Skip to main content

Single-Frequency Active Fiber Lasers

  • Chapter
  • First Online:
Single-Frequency Fiber Lasers

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 8))

  • 958 Accesses

Abstract

As discussed in the previous chapter, the cavity length of a single-frequency fiber laser should be short enough (i.e., few centimeters) to realize a wide mode spacing for stable operation. Nevertheless, this in term requires the optical gain of the laser to be significant for high-efficiency operation. Since the doping concentration of rare-earth ions in general silica fiber is limited owing to the unwanted cluster formation phenomena, other glass hosts are required to overcome this limitation. In this chapter, we first introduce the multicomponent glass fiber as the doping host of rare-earth ions, enabling heavy doping concentration and significantly improved optical gain. With the newly developed active fiber, high-power operation of a single-frequency fiber laser is afterward discussed. An inevitable problem risen by high-power lasing is the thermal effect, which is then discussed in the third section. Subsequently, the thermal effect-induced laser noise is also discussed together with the coupling effect between frequency and intensity noise and amplified spontaneous emission noise, which are considerable in a high-gain fiber laser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willke B (2010) Stabilized lasers for advanced gravitational wave detectors. Laser Photonics Rev 4:780

    Article  ADS  Google Scholar 

  2. Ma Y, Wang X, Leng J, Xiao H, Dong X, Zhu J, Du W, Zhou P, Xu X, Si L (2011) Coherent beam combination of 1.08 kW fiber amplifier array using single-frequency dithering technique. Opt Lett 36:951

    Article  ADS  Google Scholar 

  3. Yang F, Ye Q, Pan Z, Chen D, Cai H, Qu R, Yang Z, Zhang Q (2012) 100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application. Opt Commun 285:149

    Article  ADS  Google Scholar 

  4. Xiao H, Zhou P, Wang X, Guo S, Xu X (2012) Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier. IEEE Photon Technol Lett 24:1088

    Article  ADS  Google Scholar 

  5. Chaboyer ZJ, Moore PJ, Das G (2009) Medium power single-mode single-wavelength fiber laser. Opt Commun 282:3100

    Article  ADS  Google Scholar 

  6. Quimby RS, Miniscalco WJ, Thompson B (1994) Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption. J Appl Phys 76:4472

    Article  ADS  Google Scholar 

  7. Jiang S, Myers M, Peyghambarian N (1998) Er3+ doped phosphate glasses and lasers. J Non-Cryst Solids 239:143

    Article  ADS  Google Scholar 

  8. Jiang C, Liu H, Zeng Q, Tang X, Gan F (2000) Yb: phosphate laser glass with high emission cross-section. J Phys Chem Solids 61:1217

    Article  ADS  Google Scholar 

  9. Campbell JH, Suratwala TI (2000) Nd-doped phosphate glasses for high-energy/high-peak-power lasers. J Non-Cryst Solids 263:318

    Article  ADS  Google Scholar 

  10. Hwang BC, Jiang S, Luo T, Watson J, Honkanen S, Hu Y, Smektala F, Lucas J, Peyghambarian N (1999) Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1 dB/cm. Electron Lett 35:1007

    Article  Google Scholar 

  11. Tao G, Ebendorff-Heidepriem H, Stolyarov AM, Danto S, Badding JV, Fink Y, Ballato J, Abouraddy AF (2015) Infrared fibers. Adv Opt Photon 7:379

    Article  Google Scholar 

  12. Jackson SD (2012) Towards high-power mid-infrared emission from a fibre laser. Nat Photonics 6:423

    Article  ADS  Google Scholar 

  13. Henderson-Sapir O, Munch J, Ottaway DJ (2014) Mid-infrared fiber lasers at and beyond 3.502 μm using dual-wavelength pumping. Opt Lett 39:493

    Article  ADS  Google Scholar 

  14. Hudson D, Magi E, Gomes L, Jackson SD (2011) 1 W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fibre laser. Electron Lett 47:985

    Article  Google Scholar 

  15. Veasey DL, Funk DS, Peters PM, Sanford NA, Obarski GE, Fontaine N, Young M, Peskin AP, Liu W, Houde-Walter SN (2000) Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass. J Non-Cryst Solids 263:369

    Article  ADS  Google Scholar 

  16. Sakamoto T, Shimizu M, Kanamori T, Terunuma Y, Ohishi Y, Yamada M, Sudo S (1995) 1.4-μm-band gain characteristics of a Tm-Ho-doped ZBLYAN fiber amplifier pumped in the 0.8-μm band. IEEE Photon Technol Lett 7:983

    Article  ADS  Google Scholar 

  17. Jackson SD, Sabella A, Lancaster DG (2007) Application and development of high-power and highly efficient silica-based Fiber lasers operating at 2 μm. IEEE J Sel Top Quantum Electron 13:567

    Article  ADS  Google Scholar 

  18. Spiegelberg C, Geng J, Hu Y, Kaneda Y, Jiang S, Peyghambarian N (2004) Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003). J Lightwave Technol 22:57

    Article  ADS  Google Scholar 

  19. Kaneda Y, Spiegelberg C, Geng J, Hu Y, Luo T, Wang J, Jiang S (2004) 200-mW, narrow-linewidth 1064.2-nm Yb-doped fiber laser. In: Conference on lasers and electro-optics, p CThO3

    Google Scholar 

  20. Albert J, Schulzgen A, Temyanko VL, Honkanen S, Peyghambarian N (2006) Strong Bragg gratings in phosphate glass single mode fiber. Appl Phys Lett 89:101127

    Article  ADS  Google Scholar 

  21. Grobnic D, Mihailov SJ, Walker RB, Smelser CW, Lafond C, Croteau A (2007) Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber. IEEE Photon Technol Lett 19:943

    Article  ADS  Google Scholar 

  22. Loh WH, Samson BN, Dong L, Cowle GJ, Hsu K (1998) High performance single-frequency fiber grating-based erbium: ytterbium-codoped fiber lasers. J Lightwave Technol 16:114

    Article  ADS  Google Scholar 

  23. Foster S (2004) Spatial mode structure of the distributed feedback fiber laser. IEEE J Quantum Electron 40:884

    Article  ADS  Google Scholar 

  24. Hofmann P, Pirson-Chavez A, Schülzgen A, Xiong L, Laronche A, Albert J, Peyghambarian N (2011) Low-noise single-frequency all phosphate fiber laser. In: SPIE proceedings, Laser technology for defense and security VII, p 803911

    Google Scholar 

  25. Qiu T, Suzuki S, Schülzgen A, Li L, Polynkin A, Temyanko V, Moloney JV, Peyghambarian N (2005) Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers. Opt Lett 30:2748

    Article  ADS  Google Scholar 

  26. Qiu T, Li L, Schulzgen A, Temyanko VL, Luo T, Jiang S, Mafi A, Moloney JV, Peyghambarian N (2004) Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers. IEEE Photon Technol Lett 16:2592

    Article  ADS  Google Scholar 

  27. Li L, Morrell M, Qiu T, Temyanko VL, Schülzgen A, Mafi A, Kouznetsov D, Moloney JV, Luo T, Jiang S (2004) Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power. Appl Phys Lett 85:2721

    Article  ADS  Google Scholar 

  28. Zhang G, Wang M, Yu C, Zhou Q, Qiu J, Hu L, Chen D (2011) Efficient generation of watt-level output from short-length nd-doped phosphate fiber lasers. IEEE Photon Technol Lett 23:350

    Article  ADS  Google Scholar 

  29. Wadsworth W, Percival R, Bouwmans G, Knight J, Russell P (2003) High power air-clad photonic crystal fibre laser. Opt Express 11:48

    Article  ADS  Google Scholar 

  30. Limpert J, Schreiber T, Nolte S, Zellmer H, Tunnermann T, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A (2003) High-power air-clad large-mode-area photonic crystal fiber laser. Opt Express 11:818

    Article  ADS  Google Scholar 

  31. Li L, Schülzgen A, Temyanko VL, Qiu T, Morrell MM, Wang Q, Mafi A, Moloney JV, Peyghambarian N (2005) Short-length microstructured phosphate glass fiber lasers with large mode areas. Opt Lett 30:1141

    Article  ADS  Google Scholar 

  32. Li L, Schülzgen A, Temyanko VL, Morrell MM, Sabet S, Li H, Moloney JV, Peyghambarian N (2006) Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power. Appl Phys Lett 88:161106

    Article  ADS  Google Scholar 

  33. Xu SH, Yang ZM, Liu T, Zhang WN, Feng ZM, Zhang QY, Jiang ZH (2010) An efficient compact 300 mW narrow-linewidth single-frequency fiber laser at 1.5 μm. Opt Express 18:1249

    Article  ADS  Google Scholar 

  34. Xu S, Yang Z, Zhang W, Wei X, Qian Q, Chen D, Zhang Q, Shen S, Peng M, Qiu J (2011) 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser. Opt Lett 36:370

    Article  Google Scholar 

  35. Mo S, Xu S, Huang X, Zhang W, Feng Z, Chen D, Yang T, Yang Z (2013) A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser. Opt Express 21:12419

    Article  ADS  Google Scholar 

  36. Hofmann P, Voigtlander C, Nolte S, Peyghambarian N, Schülzgen A (2013) 550-mW output power from a narrow linewidth all-phosphate fiber laser. J Lightwave Technol 31:756

    Article  ADS  Google Scholar 

  37. Zhu X, Shi W, Zong J, Nguyen D, Norwood RA, Chavez-Pirson A, Peyghambarian N (2012) 976 nm single-frequency distributed Bragg reflector fiber laser. Opt Lett 37:4167

    Article  ADS  Google Scholar 

  38. Xu S, Li C, Zhang W, Mo S, Yang C, Wei X, Feng Z, Qian Q, Shen S, Peng M (2013) Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm. Opt Lett 38:501

    Article  ADS  Google Scholar 

  39. Jackson SD, King T (1998) High-power diode-cladding-pumped tm-doped silica fiber laser. Opt Lett 23:1462

    Article  ADS  Google Scholar 

  40. Scholle K, Lamrini S, Koopmann P, Fuhrberg P (2010) 2 μm laser sources and their possible applications. In: Frontiers in guided wave optics and optoelectronics. IntechOpen, Bishnu Pal, p 491

    Google Scholar 

  41. Walsh BM (2009) Review of tm and Ho materials; spectroscopy and lasers. Laser Phys 19:855

    Article  ADS  Google Scholar 

  42. Agger S, Povlsen JH, Varming P (2004) Single-frequency thulium-doped distributed-feedback fiber laser. Opt Lett 29:1503

    Article  ADS  Google Scholar 

  43. Wu J, Jiang S, Luo T, Geng J, Peyghambarian N, Barnes NP (2006) Efficient thulium-doped 2-μm germanate fiber laser. IEEE Photon Technol Lett 18:334

    Article  ADS  Google Scholar 

  44. Geng J, Wu J, Jiang S, Yu J (2007) Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm. Opt Lett 32:355

    Article  ADS  Google Scholar 

  45. Wu J, Yao Z, Zong J, Chavez-Pirson A, Peyghambarian N, Yu J (2009) Single-frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber. In: SPIE proceedings, Fiber lasers VI: technology, systems, and applications, p 71951K

    Google Scholar 

  46. He X, Xu S, Li C, Yang C, Yang Q, Mo S, Chen D, Yang Z (2013) 1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber. Opt Express 21:20800

    Article  ADS  Google Scholar 

  47. Zhang Z, Shen DY, Boyland AJ, Sahu JK, Clarkson WA, Ibsen M (2008) High-power tm-doped fiber distributed-feedback laser at 1943 nm. Opt Lett 33:2059

    Article  ADS  Google Scholar 

  48. Zhang Z, Boyland AJ, Sahu JK, Clarkson WA, Ibsen M (2011) High-power single-frequency thulium-doped fiber DBR laser at 1943 nm. IEEE Photon Technol Lett 23:417

    Article  ADS  Google Scholar 

  49. Geng J, Wang Q, Luo T, Jiang S, Amzajerdian F (2009) Single-frequency narrow-linewidth tm-doped fiber laser using silicate glass fiber. Opt Lett 34:3493

    Article  ADS  Google Scholar 

  50. Gebavi H, Milanese D, Liao G, Chen Q, Ferraris M, Ivanda M, Gamulin O, Taccheo S (2009) Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses. J Non-Cryst Solids 355:548

    Article  ADS  Google Scholar 

  51. Richards B, Jha A, Tsang Y, Binks D, Lousteau J, Fusari F, Lagatsky A, Brown C, Sibbett W (2010) Tellurite glass lasers operating close to 2 μm. Laser Phys Lett 7:177

    Article  Google Scholar 

  52. Wang M, Wang G, Yi L, Li S, Hu L, Zhang J (2010) 2 μm emission performance of Tm3+-Ho3+ co-doped tellurite glasses. Chin Opt Lett 8:78

    Article  Google Scholar 

  53. Richards B, Tsang Y, Binks D, Lousteau J, Jha A (2008) Efficient ~2 μm Tm3+-doped tellurite fiber laser. Opt Lett 33:402

    Article  ADS  Google Scholar 

  54. Richards B, Shen S, Jha A, Tsang Y, Binks D (2007) Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre. Opt Express 15:6546

    Article  ADS  Google Scholar 

  55. Tsang Y, Richards B, Binks D, Lousteau J, Jha A (2008) Tm3+/Ho3+ codoped tellurite fiber laser. Opt Lett 33:1282

    Article  ADS  Google Scholar 

  56. Tsang Y, Richards B, Binks D, Lousteau J, Jha A (2008) A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser. Opt Express 16:10690

    Article  ADS  Google Scholar 

  57. Li K, Zhang G, Hu L (2010) Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber. Opt Lett 35:4136

    Article  ADS  Google Scholar 

  58. Li K, Zhang G, Wang X, Hu L, Kuan P, Chen D, Wang M (2012) Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser. Opt Express 20:10115

    Article  ADS  Google Scholar 

  59. Caron N, Bernier M, Faucher D, Vallée R (2012) Understanding the fiber tip thermal runaway present in 3μm fluoride glass fiber lasers. Opt Express 20:22188

    Article  ADS  Google Scholar 

  60. Schliesser A, Picque N, Hansch TW (2012) Mid-infrared frequency combs. Nat Photonics 6:440

    Article  ADS  Google Scholar 

  61. Bernier M, Michaud-Belleau V, Levasseur S, Fortin V, Genest J, Vallée R (2015) All-fiber DFB laser operating at 2.8 μm. Opt Lett 40:81

    Article  ADS  Google Scholar 

  62. Davis MK, Digonnet M, Pantell RH (1998) Thermal effects in doped fibers. J Lightwave Technol 16:1013

    Article  ADS  Google Scholar 

  63. Canat G, Mollier J, Jaouën Y, Dussardier B (2005) Evidence of thermal effects in a high-power Er3+-Yb3+ fiber laser. Opt Lett 30:3030

    Article  ADS  Google Scholar 

  64. Feng S, Li S, Chen L, Chen W, Hu L (2010) Thermal loading in laser diode end-pumped Yb3+/Er3+ codoped phosphate glass laser. Appl Opt 49:3357

    Article  ADS  Google Scholar 

  65. Sudesh V, Mccomb T, Chen Y, Bass M, Richardson M, Ballato J, Siegman AE (2008) Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser. Appl Phys B Lasers Opt 90:369

    Article  ADS  Google Scholar 

  66. Liu T, Yang ZM, Xu SH (2009) 3-dimensional heat analysis in short-length Er3+/Yb3+ co-doped phosphate fiber laser with upconversion. Opt Express 17:235

    Article  ADS  Google Scholar 

  67. Wang Y, Xu CQ, Po H (2004) Analysis of Raman and thermal effects in kilowatt fiber lasers. Opt Commun 242:487

    Article  ADS  Google Scholar 

  68. Innocenzi ME, Yura HT, Fincher CL, Fields RA (1990) Thermal modeling of continuous-wave end-pumped solid-state lasers. Appl Phys Lett 56:1831

    Article  ADS  Google Scholar 

  69. Song F, Liu S, Wu Z, Cai H, Zhang X, Teng L, Tian J (2007) Determination of the thermal loading in laser-diode-pumped erbium-ytterbium-codoped phosphate glass microchip laser. J Opt Soc Am B 24:2327

    Article  ADS  Google Scholar 

  70. Bjurshagen S, Hellström JE, Pasiskevicius V, Pujol MC, Aguiló M, Díaz F (2006) Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates. Appl Opt 45:4715

    Article  ADS  Google Scholar 

  71. Song F, Zhang G, Shang M, Tan H, Yang J, Meng F (2001) Three-photon phenomena in the upconversion luminescence of erbirum-ytterbium-codoped phosphate glass. Appl Phys Lett 79:1748

    Article  ADS  Google Scholar 

  72. Karlsson G, Laurell F, Tellefsen J, Denker B, Galagan B, Osiko V, Sverchkov S (2002) Development and characterization of Yb-Er laser glass for high average power laser diode pumping. Appl Phys B Lasers Opt 75:41

    Article  ADS  Google Scholar 

  73. Karasek M (1997) Optimum design of Er3+-Yb3+ co-doped fibers for large-signal high-pump-power applications. IEEE J Quantum Electron 33:1699

    Article  ADS  Google Scholar 

  74. Myslinski P, Nguyen D, Chrostowski J (1997) Effects of concentration on the performance of erbium-doped fiber amplifiers. IEEE J Lightwave Technol 15:112

    Article  ADS  Google Scholar 

  75. Chryssou CE, Di Pasquale F, Pitt CW (2001) Improved gain performance in Yb3+-sensitized Er3+-doped alumina (Al2O3) channel optical waveguide amplifiers. J Lightwave Technol 19:345

    Article  ADS  Google Scholar 

  76. Kelson I, Hardy AA (1998) Strongly pumped fiber lasers. IEEE J Quantum Electron 34:1570

    Article  ADS  Google Scholar 

  77. Henry C (1986) Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers. J Lightwave Technol 4:288

    Article  ADS  Google Scholar 

  78. Bjurshagen S, Koch R (2004) Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers. Appl Opt 43:4753

    Article  ADS  Google Scholar 

  79. Lan YP, Chen YF, Wang SC (2000) Repetition-rate dependence of thermal loading in diode-end-pumped Q-switched lasers: influence of energy-transfer upconversion. Appl Phys B Lasers Opt 71:27

    Article  ADS  Google Scholar 

  80. Li C, Xu S, Yang C, Wei X, Yang Z (2013) Frequency noise of high-gain phosphate fiber single-frequency laser. Laser Phys 23:045107

    Article  ADS  Google Scholar 

  81. Taccheo S, Laporta P, Svelto O, De Geronimo G (1996) Intensity noise reduction in a single-frequency ytterbium-codoped erbium laser. Opt Lett 21:1747

    Article  ADS  Google Scholar 

  82. Agger SD, Povlsen JH (2006) Dynamical noise in single-mode distributed feedback fiber lasers. IEEE J Quantum Electron 42:433

    Article  Google Scholar 

  83. Li C, Xu S, Xiao Y, Feng Z, Yang C, Zhou K, Yang Z (2015) Simultaneously reducing the intensity and frequency noise of single-frequency phosphate fiber laser. J Opt 17:075802

    Article  ADS  Google Scholar 

  84. Willke B, Brozek S, Danzmann K, Quetschke V, Gossler S (2000) Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source. Opt Lett 25:1019

    Article  ADS  Google Scholar 

  85. Heurs M, Quetschke VM, Willke B, Danzmann K, Freitag I (2004) Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique. Opt Lett 29:2148

    Article  ADS  Google Scholar 

  86. Dandridge A, Tveten AB, Miles RO, Jackson DA, Giallorenzi TG (1981) Single-mode diode laser phase noise. Appl Phys Lett 38:77

    Article  ADS  Google Scholar 

  87. Shtaif M, Eisenstein G (1996) Noise properties of nonlinear semiconductor optical amplifiers. Opt Lett 21:1851

    Article  ADS  Google Scholar 

  88. Li C, Xu S, Feng Z, Xiao Y, Mo S, Yang C, Zhang W, Chen D, Yang Z (2014) The ASE noise of a Yb3+-doped phosphate fiber single-frequency laser at 1083 nm. Laser Phys Lett 11:025104

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Z., Li, C., Xu, S., Yang, C. (2019). Single-Frequency Active Fiber Lasers. In: Single-Frequency Fiber Lasers. Optical and Fiber Communications Reports, vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-13-6080-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6080-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6079-4

  • Online ISBN: 978-981-13-6080-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics