Skip to main content

DSC Investigations of the Effect of Annealing Temperature on the Phase Transformation Behaviour in (Zr–Ti–Nb)N Coatings Deposited by CA-PVD

  • Conference paper
  • First Online:
Advances in Thin Films, Nanostructured Materials, and Coatings

Abstract

Changes in thermal transformation properties due to annealing and consequent cooling within the temperature ranged from 30 to 1400 °C were studied for (Zr–Ti–Nb)N coatings by differential scanning calorimetry (DSC) measurements in an argon atmosphere. Temperature and phase transformations in investigated coatings occurred in two stages: at intermediate temperature region (>670 °C) and high-temperature region (>1100 °C). There were also noticeable changes in values of heat capacity depending on nitrogen pressure applied during a deposition process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Navinsek B, Seal S (2001) Transition metal nitride functional coatings. JOM 53:51–54. https://doi.org/10.1007/s11837-001-0072-1

    Article  Google Scholar 

  2. Chen JG (1996) Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities. Chem Rev 96:1477–1498. https://doi.org/10.1021/cr950232u

    Article  CAS  Google Scholar 

  3. Pogrebnyak AD, Shpak AP, Azarenkov NA et al (2009) Structures and properties of hard and superhard nanocomposite coatings. Phys Usp 52:29–54. https://doi.org/10.3367/UFNr.0179.200901b.0035

    Article  CAS  Google Scholar 

  4. Pogrebnjak AD, Beresnev VM, Kolesnikov DA et al (2013) Multicomponent (Ti-Zr-Hf-V-Nb)N nanostructure coatings fabrication, high hardness and wear resistance. Acta Phys. Polonica A 123:816–818. https://doi.org/10.12693/APhysPolA.123.816

  5. Pogrebnjak AD, Bor’ba SO, Kravchenko YaO et al (2016) Effect of the high doze of N+ (1018 cm−2) ions implantation into the (TiHfZrVNbTa)N nanostructured coating on its microstructure, elemental and phase compositions, and physico-mechanical properties. J Superhard Mater 38:393–401. https://doi.org/10.3103/S1063457616060034

  6. Maksakova O, Simoẽs S, Pogrebnjak A et al (2018) The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings. Mater Charact 140:189–196. https://doi.org/10.1016/j.matchar.2018.03.048

  7. Pogrebnjak AD, Bazyl EA (2001) Modification of wear and fatigue characteristics of Ti-V-Al alloy by Cu and Ni ion implantation and high-current electron beam treatment. Vacuum 64(1):1–7. https://doi.org/10.1016/S0042-207X(01)00160-9

    Article  CAS  Google Scholar 

  8. Pogrebnjak AD, Beresnev VM, Smyrnova KV et al (2018) The influence of nitrogen pressure on the fabrication of the two-phase superhard nanocomposite (TiZrNbAlYCr)N coatings. Mater Lett 211:316–318. https://doi.org/10.1016/j.matlet.2017.09.121

    Article  CAS  Google Scholar 

  9. Berladir KV, Budnik AO, Dyadyura KA et al (2016) Physicochemical principles of the technology of formation of polymer composite materials based on polytetraflouroethylene – a review. High Temp Mater Process 20(2):157–184. https://doi.org/10.1615/HighTempMatProc2016017875

    Article  Google Scholar 

  10. Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem 11:10757–10816. https://doi.org/10.1039/b907148b

    Article  CAS  Google Scholar 

  11. Ivashchenko VI, Veprek S, Argon AS et al (2015) First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiNx heterostructures, and the achievable hardness of the nc-TiN/SiNx nanocomposites. Thin Solid Films 578:83–92. https://doi.org/10.1016/j.tsf.2015.02.013

    Article  CAS  Google Scholar 

  12. Ivashchenko VI, Veprek S, Turchi PEA et al (2014) First-principles molecular dynamics investigation of thermal and mechanical stability of the TiN(001)/AlN and ZrN(001)/AlN heterostructures. Thin Solid Films 564:284–293. https://doi.org/10.1016/j.tsf.2014.05.036

    Article  CAS  Google Scholar 

  13. Milošev I, Strehblow HH, Navinšek B (1997) Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation. Thin Solid Films 303(1–2):246–254. https://doi.org/10.1016/S0040-6090(97)00069-2

    Article  Google Scholar 

  14. Bondar OV, Postol’nyi BA, Beresnev VM et al (2015) Composition, structure and tribotechnical properties of TiN, MoN single-layer and TiN/MoN multilayer coatings. J. Superhard Mater 37(1):27–38. https://doi.org/10.3103/S1063457615010050

  15. Mercier F, Coindeau S, Lay S et al (2014) Niobium nitride thin films deposited by high temperature chemical vapor deposition. Surf Coatings Technol 260:126–132. https://doi.org/10.1016/j.surfcoat.2014.08.084

    Article  CAS  Google Scholar 

  16. Benkahoul M, Martinez E, Karimi A et al (2004) Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films. Surf Coatings Technol 180–181:178–183. https://doi.org/10.1016/j.surfcoat.2003.10.040

    Article  CAS  Google Scholar 

  17. McIntyre D, Greene JE, Håkansson G et al (1990) Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5 N films: kinetics and mechanisms. J Appl Phys 67:1542–1553. https://doi.org/10.1063/1.345664

    Article  CAS  Google Scholar 

  18. Deeleard T, Buranawong A, Choeysuppaket A et al (2012) Structure and composition of TiVN thin films deposited by reactive DC magnetron co-sputtering. Proc Eng 32:1000–1005. https://doi.org/10.1016/j.proeng.2012.02.045

  19. Cheng YH, Browne T, Heckerman B et al (2010) Mechanical and tribological properties of nanocomposite TiSiN coatings. Surf Coatings Technol 204(14):2123–2129. https://doi.org/10.1016/j.surfcoat.2009.11.034

    Article  CAS  Google Scholar 

  20. Rogström L, Ghafoor N, Schroeder J et al (2015) Thermal stability of wurtzite Zr1-xAlxN coatings studied by in situ high-energy x-ray diffraction during annealing. J Appl Phys 118:035309. https://doi.org/10.1063/1.4927156

    Article  CAS  Google Scholar 

  21. Jiang X, Yang FC, Chen WC et al (2017) Effect of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlSiN thin films prepared by high power impulse magnetron sputtering. Surf Coatings Technol 320:138–145. https://doi.org/10.1016/j.surfcoat.2017.01.085

    Article  CAS  Google Scholar 

  22. Kasiuk JV, Fedotova JA, Koltunowicz TN et al (2014) Correlation between local Fe states and magnetoresistivity in granular films containing FeCoZr nanoparticles embedded into oxygen-free dielectric matrix. J Alloys Compd 586:S432–S435. https://doi.org/10.1016/j.jallcom.2012.09.058

    Article  CAS  Google Scholar 

  23. Boiko O, Koltunowicz TN, Zukowski P et al (2017) The effect of sputtering atmosphere parameters on dielectric properties of the ferromagnetic alloy—ferroelectric ceramics nanocomposite (FeCoZr)x(PbZrTiO3)(100−x). Ceram Int 43(2):2511–2516. https://doi.org/10.1016/j.ceramint.2016.11.052

    Article  CAS  Google Scholar 

  24. Saladukhin IA, Abadias G, Michel A et al (2015) Structure and hardness of quaternary TiZrSiN thin films deposited by reactive magnetron co-sputtering. Thin Solid Films 581:25–31. https://doi.org/10.1016/j.tsf.2014.11.020

  25. Riedl H, Holec D, Rachbauer R et al (2013) Phase stability, mechanical properties and thermal stability of Y alloyed Ti-Al-N coatings. Surf Coatings Technol 235:174–180. https://doi.org/10.1016/j.surfcoat.2013.07.030

    Article  CAS  Google Scholar 

  26. Koller CM, Hollerweger R, Sabitzer C et al (2014) Thermal stability and oxidation resistance of arc evaporated TiAlN, TaAlN, TiAlTaN, and TiAlN/TaAlN coatings. Surf Coatings Technol 259:599–607. https://doi.org/10.1016/j.surfcoat.2014.10.024

    Article  CAS  Google Scholar 

  27. Abadias G, Saladukhin IA, Uglov VV et al (2013) Thermal stability and oxidation behavior of quaternary TiZrAlN magnetron sputtered thin films: Influence of the pristine microstructure. Surf Coatings Technol 237:187–195. https://doi.org/10.1016/j.surfcoat.2013.07.055

    Article  CAS  Google Scholar 

  28. Miletić A, Panjan P, Škorić B et al (2014) Microstructure and mechanical properties of nanostructured Ti-Al-Si-N coatings deposited by magnetron sputtering. Surf Coatings Technol 241:105–111. https://doi.org/10.1016/j.surfcoat.2013.10.050

    Article  CAS  Google Scholar 

  29. Mitterer C (2014) PVD and CVD Hard Coatings. In: Sarin VK, Llanes L, Mari D (eds) Comprehensive Hard Materials, 1st edn, vol 2. Elsevier, pp 449–467. https://doi.org/10.1016/B978-0-08-096527-7.00035-0

  30. Pogrebnjak AD, Lebed AG, Ivanov YF (2001) Modification of single crystal stainless steel structure (Fe-Cr-Ni-Mn) by high-power ion beam. Vacuum 63(4):483–486. https://doi.org/10.1016/S0042-207X(01)00225-1

    Article  CAS  Google Scholar 

  31. Kadyrzhanov DB, Zdorovets MV, Kozlovskiy AL et al (2018) Influence of ionizing irradiation on the parameters of Zn nanotubes arrays for design of flexible electronics elements. Devices Methods Meas 9(1):66–73. https://doi.org/10.21122/2220-9506-2018-9-1-66-73

  32. Beresnev VM, Sobol OV, Grankin SS et al (2016) Physical and mechanical properties of (Ti–Zr–Nb)N coatings fabricated by vacuum-arc deposition. Inorg Mater Appl Res 7(3):388–394

    Article  Google Scholar 

  33. Pogrebnjak A, Maksakova O, Kozak C et al (2016) Physical and mechanical properties of nanostructured (Ti-Zr-Nb)N coatings obtained by vacuum-arc deposition method. Prz Elektrotechniczny (8):180–183. https://doi.org/10.15199/48.2016.08.49

  34. Pogrebnjak AD, Rogoz VM, Bondar OV et al (2016) Structure and physicomechanical properties of NbN-based protective nanocomposite coatings: a review. Prot Met Phys Chem Surfaces 52:802–813. https://doi.org/10.1134/S2070205116050191

    Article  CAS  Google Scholar 

  35. Pogrebnjak AD, Bondar OV, Abadias G et al (2016) Structural and mechanical properties of NbN and Nb-Si-N films: experiment and molecular dynamics simulations. Ceram Int 42(10):11743–11756. https://doi.org/10.1016/j.ceramint.2016.04.095

    Article  CAS  Google Scholar 

  36. Keogh DW (2011) Encyclopedia of inorganic and bioinorganic chemistry. https://doi.org/10.1002/9781119951438

  37. Gribaudo L, Arias D, Abriata J (1994) The N-Zr (Nitrogen-Zirconium) System. J Phase Equilibria 15(4):441–449. https://doi.org/10.1007/BF02647575

    Article  CAS  Google Scholar 

  38. Pogrebnjak AD, Bagdasaryan AA, Yakushchenko IV et al (2014) The structure and properties of high-entropy alloys and nitride coatings based on them. Russ Chem Rev 83(11):1027–1061

    Article  Google Scholar 

  39. Hultman L (2000) Thermal stability of nitride thin films. Vacuum 57(1):1–30. https://doi.org/10.1016/S0042-207X(00)00143-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully to Ministry of Education and Science of Ukraine for financial support (Project No. 0118U003579 and 0117U003923). Authors are very thankful to Prof. A. D. Pogrebnjak from Sumy State University for project supervision and analysis of results and Prof. V. M. Beresnev from V. N. Karazin Kharkiv National University for deposition of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Maksakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maksakova, O.V., Kylyshkanov, M.K., Simoẽs, S. (2019). DSC Investigations of the Effect of Annealing Temperature on the Phase Transformation Behaviour in (Zr–Ti–Nb)N Coatings Deposited by CA-PVD. In: Pogrebnjak, A.D., Novosad, V. (eds) Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6133-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6133-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6132-6

  • Online ISBN: 978-981-13-6133-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics