S., Toyama, N., Oguchi, H., et al. (2018). Fast lithium-ion conduction in atom-deficient closo-type complex hydride solid electrolytes. Chemistry of Materials, 30, 386–391.

    Article  CAS  Google Scholar 

  102. Fu, K., Gong, Y., Hitz, G. T., et al. (2017). Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries. Energy & Environmental Science, 10, 1568–1575.

    Article  CAS  Google Scholar 

  103. Tao, X., Liu, Y., Liu, W., et al. (2017). Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Letters, 17, 2967–2972.

    Article  CAS  Google Scholar 

  104. Xu, G., Kushima, A., Yuan, J., et al. (2017). Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium–sulfur batteries. Energy & Environmental Science, 10, 2544–2551.

    Article  CAS  Google Scholar 

  105. Abraham, K. M., & Jiang, Z. (1996). A polymer electrolyte-based rechargeable lithium/oxygen battery. Journal of the Electrochemical Society, 143, 1–5.

    Article  CAS  Google Scholar 

  106. Hassoun, J., Croce, F., Armand, M., et al. (2011). Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angewandte Chemie International Edition, 50, 2999–3002.

    Article  CAS  Google Scholar 

  107. Kumar, B., Kumar, J., Leese, R., et al. (2010). A solid-state, rechargeable, long cycle life lithium-air battery. Journal of the Electrochemical Society, 157, A50–A54.

    Article  CAS  Google Scholar 

  108. Kitaura, H., & Zhou, H. (2012). Electrochemical performance and reaction mechanism of all-solid-state lithium–air batteries composed of lithium, Li1+xAlyGe2−y(PO4)3 solid electrolyte and carbon nanotube air electrode. Energy & Environmental Science, 5, 9077–9084.

    Article  CAS  Google Scholar 

  109. Bruce, P. G., Freunberger, S. A., Hardwick, L. J., et al. (2011). Li–O2 and Li–S batteries with high energy storage. Nature Materials, 11, 19–29.

    Article  CAS  Google Scholar 

  110. Li, F., Kitaura, H., & Zhou, H. (2013). The pursuit of rechargeable solid-state Li–air batteries. Energy & Environmental Science, 6, 2302–2311.

    Article  CAS  Google Scholar 

  111. Koerver, R., Aygün, I., Leichtweiß, T., et al. (2017). Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chemistry of Materials, 29, 5574–5582.

    Article  CAS  Google Scholar 

  112. Miyashiro, H., Kobayashi, Y., Seki, S., et al. (2005). Fabrication of all-solid-state lithium polymer secondary batteries using Al2O3-coated LiCoO2. Chemistry of Materials, 17, 5603–5605.

    Article  CAS  Google Scholar 

  113. Liang, J.-Y., Zeng, X.-X., Zhang, X.-D., et al. (2018). Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries. Journal of the American Chemical Society, 140, 6767–6770.

    Article  CAS  Google Scholar 

  114. Woo, J. H., Trevey, J. E., Cavanagh, A. S., et al. (2012). Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for solid-state Li batteries. Journal of the Electrochemical Society, 159, A1120–A1124.

    Article  CAS  Google Scholar 

  115. Okumura, T., Nakatsutsumi, T., Ina, T., et al. (2011). Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode–solid electrolyte interface for all solid state lithium ion batteries. Journal of Materials Chemistry, 21, 10051–10060.

    Article  CAS  Google Scholar 

  116. Zhang, W., Leichtweiß, T., Culver, S. P., et al. (2017). The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Applied Materials & Interfaces, 9, 35888–35896.

    Article  CAS  Google Scholar 

  117. Park, K., Yu, B.-C., Jung, J.-W., et al. (2016). Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12. Chemistry of Materials, 28, 8051–8059.

    Article  CAS  Google Scholar 

  118. Han, F., Yue, J., Chen, C., et al. (2018). interphase engineering enabled all-ceramic lithium battery. Joule, 2, 497–508.

    Article  CAS  Google Scholar 

  119. Dong, T., Zhang, J., Xu, G., et al. (2018). A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy & Environmental Science, 11, 1197–1203.

    Article  CAS  Google Scholar 

  120. Wakayama, H., Yonekura, H., & Kawai, Y. (2016). Three-dimensional bicontinuous nanocomposite from a self-assembled block copolymer for a high-capacity all-solid-state lithium battery cathode. Chemistry of Materials, 28, 4453–4459.

    Article  CAS  Google Scholar 

  121. Liu, F. -Q., Wang, W. -P., Yin, Y. -X., et al. (2018). Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Science Advances, 4, eaat5383.

    Article  Google Scholar 

  122. Dong, W., Zeng, X.-X., Zhang, X.-D., et al. (2018). Gradiently polymerized solid electrolyte meets with micro-/nanostructured cathode array. ACS Applied Materials & Interfaces, 10, 18005–18011.

    Article  CAS  Google Scholar 

  123. Oh, D. Y., Kim, D. H., Jung, S. H., et al. (2017). Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. Journal of Materials Chemistry A, 5, 20771–20779.

    Article  CAS  Google Scholar 

  124. Park, K. H., Oh, D. Y., Choi, Y. E., et al. (2016). Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-Ion batteries. Advanced Materials, 28, 1874–1883.

    Article  CAS  Google Scholar 

  125. Monroe, C., & Newman, J. (2005). The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of the Electrochemical Society, 152, A396–A404.

    Article  CAS  Google Scholar 

  126. Monroe, C., & Newman, J. (2004). The effect of interfacial deformation on electrodeposition kinetics. Journal of the Electrochemical Society, 151, A880–A886.

    Article  CAS  Google Scholar 

  127. Zeng, X.-X., Yin, Y.-X., Li, N.-W., et al. (2016). Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. Journal of the American Chemical Society, 138, 15825–15828.

    Article  CAS  Google Scholar 

  128. Zekoll, S., Marriner-Edwards, C., Hekselman, A. K. O., et al. (2018). Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy & Environmental Science, 11, 185–201.

    Article  CAS  Google Scholar 

  129. Fu, K., Gong, Y., Dai, J., et al. (2016). Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proceedings of the National Academy of Sciences, 113, 7094–7099.

    Article  CAS  Google Scholar 

  130. Bai, P., Li, J., Brushett, F. R., et al. (2016). Transition of lithium growth mechanisms in liquid electrolytes. Energy & Environmental Science, 9, 3221–3229.

    Article  CAS  Google Scholar 

  131. Zhao, C.-Z., Zhang, X.-Q., Cheng, X.-B., et al. (2017). An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proceedings of the National Academy of Sciences, 114, 11069–11074.

    Article  CAS  Google Scholar 

  132. Wang, S., Xu, H., Li, W., et al. (2018). Interfacial chemistry in solid-state batteries: Formation of interphase and its consequences. Journal of the American Chemical Society, 140, 250–257.

    Article  CAS  Google Scholar 

  133. Porz, L., Swamy, T., Sheldon, B. W., et al. (2017). Mechanism of lithium metal penetration through inorganic solid electrolytes. Advanced Energy Materials, 7, 1701003.

    Article  CAS  Google Scholar 

  134. Sharafi, A., Haslam, C. G., Kerns, R. D., et al. (2017). Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. Journal of Materials Chemistry A, 5, 21491–21504.

    Article  CAS  Google Scholar 

  135. Sharafi, A., Meyer, H. M., Nanda, J., et al. (2016). Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. Journal of Power Sources, 302, 135–139.

    Article  CAS  Google Scholar 

  136. Kerman, K., Luntz, A., Viswanathan, V., et al. (2017). Review-practical challenges hindering the development of solid state Li ion batteries. Journal of the Electrochemical Society, 164, A1731–A1744.

    Article  CAS  Google Scholar 

  137. Han, F., Westover, A. S., Yue, J., et al. (2019). High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nature Energy, 4, 187–196.

    Article  CAS  Google Scholar 

  138. Fan, X., Ji, X., Han, F., et al. (2018). Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Science Advances, 4, eaau9245.

    Article  Google Scholar 

  139. Yang, C., Zhang, L., Liu, B., et al. (2018). Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proceedings of the National Academy of Sciences, 115, 3770–3775.

    Article  CAS  Google Scholar 

  140. Tanibata, N., Deguchi, M., Hayashi, A., et al. (2017). All-solid-state Na/S batteries with a Na3PS4 electrolyte operating at room temperature. Chemistry of Materials, 29, 5232–5238.

    Article  CAS  Google Scholar 

  141. Gao, H., Xin, S., Xue, L., et al. (2018). Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte. Chem, 4, 833–844.

    Article  CAS  Google Scholar 

  142. Zhao, C., Liu, L., Qi, X., et al. (2018). Solid-state sodium batteries. Advanced Energy Materials, 8, 1703012.

    Article  CAS  Google Scholar 

  143. Gao, H., Xue, L., Xin, S., et al. (2018). A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angewandte Chemie International Edition, 57, 5449–5453.

    Article  CAS  Google Scholar 

  144. Liu, B., Fu, K., Gong, Y., et al. (2017). Rapid thermal annealing of cathode-garnet interface toward high-temperature solid state batteries. Nano Letters, 17, 4917–4923.

    Article  CAS  Google Scholar 

  145. Jin, Y., Liu, K., Lang, J., et al. (2018). An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nature Energy, 3, 732–738.

    Article  CAS  Google Scholar 

  146. Kato, A., Yamamoto, M., Sakuda, A., et al. (2018). Mechanical properties of Li2S–P2S5 glasses with lithium halides and application in all-solid-state batteries. ACS Applied Energy Materials, 1, 1002–1007.

    Article  CAS  Google Scholar 

  147. Koerver, R., Zhang, W., de Biasi, L., et al. (2018). Chemo-mechanical expansion of lithium electrode materials—On the route to mechanically optimized all-solid-state batteries. Energy & Environmental Science, 11, 2142–2158.

    Article  CAS  Google Scholar 

  148. Chung, H., & Kang, B. (2017). Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell. Chemistry of Materials, 29, 8611–8619.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yue, J., Wang, SH., Guo, YG. (2019). Nanostructures and Nanomaterials for Solid-State Batteries. In: Nanostructures and Nanomaterials for Batteries. Springer, Singapore. https://doi.org/10.1007/978-981-13-6233-0_5

Download citation

Publish with us

Policies and ethics