Skip to main content

Cornering Properties of Tires

  • Chapter
  • First Online:
Advanced Tire Mechanics

Abstract

The motion of a vehicle is determined by the force and moment generated by tires, which are the only points of contact between a vehicle and the road.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note 11.1.

  2. 2.

    Problem 11.1.

  3. 3.

    Problem 11.2.

  4. 4.

    Note 11.2.

  5. 5.

    Note 11.3.

  6. 6.

    Note 11.4.

  7. 7.

    Note 11.5.

  8. 8.

    Note 11.6.

  9. 9.

    Note 11.7.

  10. 10.

    Note 11.8.

  11. 11.

    Note 11.9.

  12. 12.

    Note 11.10.

  13. 13.

    Problem 11.3.

  14. 14.

    See Footnote 13, Note 11.11.

  15. 15.

    Note 11.12.

  16. 16.

    See Footnote 15.

  17. 17.

    Note 11.13.

  18. 18.

    See Footnote 17.

  19. 19.

    Note 11.14.

  20. 20.

    Problem 11.4.

  21. 21.

    Same as Eq. (11.68)

  22. 22.

    Note 11.15.

  23. 23.

    See Footnote 22.

  24. 24.

    Note 11.16.

  25. 25.

    Note 11.17.

  26. 26.

    See Footnote 25.

  27. 27.

    Note 11.19.

  28. 28.

    Note 11.20.

  29. 29.

    Same as Eq. (6.48).

References

  1. H.B. Pacejka, Tyre and Vehicle Dynamics (Butterworth Heinemann, 2002)

    Google Scholar 

  2. H. Sakai, Tire Mechanics (Guranpuri-Shuppan, 1987). (in Jsapanese)

    Google Scholar 

  3. E. Fiala, Seitenkrafte am Rollenden Luftreifen. VDI Zeitschrift 96, 973–979 (1954)

    Google Scholar 

  4. E. Frank, Grundlagen zur Berechnung der Seitenführungskennlinien von Reifen. Kautchuk und Gummi 18(8), 515–533 (1965)

    Google Scholar 

  5. H. Sakai, Theoretical and experimental studies on the dynamic properties of tyres. Part 1: review of theories of rubber friction. Int. J. Vehicle Des. 2(2), 78–110 (1981)

    Google Scholar 

  6. H. Sakai, Theoretical and experimental studies on the dynamic properties of tyres. Part 2: experimental investigation of rubber friction and deformation of a tyre. Int. J. Vehicle Des. 2(3), 182–226 (1981)

    Google Scholar 

  7. H. Sakai, Theoretical and experimental studies on the dynamic properties of tyres. Part 3: calculation of the six components of force and moment of a tyre. Int. J. Vehicle Des. 2(3), 335–372 (1981)

    Google Scholar 

  8. H. Sakai, Theoretical and experimental studies on the dynamic properties of tyres. Part 4: investigations of the influences of running conditions by calculation and experiment. Int. J. Vehicle Des. 3(3), 333–375 (1982)

    Google Scholar 

  9. K. Kabe, N. Miyashita, A new analytical tire model for cornering simulation. Part I: cornering power and self-aligning torque power. Tire Sci. Technol. 34(2), 84–99 (2006)

    Article  Google Scholar 

  10. N. Miyashita, K. Kabe, A new analytical tire model for cornering simulation. Part II: cornering power and self-aligning torque power. Tire Sci. Technol. 34(2), 100–118 (2006)

    Article  Google Scholar 

  11. N. Miyashita et al., Analysis model of myu-S curve using generalized skewed-parabola. JSAE Rev. 24, 87–92 (2003)

    Article  Google Scholar 

  12. M. Mizuno, et al., The method of making tire model for vehicle dynamics analysis–extension to full set tire model using tire data under pure conditions, in Proceedings of JSAE Conference, No. 20075936, 2007

    Google Scholar 

  13. M. Mizuno, Study on Tire Model for Vehicle Dynamics. Ph.D. Thesis, Nagoya University, 2010 (in Japanese)

    Google Scholar 

  14. M. Pearson et al., TameTire: introduction to the model. Tire Sci. Technol. 44(2), 102–119 (2016)

    Article  Google Scholar 

  15. B. Durand-Gasselin et al., Assessing the thermos-mechanical TaMeTirE model in offline vehicle simulation and driving simulator tests. Vehicle Sys. Dyn. 48(Supplement), 211–229 (2010)

    Article  Google Scholar 

  16. P. Fevier, I.G. Fandard, Thermische und mechanische Reifenmodellierung zur Simulation des Fahrvehaltens. ATZ Worldw. 110, 26–31 (2008)

    Article  Google Scholar 

  17. P.W.A. Zegelaar, The Dynamic Response of Tyres to Brake Torque Variations and Road Unevennesses. Ph.D. Thesis, University of Delft of Tecnology, 1998

    Google Scholar 

  18. J.P. Maurice, Short Wavelength and Dynamics Tyre Behaviour Under Lateral and Combined Slip Conditions. Ph.D. Thesis, University of Delft of Tecnology, 1999

    Google Scholar 

  19. M. Gipser, DNS-tire, a dynamical nonlinear spatial tire model in vehicle dynamics, in Proceedings of 2nd Workshop on Road Vehicle-Systems and Related Mathematics, pp. 29–48, Torino, Italy, 1987

    Google Scholar 

  20. M. Gipser, et al., Dynamics tyre forces response to road unevenness, in Proceedings of 2nd International Colloquium on Tyre Models for Vehicle Dynamics Analysis, Supplement to Vehicle System Dynamics, vol. 27, pp. 94–108, 1997

    Google Scholar 

  21. M. Gipser, FTire, a new fast tire model for ride comfort simulation, in International ADAMS User’s Conference, Berlin, Germany, 1999

    Google Scholar 

  22. M. Gipser, FTire–the tire simulation model for all applications related to vehicle dynamics. Vehicle Sys. Dyn. 45(Supplement), 139–151 (2007)

    Article  Google Scholar 

  23. C. Oertel, A. Fandre, Ride conform simulations and steps towards life time calculations: RMOD-K and ADAMS, in International ADAMS User’s Conference, Berlin, Germany, 1999

    Google Scholar 

  24. G. Gim, P.E. Nikravesh, An analytical model of pneumatic tires for vehicle dynamic simulations, part 1: pure slips. Int. J. Vehicle Des. 11(6), 589–618 (1990)

    Google Scholar 

  25. G. Gim, P.E. Nikravesh, An analytical model of pneumatic tires for vehicle dynamic simulations, part 2: comprehensive slips. Int. J. Vehicle Des. 12(1), 19–39 (1991)

    Google Scholar 

  26. G. Gim, P.E. Nikravesh, An analytical model of pneumatic tires for vehicle dynamic simulations: part 3. Validation against experimental data. Int. J. Vehicle Des. 12(2), 217–228 (1991)

    Google Scholar 

  27. G. Gim, P.E. Nikravesh, A three-dimensional tire model for steady-state simulations of vehicles, SAE Paper, No. 931913, 1993

    Google Scholar 

  28. Eds, P. Lugner and M. Plochl, Tire Model Performance Test (TMPT). Supplement to Vehicle System Dynamics, Vol. 45, Taylor & Francis, 2007

    Google Scholar 

  29. A. Higuchi, Transient Response of Tyres at Large Wheel Slip and Camber. Ph.D. Thesis, University of Delft, 1997

    Google Scholar 

  30. von B. Schlippe, R. Dietrich, Das Flattern eines bepneuten Rades, Bericht 140 der Lilienthal Gesellschaft, 1941

    Google Scholar 

  31. R.F. Smiley, Correlation and extension of linearized theories for tire motion and wheel shimmy, NASA Report 1299, 1957

    Google Scholar 

  32. L. Segel, Force and moment response of pneumatic tires to lateral motion inputs. Trans. ASME, J. Eng. Ind. 88B, 37–44 (1966)

    Google Scholar 

  33. K. Tanaka, I. Kageyama, Study of tire model for the estimation of design parameters. Trans. JSAE 30(2), 99–104 (1999)

    Google Scholar 

  34. K. Tanaka, I. Kageyama, Study of tire design methodology based on vehicle dynamics and tire mechanics. Nippon Gomukyoukai Shi 79(4), 225–230 (2006)

    Google Scholar 

  35. M. Abe, Vehicle Dynamics and Control 2nd ed. (Denkidaigaku ShuppanKyoku, Tokyo, 2012)

    Google Scholar 

  36. N. Miyashita, A study of transient cornering property by use of an analytical tire model, Trans. JSAE, No. 92-20135366, 2013

    Google Scholar 

  37. M. Mizuno et al., The development of tire side force model considering the dependence of surface temperature of tire. Rev. Automot. Eng. 25, 227–230 (2004)

    Google Scholar 

  38. M. Mizuno et al., Development of tire force model for vehicle dynamics analysis including the effect of tire surface temperature. Trans. JSME 71(711), 3208–3215 (2005). (in Japanese)

    Article  Google Scholar 

  39. A. Higuchi, Tire model for vehicle dynamic analysis. Trans. JSAE 45(1), 101–107 (2014)

    Google Scholar 

  40. A.A. Goldstein, Finite element analysis of a Quasi-static rolling tire model for determination of truck tire forces and moments. Tire Sci. Technol. 24(4), 278–293 (1996)

    Article  Google Scholar 

  41. O.A. Olatunbosun, O. Bolarinwa, FE simulation of the effect of tire design parameters on side forces and moments. Tire Sci. Technol. 32(3), 146–163 (2004)

    Article  Google Scholar 

  42. J. Qi et al., Validation of a steady-state transport analysis for rolling treaded tires. Tire Sci. Technol. 35(3), 183–208 (2007)

    Article  Google Scholar 

  43. M. Koishi et al., Tire cornering simulation using an explicit finite element analysis code. Tire Sci. Technol. 26(2), 109–119 (1998)

    Article  Google Scholar 

  44. E. Tonuk, Y.S. Unlusoy, Prediction of automobile tire cornering force characteristics by finite element modelling and analysis. Comput. Struct. 79, 1219–1232 (2001)

    Article  Google Scholar 

  45. K. Kabe, M. Koishi, Tire cornering simulation using the finite element analysis. J. Appl. Polym. Sci. 78, 1566–1572 (2000)

    Article  Google Scholar 

  46. M. Shiraishi et al., Simulation of dynamically rolling tire. Tire Sci. Technol. 28(4), 264–276 (2000)

    Article  Google Scholar 

  47. K.V.N. Rao et al., Transient finite element analysis of tire dynamic behavior. Tire Sci. Technol. 31(2), 104–127 (2003)

    Article  Google Scholar 

  48. Y .Osawa, Tire analysis by using new hour-glass control (in Japanese), in LS-DYNA User’s Conference, Tokyo, 2005

    Google Scholar 

  49. H.H. Liu, Load and inflation effects on force and moment of passenger tires using explicit transient dynamics. Tire Sci. Technol. 35(1), 41–55 (2007)

    Article  Google Scholar 

  50. T. Fukushima et al., Vehicle cornering and braking behavior simulation using a finite element method, SAE-2005-01-0384, http://papers.sae.org/2005-01-0384/, 2005

  51. K. G. Peterson et al., General Motors tire performance criteria (TPC) specification system, SAE Paper, No. 741103, 1974

    Google Scholar 

  52. M. Tsukijihara, Effect of tire performance on controllability and stability of vehicles. JSAE J. 36(3), 305–309 (1982)

    Google Scholar 

  53. S. Iida, K. Katada, Effect of tire dynamic properties on vehicle handling and stability. JSAE J. 38(3), 320–325 (1984)

    Google Scholar 

  54. M. Yamamoto, Effect of wheel alignment on handling and stability. JSAE J. 54(11), 10–15 (2000). (in Japanese)

    Google Scholar 

  55. T. Okano, K. Ishii, Effect of Tire Cornering Properties on Vehicle Handling and Stability. JSAE Paper, No. 9631182, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Nakajima .

Notes

Notes

Note 11.1

From Eqs. (11.87) and (11.88), the displacement in the circumferential direction \(\Delta x^{{\prime }}\) is given by the relation \(\Delta x^{{\prime }} = sx_{1}\), where s is the slip ratio. Meanwhile, from Eq. (11.3), the lateral displacement v is given by v = αx. Comparing both expressions, the slip ratio s corresponds to the slip angle α (unit: radian), if both are small.

Note 11.2 Eq. (11.39)

The characteristic equation for Eq. (11.38) is obtained through the substitution of w(x) = 0 and y = eαx. Introducing the parameter \(\uplambda = \sqrt[4]{{k_{\text{s}} /\left( {4{{EI}}_{z} } \right)}}\), the characteristic equation is obtained as α4 + 4λ4 = 0. The solutions to this equation are α = (1 ± i)λ, (−1 ± i)λ. Hence, y is expressed by

$$y = {\text{e}}^{\lambda x} \left( {C_{1} \cos \,\lambda x + C_{2} \sin \,\lambda x} \right) + {\text{e}}^{ - \lambda x} \left( {C_{3} \cos \,\lambda x + C_{4} \sin \,\lambda x} \right).$$

Considering the boundary condition y(∞) = 0, we obtain C1 = C2 = 0. The symmetry condition \(y^{{\prime }}\)(0) = 0 yields C3 = C4. Hence, y is expressed by

$$y = C_{3} {\text{e}}^{ - \lambda x} \left( {\cos \,\lambda x + \sin \,\lambda x} \right).$$

The equilibrium between the external force Fy and the force due to the spring of the sidewall yields

$$F_{y} = 2k_{\text{s}} \int\limits_{0}^{\infty } y (x){\text{d}}x = 2k_{\text{s}} C_{3} {\text{e}}^{ - \lambda x} \int\limits_{0}^{\infty } {\left( {\cos \lambda x + \sin \lambda x} \right)} {\text{d}}x = 2k_{\text{s}} C_{3} /\lambda .$$

Hence, y is expressed by

$$y = \frac{{\lambda F_{y} }}{{2k_{\text{s}} }}{\text{e}}^{ - \lambda x} \left( {\cos \,\lambda x + \sin \,\lambda x} \right).$$

Note 11.3 Eq. (11.41)

Using the relations e−λ ≅ 1 − λx, cos(λx) ≅ 1, sin(λx) ≅ λx for small λ, we obtain

$$y = \frac{{\lambda F_{y} }}{{2k_{\text{s}} }}{\text{e}}^{ - \lambda x} \left( {\cos \,\lambda x + \sin \lambda x} \right) \cong \frac{{\lambda F_{y} }}{{2k_{\text{s}} }}\left( {1 - \lambda^{2} x^{2} } \right).$$

Note 11.4 Eq. (11.50)

Using Eqs. (11.43) and (11.46) and the equation fy = μsqz at the sliding point x1 = lh, lh is given as the solution to

$$x_{1} \tan \,\alpha - \frac{\delta }{{C_{y} }}F_{y} \frac{{x_{1} }}{l}\left( {1 - \frac{{x_{1} }}{l}} \right) = 4\mu_{\text{s}} p_{\text{m}} \frac{{x_{1} }}{l}\left( {1 - \frac{{x_{1} }}{l}} \right).$$

Note 11.5 Eq. (11.58)

The equation of the ellipse in Fig. 11.20 is

$$\left( {x_{1} - l/2} \right)^{2} /r^{2} + \left( {y - r_{\text{e}} \sin \,\gamma } \right)^{2} /b^{2} = 1.$$

Because the ellipse passes the position (x1 = y1 = 0), b is given by

$$b = r_{\text{e}} \sin \,\gamma /\sqrt {1 - \left( {l - 2r_{\text{e}} } \right)^{2} } .$$

Suppose that yc is the trajectory of the tread base. Considering the relation r ≈ re, yc,max, the maximum value of yc, is expressed by

$$y_{\text{c,max}} = - \left( {b - r_{\text{e}} \sin \,\gamma } \right) = - \left( {\frac{{r_{\text{e}} \sin \,\gamma }}{{\sqrt {1 - \frac{{l^{2} }}{{4r^{2} }}} }} - r_{\text{e}} \sin \,\gamma } \right) \cong - \frac{{l^{2} r_{\text{e}} \sin \,\gamma }}{{8r^{2} }} \cong - \frac{{l^{2} \sin \,\gamma }}{{8r_{\text{e}} }} \cong - \frac{{l^{2} \gamma }}{{8r_{\text{e}} }}.$$

If we express yc as a parabola, yc is given by

$$y_{\text{c}} = C\frac{{x_{1} }}{l}\left( {1 - \frac{{x_{1} }}{l}} \right).$$

The condition yc = yc,max at x1 = l/2 yields C = − l2sinγ/(2re).

Note 11.6 Eq. (11.64)

Equation (11.64) is derived by adding the term related to the circumferential tension T to Eq. (11.38). Figure 11.67 shows the force equilibrium of the belt element including the tension. The force equilibrium at the element with length dx along the y-axis is given by

Fig. 11.67
figure 67

Force equilibrium in the circumferential direction for an element of the belt

$$- T\frac{\partial y}{\partial x} + \left( {T + {\text{d}}T} \right)\left( {\frac{\partial y}{\partial x} + \frac{{\partial^{2} y}}{{\partial x^{2} }}{\text{d}}x} \right) + S - \left( {S + {\text{d}}S} \right) - k_{\text{s}} y{\text{d}}x + w(x){\text{d}}x = 0,$$
(11.217)

where S is the shear force, ks is the fundamental lateral spring rate of the sidewall, and w(x) is the distributed external force. Because y is a function of only x, the partial differential equation changes to an ordinary differential equation:

$$T \cdot {\text{d}}^{2} y/{\text{d}}x^{2} = {\text{d}}S/{\text{d}}x - k_{\text{s}} y + w(x) = 0,$$
(11.218)

where the shear force S and the moment M have the relation

$${\text{d}}M - S{\text{d}}x = 0.$$
(11.219)

The moment M is given by

$$M = {{EI}}_{z} \cdot {\text{d}}^{2} y/{\text{d}}x^{2} ,$$
(11.220)

where EIz is the flexural rigidity of the tread base. Substituting Eqs. (11.219) and (11.220) into Eq. (11.218), we obtain

$${{EI}}_{z} \cdot {\text{d}}^{4} y/{\text{d}}x^{4} - T \cdot {\text{d}}^{2} y/{\text{d}}x^{2} + k_{\text{s}} y = w(x).$$
(11.221)

In the case that w(x) = 0, referring to Eq. (3.225) in Appendix of Chap. 3, y is given as

$$y = \frac{{\delta F_{y} }}{{4k_{\text{s}} }}{\text{e}}^{{ - \lambda_{1} x}} \left( {\cos \,\lambda_{2} x + \frac{{\lambda_{1} }}{{\lambda_{2} }}\sin \,\lambda_{2} x} \right),$$
(11.222)

where

$$\delta = \left( {\lambda_{1}^{2} + \lambda_{2}^{2} } \right)/\lambda_{1} ,$$
(11.223)
$$\begin{aligned} & \lambda_{1} = {{\root 4 \of {{{\frac{{k_{y} }}{{4{{EI}}_{z} }}}}} \sqrt {1 + \frac{T}{{\sqrt {4{{EI}}_{z} k_{\text{s}} } }}} }} \\ & \lambda_{2} = {{\root 4 \of {{{\frac{{k_{y} }}{{4{{EI}}_{z} }}}}} \sqrt {1 - \frac{T}{{\sqrt {4{{EI}}_{z} k_{\text{s}} } }}} }}. \\ \end{aligned}$$
(11.224)

The value of the parameter \({\text{T}}/\sqrt {4{{EI}}_{z} k_{\text{s}} }\) of Eq. (11.224) is about 0.02 for a passenger-car belted radial tire, and the term for the circumferential tension of the tread ring T can thus be neglected.

Note 11.7 Eq. (11.65)

The belt is twisted around the x-axis by the side force. The lateral displacement of the belt is generated at the contact patch by twisting deformation, and it is expressed by a function similar to that for the belt deformation under camber thrust shown in Fig. 11.20. Referring to Note 11.5, when the twisting angle of a tire is θ, the maximum displacement in the lateral direction \(y_{\text{c}}^{ \hbox{max} }\) is given as \(y_{\text{c}}^{ \hbox{max} } = l^{2} \theta /\left( {8r} \right)\). The lateral spring rate of the tire Ky is expressed by the fundamental spring rate of the tire per unit length in the circumferential direction ksFootnote 29:

$$K_{y} = 2\pi rk_{s} /3,$$

where r is the radius of the tire. Using Eq. (6.43), the torsion angle θ is given as

$$\theta = rF_{y} /R_{mz} .$$

The out-of-plane torsional spring rate Rmz at radius rA per unit length in the circumferential direction is expressed as Rmz = πr3ks by substituting B = 0 into Eq. (6.38). Considering the relation

$$\theta = \frac{{rF_{y} }}{{R_{mz} }} = \frac{{rF_{y} }}{{\pi r^{3} k_{s} }} = \frac{{F_{y} }}{{\pi r^{2} }}\frac{2\pi r}{{3K_{y} }} = \frac{{2F_{y} }}{{3rK_{y} }},$$

\(y_{\text{c}}^{ \hbox{max} }\) is expressed as

$$y_{\text{c}}^{\hbox{max} } = l^{2} \theta /(8r) = F_{y} l^{2} /(12r^{2} K_{y} ).$$

Suppose that yc is expressed by

$$y_{\text{c}} = A\frac{{x_{1} }}{l}\left( {1 - \frac{{x_{1} }}{l}} \right).$$

The maximum value of yc is given by \(y_{\text{c}}^{ \hbox{max} } = A/4\). Comparing this equation with the above equation, the value of A is given as

$$A = F_{y} l^{2} /(3r^{2} K_{y} ).$$

Note 11.8 Eq. (11.83)

Pacejka [1] introduced two slip ratios, namely the practical longitudinal slip ratio s and the theoretical longitudinal slip ratio σx expressed by

$$\begin{aligned} & s = - V_{sx} /V_{\text{R}} = - \left( {V_{\text{R}} - V_{\text{B}} } \right)/V_{\text{R}} = - \left( {V_{\text{R}} - r_{\text{e}}\Omega } \right)/V_{\text{R}} \\ & \sigma_{x} = - V_{sx} /V_{\text{B}} = s/(1 + s), \\ \end{aligned}$$

where Vsx is the longitudinal slip velocity, re is the effective rolling radius, and Ω is the angular velocity of the wheel. s is negative for the braking condition and positive for the driving condition. The value of s ranges from −1 to ∞. Meanwhile, this book defines s according to Eq. (11.83), the definition of s is thus different between braking and driving conditions, and the quantities related to s are not continuous at s = 0. If the definition of s proposed by Pacejka is used, this discontinuity does not occur, but s becomes infinite under the driving condition. The range of s proposed by Sakai is from −1 to +1, and the sign of s is positive for the braking condition and negative for the driving condition. Readers need to be careful which definition is used for the slip ratio.

Note 11.9 Eq. (11.98)

lh is given by the solution to the following equations.

In the case of braking (s > 0),

$$\begin{aligned} & 4\mu_{\text{s}} p_{\text{m}} \frac{x}{l}\left( {1 - \frac{x}{l}} \right) = x\sqrt {C_{x}^{2} s^{2} + C_{y}^{2} \sin^{2} \alpha } \\ & x = l\left( {1 - \frac{l}{{4\mu_{\text{s}} p_{\text{m}} }}\sqrt {C_{x}^{2} s^{2} + C_{y}^{2} \sin^{2} \alpha } } \right). \\ \end{aligned}$$

Assuming Cx = Cy = C and considering pm = 3Fz/(2 lb) and CFα = Cl2b/2, we obtain

$$l_{h} = l\left( {1 - \frac{{C_{F\alpha } }}{{3\mu_{\text{s}} F_{z} }}\sqrt {s^{2} + \sin^{2} \alpha } } \right) \cong l\left( {1 - \frac{{C_{F\alpha } }}{{3\mu_{\text{s}} F_{z} }}\sqrt {s^{2} + \tan^{2} \alpha } } \right).$$

In the case of driving (s < 0),

$$x = l\left( {1 - \frac{l}{{4\mu_{\text{s}} p_{\text{m}} }}\sqrt {C_{x}^{2} s^{2} + C_{y}^{2} (1 + s)^{2} \tan^{2} \alpha } } \right),$$

where Cx = Cy = C and, in a manner similar to the case of braking, we obtain

$$l_{h} = l\left( {1 - \frac{{C_{F\alpha } }}{{3\mu_{\text{s}} F_{z} }}\sqrt {s^{2} + (1 + s)^{2} \tan^{2} \alpha } } \right) \cong l\left( {1 - \frac{{C_{F\alpha } }}{{3\mu_{\text{s}} F_{z} }}\sqrt {s^{2} + \tan^{2} \alpha } } \right).$$

Note 11.10 Eq. (11.99)

The following relations are obtained referring to Fig. 11.25.

In the case of braking,

$$s = \frac{{V_{\text{R}} \cos \alpha - V_{\text{B}} }}{{V_{\text{R}} \cos \alpha }} = \frac{a}{{a + V_{\text{B}} }},\;\tan \theta = \frac{d}{a},\;\tan \alpha = \frac{d}{{a + V_{\text{B}} }} \Rightarrow \frac{a}{{a + V_{\text{B}} }}\frac{d}{a} = \frac{d}{{a + V_{\text{B}} }} \Rightarrow s\tan \,\theta = \tan \,\alpha .$$

In the case of driving,

$$s = \frac{{V_{\text{R}} \cos \alpha - V_{\text{B}} }}{{V_{\text{B}} }} = \frac{a}{{V_{\text{B}} }},\quad \tan \theta \approx \tan \theta^{\prime} = \frac{d}{a},\;\tan \alpha = \frac{d}{{V_{\text{B}} }} \Rightarrow \frac{a}{{V_{\text{B}} }}\frac{d}{a} = \frac{d}{{V_{\text{B}} }} \Rightarrow s\tan \theta = \tan \alpha .$$

Note 11.11 Eq. (11.104)

Using Eq. (11.99), we obtain

$$\begin{aligned} & \sin \theta = \tan \,\alpha /\sqrt {s^{2} + \tan^{2} \alpha } = h\tan \,\alpha \\ & \cos \theta = s/\sqrt {s^{2} + \tan^{2} \alpha } = hs. \\ \end{aligned}$$

Equation (11.104) is expressed as a function of α and s.

Note 11.12 Eqs. (11.124) and (11.125)

In the case of braking, from Eq. (11.83), we obtain

$${\text{Braking}}\quad s = \left( {V_{\text{R}} \cos \,\alpha - V_{\text{B}} } \right)/\left( {V_{\text{R}} \cos \,\alpha } \right) > 0 \to s = 1 - V_{\text{B}} /\left( {V_{\text{R}} \cos \,\alpha } \right) \to V_{\text{B}} /V_{\text{R}} = \left( {1 - s} \right)\cos \,\alpha .$$

The substitution of the above equation into the first equation of Eq. (11.123) yields

$$\begin{aligned} V^{{\prime \prime 2}} & = V_{{\text{R}}}^{2} + V_{{\text{B}}}^{2} - 2V_{{\text{R}}} V_{{\text{B}}} \cos \alpha = V_{{\text{R}}}^{2} \left\{ {1 + \left( {\frac{{V_{{\text{B}}} }}{{V_{{\text{R}}} }}} \right)^{2} - 2\frac{{V_{{\text{B}}} }}{{V_{{\text{R}}} }}\cos \alpha } \right\} \\ & = V_{{\text{R}}}^{2} \left\{ {1 + \left( {1 - s} \right)^{2} \cos ^{2} \alpha - 2\left( {1 - s} \right)\cos ^{2} \alpha } \right\} \\ & = V_{{\text{R}}}^{2} \left\{ {1 + \left( {1 - 2s + s^{2} } \right)\cos ^{2} \alpha - 2\left( {1 - s} \right)\cos ^{2} \alpha } \right\} \\ & = V_{{\text{R}}}^{2} \left\{ {1 + \left( {s^{2} - 1} \right)\cos ^{2} \alpha } \right\}. \\ \end{aligned}$$

In the case of driving, from Eq. (11.83), we obtain

$${\text{Driving}}\quad s = \left( {V_{\text{R}} \cos \alpha - V_{\text{B}} } \right)/V_{\text{B}} < 0 \to s = - 1 + V_{\text{R}} \cos \alpha /V_{\text{B}} \to V_{\text{R}} /V_{\text{B}} = \left( {1 + s} \right)/\cos \alpha .$$

Similarly, the substitution of the above equation into the first equation of Eq. (11.123) yields

$$\begin{aligned} V^{{\prime \prime 2}} & = V_{{\text{R}}}^{2} + V_{{\text{B}}}^{2} - 2V_{{\text{R}}} V_{{\text{B}}} \cos {\mkern 1mu} \alpha = V_{{\text{B}}}^{2} \left\{ {1 + \left( {\frac{{V_{{\text{R}}} }}{{V_{{\text{B}}} }}} \right)^{2} - 2\frac{{V_{{\text{R}}} }}{{V_{{\text{B}}} }}\cos {\mkern 1mu} \alpha } \right\} \\ & = V_{{\text{B}}}^{2} \left\{ {1 + \frac{{\left( {1 + s} \right)^{2} }}{{\cos ^{2} \alpha }} - 2\left( {1 + s} \right)} \right\} = \frac{{V_{{\text{B}}}^{2} }}{{\cos ^{2} \alpha }}\left\{ {1 + 2s + s^{2} - \cos ^{2} \alpha - 2s\cos ^{2} \alpha } \right\} \\ & = \frac{{V_{{\text{B}}}^{2} }}{{\cos ^{2} \alpha }}\left\{ {\sin ^{2} \alpha + 2s\sin ^{2} \alpha + s^{2} } \right\} = V_{{\text{B}}}^{2} \left\{ {\tan ^{2} \alpha + 2s\tan ^{2} \alpha + \frac{{s^{2} }}{{\cos ^{2} \alpha }}} \right\}. \\ \end{aligned}$$

Note 11.13 Eqs. (11.126) and (11.127)

In the case of braking (s > 0), from Eqs. (11.123) and (11.124), we obtain

$$\begin{aligned} & \sin \,\theta = \frac{{V_{\text{R}} }}{{V^{\prime\prime}}}\sin \,\alpha = \frac{{V_{\text{R}} \sin \alpha }}{{V_{\text{R}} \sqrt {1 + \left( {s^{2} - 1} \right)\cos^{2} \alpha } }} = \frac{\sin \alpha }{{\sqrt {\sin^{2} \alpha + s^{2} \cos^{2} \alpha } }} = \frac{1}{{\sqrt {1 + \frac{{s^{2} }}{{\tan^{2} \alpha }}} }} \\ & \cos \,\theta = \sqrt {1 - \sin^{2} \theta } = \sqrt {1 - \frac{1}{{1 + \frac{{s^{2} }}{{\tan^{2} \alpha }}}}} = \frac{{\frac{s}{\tan \,\alpha }}}{{\sqrt {1 + \frac{{s^{2} }}{{\tan^{2} \alpha }}} }} \\ & \tan \,\theta = \frac{\tan \alpha }{s}. \\ \end{aligned}$$

In the case of driving (s < 0), using the relation VR/VB = (1 + s)/cosα and Eqs. (11.123) and (11.125), we obtain

$$\begin{aligned} \sin \theta & = \frac{{V_{{\text{R}}} }}{{V^{{\prime \prime }} }}\sin \alpha = \frac{{V_{{\text{R}}} \sin \alpha }}{{V_{{\text{B}}} \frac{{\sqrt {\sin ^{2} \alpha + 2s\sin ^{2} \alpha + s^{2} } }}{{\cos {\mkern 1mu} \alpha }}}} \\ & = \frac{{1 + s}}{{\cos \alpha }}\frac{{\sin \alpha }}{{\frac{{\sqrt {\sin ^{2} \alpha + 2s\sin ^{2} \alpha + s^{2} } }}{{\cos \alpha }}}} = \frac{{\left( {1 + s} \right)\sin \alpha }}{{\sqrt {\sin ^{2} \alpha + 2s\sin ^{2} \alpha + s^{2} } }}, \\ \cos \theta & = \sqrt {1 - \sin ^{2} \theta } = \sqrt {1 - \frac{{\left( {1 + s} \right)^{2} \sin ^{2} \alpha }}{{\sin ^{2} \alpha + 2s\sin ^{2} \alpha + s^{2} }}} = \frac{{s\cos \alpha }}{{\sqrt {\sin ^{2} \alpha + 2s\sin ^{2} \alpha + s^{2} } }} \\ \tan \theta & = \frac{{\left( {1 + s} \right)\tan \alpha }}{s}. \\ \end{aligned}$$

Because the condition s < 0 is satisfied in the case of driving, we obtain

$$\theta = \pi + \tan^{ - 1} \left( {\frac{1 + s}{s}\tan \,\alpha } \right).$$

Note 11.14 Eq. (11.134)

The third equation of Eq. (11.119) is

$$M_{z} = b\int\limits_{0}^{l} {\left\{ {f_{y} \left( {x - \frac{l}{2}} \right) - f_{x} y} \right\}{\text{d}}x} .$$

Assume that fx is uniform in the width direction and y is expressed by Eq. (11.95). Using the relation \(\alpha \ll 1\), y0 in Eq. (11.95) is neglected. The moment Mzx due to fx (component of Mz) is given by

$$M_{zx} = - b\int\limits_{0}^{l} {f_{x} y{\text{d}}x} = - b\int\limits_{0}^{l} {f_{x} x\tan \alpha {\text{d}}x} = f_{x} l^{2} b/2 \cdot \tan \alpha .$$

Note 11.15 Eqs. (11.153) and (11.157)

Equation (11.153)

From Eqs. (11.119) and (11.129), we obtain

$$\begin{aligned} & F_{y} \left( {s,\alpha _{0} ,V} \right)= F_{y}^{\prime } + F_{y}^{{\prime \prime }} = b\int\limits_{0}^{{l_{h} }} {f_{y} {\text{d}}x_{1} } + b\int\limits_{{l_{h} }}^{l} {\mu _{{\text{d}}} q_{z} (x_{1} )\sin \theta {\text{d}}x_{1} } \\ & \quad= bC_{y} \int\limits_{0}^{{l_{h} }} {\left\{ {x_{1} \tan \alpha - \varepsilon l^{2} F_{y} (1 - s)\frac{{x_{1} }}{l}\left( {1 - (1 - s)\frac{{x_{1} }}{l}} \right)} \right\}{\text{d}}x_{1} } + b\int\limits_{{l_{h} }}^{l} {\mu _{{\text{d}}} \frac{{n + 1}}{n}\frac{{F_{z} }}{{wl}}D_{{{\text{gsp}}}} \left( {\frac{{x_{1} }}{l};n,\zeta } \right)\sin \theta {\text{d}}x_{1} } \\ & \quad= bC_{y} l^{2} \int\limits_{0}^{{r_{h} }} {\left\{ {t\tan \alpha - \varepsilon lF_{y} (1 - s)t\left( {1 - (1 - s)t} \right)} \right\}{\text{d}}t} + \frac{{n + 1}}{n}\mu _{{\text{d}}} \left( {s,\alpha _{0} ,V} \right)F_{z} \sin \theta \int\limits_{{r_{h} }}^{1} {D_{{{\text{gsp}}}} \left( {t;n,\zeta } \right){\text{d}}t} . \\ \end{aligned}$$

Equation (11.157)

Equation (11.156) can be rewritten as

$$M_{z} \left( {s,\alpha_{0} ,V} \right) = b\int\limits_{0}^{{l_{h} }} {\left\{ { - f_{x} y + f_{y} \left( {x_{1} - x_{c} } \right)} \right\}{\text{d}}} x_{1} + b\int\limits_{{l_{h} }}^{l} {\mu_{\text{d}} q_{z} \left\{ { - y^{\prime}\cos \theta + \left( {x_{1} - x_{c} } \right)\sin \theta } \right\}{\text{d}}x_{1} } .$$

One term of the above equation can be expressed as

$$b\int_{0}^{{l_{h} }} {f_{x} y{\text{d}}} x_{1} = b\int\limits_{0}^{{l_{h} }} {C_{x} sx_{1} \cdot y{\text{d}}} x_{1} = bC_{x} s\int\limits_{0}^{{l_{h} }} {x_{1}^{2} \tan \alpha {\text{d}}} x_{1} = \frac{{bC_{x} l_{h}^{3} s\tan \alpha }}{3} = \frac{{bC_{x} l^{3} r_{h}^{3} s\tan \alpha }}{3} = 4C_{Ms\_0} r_{h}^{3} s\tan \alpha ,$$

where

$$C_{Ms\_0} = bC_{x} l^{3} /12.$$

Using Eq. (11.114) with a zero camber angle, the second term of the above equation is given by

$$\begin{aligned} & b\int\limits_{0}^{{l_{h} }} {f_{y} \left( {x_{1} - x_{c} } \right){\text{d}}} x_{1} = bC_{y} \int\limits_{0}^{{l_{h} }} {\left\{ {x_{1} \tan \alpha - \frac{\delta }{{C_{y} }}F_{y} (1 - s)\frac{{x_{1} }}{l}\left( {1 - (1 - s)\frac{{x_{1} }}{l}} \right)} \right\}\left( {x_{1} - x_{c} } \right){\text{d}}} x_{1} \\ & = bC_{y} l^{3} \int\limits_{0}^{{r_{h} }} {\left\{ {t\tan \alpha - \varepsilon lF_{y} (1 - s)t\left( {1 - (1 - s)t} \right)} \right\}\left( {t - \frac{{x_{c} }}{l}} \right){\text{d}}} t \\ & = 12C_{M\alpha \_0} \int\limits_{0}^{{r_{h} }} {\left\{ {t\tan \alpha - \varepsilon lF_{y} (1 - s)t\left( {1 - (1 - s)t} \right)} \right\}\left( {t - \frac{{x_{c} }}{l}} \right){\text{d}}} t, \\ \end{aligned}$$

where

$$C_{M\alpha \_0} = bC_{y} l^{3} /12.$$

The other terms of the above equation are given by

$$b\int\limits_{{l_{h} }}^{l} {\mu_{\text{d}} q_{z} \left( {x_{1} - x_{c} } \right)\sin \theta {\text{d}}x_{1} } = b\mu_{\text{d}} \sin \theta l^{2} \int\limits_{{r_{h} }}^{i} {\frac{n + 1}{n}\frac{{F_{z} }}{wl}D_{\text{gsp}} \left( {\frac{{x_{1} }}{l};n,\zeta } \right)\left( {t - \frac{{x_{c} }}{l}} \right){\text{d}}t} = \frac{n + 1}{n}\mu_{\text{d}} lF_{z} \sin \theta \int\limits_{{r_{h} }}^{i} {D_{\text{gsp}} \left( {\frac{{x_{1} }}{l};n,\zeta } \right)\left( {t - \frac{{x_{c} }}{l}} \right){\text{d}}t}$$
$$\begin{aligned} b\int\limits_{{l_{h} }}^{l} {\mu _{{\text{d}}} q_{z} y^{\prime } \cos \theta {\text{d}}x_{1} } & = b\mu _{{\text{d}}} \cos \theta \int\limits_{{l_{h} }}^{l} {\frac{{n + 1}}{n}\frac{{F_{z} }}{{wl}}D_{{{\text{gsp}}}} \left( {\frac{{x_{1} }}{l};n,\zeta } \right)\left\{ {\frac{{\left( {x_{1} - l} \right)l_{h} \tan \alpha }}{{l_{h} - l}} + y_{0} } \right\}{\text{d}}x_{1} } \\ & = \frac{{n + 1}}{n}\mu _{{\text{d}}} F_{z} l\cos \theta \int\limits_{{r_{h} }}^{1} {D_{{{\text{gsp}}}} \left( {\frac{{x_{1} }}{l};n,\zeta } \right)\left\{ {\frac{{\left( {t - 1} \right)r_{h} \tan \alpha }}{{r_{h} - 1}} + \frac{{y_{0} }}{l}} \right\}{\text{d}}t} \\ & = \frac{{n + 1}}{n}\mu _{{\text{d}}} F_{z} l\cos \theta r_{h} \tan \alpha \int\limits_{{r_{h} }}^{1} {D_{{{\text{gsp}}}} \left( {\frac{{x_{1} }}{l};n,\zeta } \right)\frac{{t - 1}}{{r_{h} - 1}}{\text{d}}t} \\ & \quad + \frac{{n + 1}}{n}\mu _{{\text{d}}} F_{z} l\cos \theta \int\limits_{{r_{h} }}^{1} {D_{{{\text{gsp}}}} \left( {\frac{{x_{1} }}{l};n,\zeta } \right)\frac{{y_{0} }}{l}{\text{d}}t.} \\ \end{aligned}$$

Note 11.16 Eq. (11.164)

Substituting Eq. (11.102) for \(y^{\prime}\), Eq. (11.115) for fy at a zero camber angle and Eq. (11.145) for qz into Eq. (11.156), we obtain

$$M_{z} \left( {s,\alpha_{0} ,V} \right) = M^{\prime}_{z} + M^{\prime\prime}_{z} = b\int\limits_{0}^{{l_{h} }} {\left\{ { - f_{x} y + f_{y} \left( {x_{1} - x_{c} } \right)} \right\}{\text{d}}} x_{1} + b\int\limits_{{l_{h} }}^{l} {\mu_{\text{d}} q_{z} \left\{ { - y^{\prime}\cos \theta + \left( {x_{1} - x_{c} } \right)\sin \theta } \right\}{\text{d}}x_{1} }$$
$$\begin{aligned} b\int\limits_{0}^{{l_{h} }} {f_{y} \left( {x_{1} - x_{c} } \right){\text{d}}} x_{1} & = bC_{y} \int\limits_{0}^{{l_{h} }} {\left\{ {(1 + s)x_{1} \tan \alpha - \varepsilon l^{2} F_{y} \frac{{x_{1} }}{l}\left( {1 - \frac{{x_{1} }}{l}} \right)} \right\}\left( {x_{1} - x_{c} } \right){\text{d}}} x_{1} \\ & = bC_{y} l^{3} \int\limits_{0}^{{r_{h} }} {\left\{ {(1 + s)t\tan \alpha - \varepsilon lF_{y} t\left( {1 - t} \right)} \right\}\left( {t - \frac{{x_{c} }}{l}} \right){\text{d}}} t \\ & = 12C_{{M\alpha \_0}} \int\limits_{0}^{{r_{h} }} {\left\{ {(1 + s)t\tan \alpha - \varepsilon lF_{y} t\left( {1 - t} \right)} \right\}\left( {t - \frac{{x_{c} }}{l}} \right)} {\text{d}}t. \\ \end{aligned}$$

Derivations of other terms are the same as the derivation of Eq. (11.157) in Note 11.15.

Note 11.17 Eqs. (11.169) and (11.177)

Iida [53] discussed time constants T1, T2 and T3 of the dynamic properties of a tire using Euqations (11.169) and (11.177).

Time constant T1:

  1. (i)

    T1 of steel-belted radial tires is larger than that of bias tires.

  2. (ii)

    T1 decreases a little with increasing inflation pressure.

  3. (iii)

    T1 decreases with increasing wheel width.

  4. (iv)

    T1 increases with increasing load.

  5. (v)

    T1 decreases with increasing slip angle.

Time constants T2 and T3:

  1. (i)

    T2 has the same properties as T1.

  2. (ii)

    The properties of T3 differ from those of T1 such that T3 does not depend on the inflation pressure and slip angle and T3 is smaller for the radial tire than for the bias tire.

Note 11.18 Gyro-moment at high speed

See Fig. 11.68.

Fig. 11.68
figure 68

Mechanism of gyro-moment at high speed

Note 11.19 Eq. (11.183)

Considering the feedback loop in Fig. 11.39, Eq. (11.183) can be rewritten as

$$F_{y} (t) = C_{F\alpha \_0} \left( {\alpha_{0} - \frac{1}{3}\varepsilon lF_{y} (t + \delta t) - \frac{{M_{Z} \left( {t + \delta t} \right)}}{{R_{mz} }}} \right).$$

Applying Taylor series expansion and substituting δt = η/V to the above equation, we obtain

$$\begin{aligned} F_{y} (t) & = C_{F\alpha \_0} \left[ {\alpha_{0} - \frac{1}{3}\varepsilon l\left\{ {F_{y} (t) + \frac{{{\text{d}}F_{y} (t)}}{{{\text{d}}t}}\delta t)} \right\} - \left\{ {\frac{{M_{Z} (t)}}{{R_{mz} }} + \frac{{{\text{d}}M_{Z} (t)}}{{R_{mz} {\text{d}}t}}} \right\}\delta t} \right] \\ & = C_{F\alpha \_0} \left\{ {\alpha_{0} (t)\frac{\varepsilon l}{3}F_{y} (t) - \frac{\varepsilon l}{3}\frac{{{\text{d}}F_{y} (t)}}{{{\text{d}}t}}\frac{\eta }{V} - \frac{{M_{z} (t)}}{{R_{mz} }} - \frac{1}{{R_{mz} }}\frac{{{\text{d}}M_{Z} (t)}}{{R_{mz} {\text{d}}t}}\frac{\eta }{V}} \right\}. \\ \end{aligned}$$

Note 11.20 Stability of the vehicle and tire properties [55]

The vehicle maneuverability is classified by the stability factor SF and the yawing resonance frequency ωn, which are given by [35]

$$\begin{aligned} & {\text{SF}} = - \frac{2m}{l}\frac{{l_{\text{f}} C_{{F\alpha \_{\text{f}}}} - l_{\text{r}} C_{{F\alpha \_{\text{r}}}} }}{{C_{{F\alpha \_{\text{f}}}} C_{{F\alpha \_{\text{r}}}} }} \\ & \omega_{n} = \frac{{2\left( {C_{{F\alpha \_{\text{f}}}} + C_{{F\alpha \_{\text{r}}}} } \right)}}{mV}\sqrt {\frac{{l_{\text{f}} l_{\text{r}} }}{{k^{2} }}} \sqrt {1 + {\text{SF}} \cdot V^{2} } \\ & I = mk^{2} , \\ \end{aligned}$$

where CFα_f and CFα_r are, respectively, the cornering stiffnesses of the front and rear tires, lf and lr are, respectively, the distances between the center of gravity of the vehicle and the front and rear axles, m is the vehicle mass, l is the distance between the front and rear axles, I is the moment of inertia of the vehicle, k is the yawing radius of the vehicle, and V is the velocity of the vehicle.

The stability of the vehicle is improved by increasing the stability factor, while the response of the vehicle is improved by increasing the yawing resonance frequency. Okano et al. [55] studied the relationship between the subjective evaluation and the stability factor/yawing resonance frequency for various tires. Figure 11.69 shows that the subjective evaluation of maneuverability is improved by increasing both the stability factor and yawing resonance frequency. In other words, the subjective evaluation of maneuverability is improved by increasing the yawing resonance frequency when the stability factor has values within some range. Figure 11.70 shows the effect of the cornering stiffnesses of front and rear tires on the stability factor/yawing resonance frequency. The effect of the cornering stiffness of the rear tires is larger than that of the front tires; e.g., the lane-change performance can be improved by increasing the cornering stiffness of rear tires.

Fig. 11.69
figure 69

Reproduced from Ref. [55] with the permission of JSAE

Relationship between points in terms of the subjective evaluation and stability factor/yawing resonance frequency.

Fig. 11.70
figure 70

Reproduced from Ref. [55] with the permission of JSAE

Effect of cornering stiffnesses of front and rear tires on the stability factor/yawing resonance frequency.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakajima, Y. (2019). Cornering Properties of Tires. In: Advanced Tire Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-13-5799-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5799-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5798-5

  • Online ISBN: 978-981-13-5799-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics