Skip to main content

In Vivo Self-Assembly of Polypeptide-Based Nanomaterials

  • Living reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

The highly ordered peptide nanostructures, such as nanotube, nanofibril, nanoparticle, nanowire, etc., are showing great application potential in bioimaging, cancer therapy, tissue engineering, antibacterial, and regenerative medicine field. The “in vivo self-assembly” is a strategy which has been put forward utilizing in vivo microenvironment response linker to control the peptide nanostructure. In this chapter, we firstly provided a short description of functional peptides and driving forces for self-assembly, followed by introduction of the principle and methods of “in vivo self-assembly strategy” mainly based on our published papers. After listing some typical self-assembled peptides, we focused on the discussion of “in vivo self-assembly strategy” triggered by pH, enzyme, temperature, ligand-receptor interaction, and redox reaction response with specific articles as example. The polymer-peptide conjugates (PPCs) self-assembly in vivo also was discussed. By providing a snapshot for chemists, engineers, and medical scientists, we hope that this chapter will contribute to insights and developments of multidisciplinary research on “in vivo self-assembly strategy” for a wide range of applications in different fields. Finally, we offer our perspective and outlook on this fast-growing strategy in supramolecular chemistry, nanobiomaterials, biology, and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Qi GB, Gao YJ, Wang L, Wang H (2018) Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv Mater. https://doi.org/10.1002/adma.201703444

    Article  Google Scholar 

  2. Hu XX, He PP, Qi GB, Gao YJ, Lin YX, Yang C, Yang PP, Hao HX, Wang L, Wang H (2017) Transformable nanomaterials as an artificial extracellular matrix for inhibiting tumor invasion and metastasis. ACS Nano 11(4):4086–4096. https://doi.org/10.1021/acsnano.7b00781

    Article  CAS  PubMed  Google Scholar 

  3. Yang PP, Luo Q, Qi GB, Gao YJ, Li BN, Zhang JP, Wang L, Wang H (2017) Host materials transformable in tumor microenvironment for homing theranostics. Adv Mater 29(15). https://doi.org/10.1002/adma.201605869

    Article  Google Scholar 

  4. Hamley IW (2014) Peptide nanotubes. Angew Chem Int Ed Engl 53(27):6866–6881. https://doi.org/10.1002/anie.201310006

    Article  CAS  PubMed  Google Scholar 

  5. Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39(6):1877–1890. https://doi.org/10.1039/b915765b

    Article  CAS  PubMed  Google Scholar 

  6. Dong R, Zhou Y, Huang X, Zhu X, Lu Y, Shen J (2015) Functional supramolecular polymers for biomedical applications. Adv Mater 27(3):498–526

    Article  CAS  Google Scholar 

  7. Ulijn RV, Smith AM (2008) Designing peptide based nanomaterials. Chem Soc Rev 37(4):664–675. https://doi.org/10.1039/b609047h

    Article  CAS  PubMed  Google Scholar 

  8. Zou R, Wang Q, Wu J, Wu J, Schmuck C, Tian H (2015) Peptide self-assembly triggered by metal ions. Chem Soc Rev 44(15):5200–5219

    Article  CAS  Google Scholar 

  9. Zhang D, Qi GB, Zhao YX, Qiao SL, Yang C, Wang H (2015) In situ formation of nanofibers from Purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Adv Mater 27(40):6125–6130. https://doi.org/10.1002/adma.201502598

    Article  CAS  PubMed  Google Scholar 

  10. Hudalla GA, Sun T, Gasiorowski JZ, Han H, Tian YF, Chong AS, Collier JH (2014) Gradated assembly of multiple proteins into supramolecular nanomaterials. Nat Mater 13(8):829–836. https://doi.org/10.1038/nmat3998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294(5547):1684–1688. https://doi.org/10.1126/science.1063187

    Article  CAS  PubMed  Google Scholar 

  12. Zhan J, Cai Y, He S, Wang L, Yang Z (2018) Tandem molecular self-assembly in liver Cancer cells. Angew Chem Int Ed Engl 57(7):1813–1816. https://doi.org/10.1002/anie.201710237

    Article  CAS  PubMed  Google Scholar 

  13. Duncan R, Cable HC, Lloyd JB, Rejmanova P, Kopecek J (1982) Degradation of side-chains of n-(2-HYDROXYPROPYL)METHACRYLAMIDE co-polymers by lysosomal thiol-proteinases. Biosci Rep 2(12):1041–1046. https://doi.org/10.1007/bf01122173

    Article  CAS  PubMed  Google Scholar 

  14. Ebenhan T, Zeevaart JR, Venter JD, Govender T, Kruger GH, Jarvis NV, Sathekge MM (2014) Preclinical evaluation of 68Ga-labeled 1, 4, 7-triazacyclononane-1, 4, 7-triacetic acid-ubiquicidin as a radioligand for PET infection imaging. J Nucl Med 55(2):308–314

    Article  CAS  Google Scholar 

  15. Qin H, Ding Y, Mujeeb A, Zhao Y, Nie G (2017) Tumor microenvironment targeting and responsive peptide-based nanoformulations for improved tumor therapy. Mol Pharmacol 92(3):219–231. https://doi.org/10.1124/mol.116.108084

    Article  CAS  PubMed  Google Scholar 

  16. Pasqualini R, Koivunen E, Ruoslahti E (1997) αv integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15(6):542

    Article  CAS  Google Scholar 

  17. Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279(5349):377–380

    Article  CAS  Google Scholar 

  18. Edward M, Mackie RM (1993) Cell-cell and cell-extracellular matrix interactions during MELANOMA cell invasion and metastasis. Melanoma Res 3(4):227–234

    CAS  PubMed  Google Scholar 

  19. Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkilä P, Kantor C, Gahmberg CG, Salo T, Konttinen YT (1999) Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 17(8):768

    Article  CAS  Google Scholar 

  20. Ebenhan T, Zeevaart JR, Venter JD, Govender T, Kruger GH, Jarvis NV, Sathekge MM (2014) Preclinical evaluation of Ga-68-labeled 1,4,7-Triazacyclononane-1,4,7-Triacetic acid-Ubiquicidin as a Radioligand for PET infection imaging. J Nucl Med 55(2):308–314. https://doi.org/10.2967/jnumed.113.128397

    Article  CAS  PubMed  Google Scholar 

  21. Tjernberg LO, Naslund J, Lindqvist F, Johansson J, Karlstrom AR, Thyberg J, Terenius L, Nordstedt C (1996) Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J Biol Chem 271(15):8545–8548. https://doi.org/10.1074/jbc.271.15.8545

    Article  CAS  PubMed  Google Scholar 

  22. Luo Q, Lin YX, Yang PP, Wang Y, Qi GB, Qiao ZY, Li BN, Zhang K, Zhang JP, Wang L, Wang H (2018) A self-destructive nanosweeper that captures and clears amyloid beta-peptides. Nat Commun 9(1):1802. https://doi.org/10.1038/s41467-018-04255-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Altman M, Lee P, Rich A, Zhang SG (2000) Conformational behavior of ionic self-complementary peptides. Protein Sci 9(6):1095–1105. https://doi.org/10.1110/ps.9.6.1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li LL, Qiao SL, Liu WJ, Ma Y, Wan D, Pan J, Wang H (2017) Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions. Nat Commun 8. https://doi.org/10.1038/s41467-017-01296-8

  25. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316. https://doi.org/10.1126/science.281.5381.1312

    Article  CAS  Google Scholar 

  26. Shi HB, Kwok RTK, Liu JZ, Xing BG, Tang BZ, Liu B (2012) Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J Am Chem Soc 134(43):17972–17981. https://doi.org/10.1021/ja3064588

    Article  CAS  PubMed  Google Scholar 

  27. Zhang L, Wang T, Shen Z, Liu M (2016) Chiral nanoarchitectonics: towards the design, self-assembly, and function of nanoscale chiral twists and helices. Adv Mater 28(6):1044–1059. https://doi.org/10.1002/adma.201502590

    Article  CAS  PubMed  Google Scholar 

  28. Papapostolou D, Smith AM, Atkins EDT, Oliver SJ, Ryadnov MG, Serpell LC, Woolfson DN (2007) Engineering nanoscale order into a designed protein fiber. Proc Natl Acad Sci U S A 104(26):10853–10858. https://doi.org/10.1073/pnas.0700801104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eisenberg D (2003) The discovery of the alpha-helix and beta-sheet, the principal structural features of proteins. Proc Natl Acad Sci U S A 100(20):11207–11210. https://doi.org/10.1073/pnas.2034522100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moore AN, Hartgerink JD (2017) Self-assembling multidomain peptide nanofibers for delivery of bioactive molecules and tissue regeneration. Accounts Chem Res 50(4):714–722. https://doi.org/10.1021/acs.accounts.6b00553

    Article  CAS  Google Scholar 

  31. Behanna HA, Donners J, Gordon AC, Stupp SI (2005) Coassembly of amphiphiles with opposite peptide polarities into nanofibers. J Am Chem Soc 127(4):1193–1200. https://doi.org/10.1021/ja044863u

    Article  CAS  PubMed  Google Scholar 

  32. Gao Y, Shi JF, Yuan D, Xu B (2012) Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat Commun 3. https://doi.org/10.1038/ncomms2040

  33. Zhao B-X, Zhao Y, Huang Y, Luo L-M, Song P, Wang X, Chen S, Yu K-F, Zhang X, Zhang Q (2012) The efficiency of tumor-specific pH-responsive peptide-modified polymeric micelles containing paclitaxel. Biomaterials 33(8):2508–2520. https://doi.org/10.1016/j.biomaterials.2011.11.078

    Article  CAS  PubMed  Google Scholar 

  34. Wang L, Li W, Lu J, Zhao YX, Fan G, Zhang JP, Wang H (2013) Supramolecular Nano-aggregates based on Bis(pyrene) derivatives for lysosome-targeted cell imaging. J Phys Chem C 117(50):26811–26820. https://doi.org/10.1021/jp409557g

    Article  CAS  Google Scholar 

  35. Wang HM, Feng ZQQ, Wang YZ, Zhou R, Yang ZM, Xu B (2016) Integrating enzymatic self-assembly and mitochondria targeting for selectively killing Cancer cells without acquired drug resistance. J Am Chem Soc 138(49):16046–16055. https://doi.org/10.1021/jacs.6b09783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng Z, Chen P, Xie M, Wu C, Luo Y, Wang W, Jiang J, Liang G (2016) Cell environment-differentiated self-assembly of nanofibers. J Am Chem Soc 138(35):11128–11131. https://doi.org/10.1021/jacs.6b06903

    Article  CAS  PubMed  Google Scholar 

  37. Jeena MT, Palanikumar L, Go EM, Kim I, Kang MG, Lee S, Park S, Choi H, Kim C, Jin S-M, Bae SC, Rhee HW, Lee E, Kwak SK, Ryu J-H (2017) Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction. Nat Commun 8. https://doi.org/10.1038/s41467-017-00047-z

  38. Li L-L, Ma H-L, Qi G-B, Zhang D, Yu F, Hu Z, Wang H (2016) Pathological-condition-driven construction of supramolecular Nanoassemblies for bacterial infection detection. Adv Mater 28(2):254–262. https://doi.org/10.1002/adma.201503437

    Article  CAS  PubMed  Google Scholar 

  39. Shi JF, Du XW, Huang YB, Zhou J, Yuan D, Wu DD, Zhang Y, Haburcak R, Epstein IR, Xu B (2015) Ligand-receptor interaction catalyzes the aggregation of small molecules to induce cell necroptosis. J Am Chem Soc 137(1):26–29. https://doi.org/10.1021/ja5100417

    Article  CAS  PubMed  Google Scholar 

  40. Xu A-P, Yang P-P, Yang C, Gao Y-J, Zhao X-X, Luo Q, Li X-D, Li L-Z, Wang L, Wang H (2016) Bio-inspired metal ions regulate the structure evolution of self-assembled peptide-based nanoparticles. Nanoscale 8(29):14078–14083. https://doi.org/10.1039/c6nr03580a

    Article  CAS  PubMed  Google Scholar 

  41. Ye DJ, Shuhendler AJ, Cui LN, Tong L, Tee SS, Tikhomirov G, Felsher DW, Rao JH (2014) Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat Chem 6(6):519–526. https://doi.org/10.1038/nchem.1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qiao SL, Ma Y, Wang Y, Lin YX, An HW, Li LL, Wang H (2017) General approach of stimuli-induced aggregation for monitoring tumor therapy. ACS Nano 11(7):7301–7311. https://doi.org/10.1021/acsnano.7b03375

    Article  CAS  PubMed  Google Scholar 

  43. Cheng DB, Qi GB, Wang JQ, Gong Y, Liu FH, Yu HJ, Qiao ZY, Wang H (2017) In situ monitoring intracellular structural change of Nanovehicles through photoacoustic signals based on phenylboronate-linked RGD-dextran/Purpurin 18 conjugates. Biomacromolecules 18(4):1249–1258. https://doi.org/10.1021/acs.biomac.6b01922

    Article  CAS  PubMed  Google Scholar 

  44. Hatakeyama S, Sugihara K, Shibata TK, Nakayama J, Akama TO, Tamura N, Wong S-M, Bobkov AA, Takano Y, Ohyama C (2011) Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide. Proc Natl Acad Sci 108(49):19587–19592

    Article  CAS  Google Scholar 

  45. Pilch J, Brown DM, Komatsu M, Järvinen TA, Yang M, Peters D, Hoffman RM, Ruoslahti E (2006) Peptides selected for binding to clotted plasma accumulate in tumor stroma and wounds. Proc Natl Acad Sci U S A 103(8):2800–2804

    Article  CAS  Google Scholar 

  46. Simberg D, Duza T, Park JH, Essler M, Pilch J, Zhang L, Derfus AM, Yang M, Hoffman RM, Bhatia S (2007) Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci 104(3):932–936

    Article  Google Scholar 

  47. Kelly K, Alencar H, Funovics M, Mahmood U, Weissleder R (2004) Detection of invasive colon cancer using a novel, targeted, library-derived fluorescent peptide. Cancer Res 64(17):6247–6251. https://doi.org/10.1158/0008-5472.Can-04-0817

    Article  CAS  PubMed  Google Scholar 

  48. Wong JK, Gunthard HF, Havlir DV, Zhang ZQ, Haase AT, Ignacio CC, Kwok S, Emini E, Richman DD (1997) Reduction of HIV-1 in blood and lymph nodes following potent antiretroviral therapy and the virologic correlates of treatment failure. Proc Natl Acad Sci U S A 94(23):12574–12579. https://doi.org/10.1073/pnas.94.23.12574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dong H, Hartgerink JD (2006) Short homodimeric and heterodimeric coiled coils. Biomacromolecules 7(3):691–695. https://doi.org/10.1021/bm050833n

    Article  CAS  PubMed  Google Scholar 

  50. Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124(50):15030–15037. https://doi.org/10.1021/ja027993g

    Article  CAS  PubMed  Google Scholar 

  51. Garripelli VK, Kim J-K, Son S, Kim WJ, Repka MA, Jo S (2011) Matrix metalloproteinase-sensitive thermogelling polymer for bioresponsive local drug delivery. Acta Biomater 7(5):1984–1992. https://doi.org/10.1016/j.actbio.2011.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu L, Kate P, Torchilin VP (2012) Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6(4):3491–3498. https://doi.org/10.1021/nn300524f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao W, Xiang B, Meng T-T, Liu F, Qi X-R (2013) Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides. Biomaterials 34(16):4137–4149. https://doi.org/10.1016/j.biomaterials.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  54. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100(9):5413–5418. https://doi.org/10.1073/pnas.0737381100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. von Maltzahn G, Harris TJ, Park J-H, Min D-H, Schmidt AJ, Sailor MJ, Bhatia SN (2007) Nanoparticle self-assembly gated by logical proteolytic triggers. J Am Chem Soc 129(19):6064–606+. https://doi.org/10.1021/ja070461l

    Article  CAS  Google Scholar 

  56. Sewell SL, Giorgio TD (2009) Synthesis and enzymatic cleavage of dual-ligand quantum dots. Mater Sci Eng C-Biomimetic Supramol Syst 29(4):1428–1432. https://doi.org/10.1016/j.msec.2008.11.015

    Article  CAS  Google Scholar 

  57. Yang J, Jacobsen MT, Pan H, Kopecek J (2010) Synthesis and characterization of enzymatically degradable PEG-based peptide-containing hydrogels. Macromol Biosci 10(4):445–454. https://doi.org/10.1002/mabi.200900295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang Z, Ma M, Xu B (2009) Using matrix metalloprotease-9 (MMP-9) to trigger supramolecular hydrogelation. Soft Matter 5(13):2546–2548. https://doi.org/10.1039/b908206a

    Article  CAS  Google Scholar 

  59. Raymond DM, Nilsson BL (2018) Multicomponent peptide assemblies. Chem Soc Rev 47(10):3659–3720. https://doi.org/10.1039/c8cs00115d

    Article  CAS  PubMed  Google Scholar 

  60. Marini DM, Hwang W, Lauffenburger DA, Zhang SG, Kamm RD (2002) Left-handed helical ribbon intermediates in the self-assembly of a beta-sheet peptide. Nano Lett 2(4):295–299. https://doi.org/10.1021/nl015697g

    Article  CAS  Google Scholar 

  61. Sun Y, Zhang Y, Tian L, Zhao Y, Wu D, Xue W, Ramakrishna S, Wu W, He L (2017) Self-assembly behaviors of molecular designer functional RADA16-I peptides: influence of motifs, pH, and assembly time. Biomed Mater 12(1). https://doi.org/10.1088/1748-605x/12/1/015007

    Article  Google Scholar 

  62. Sathaye S, Zhang H, Sonmez C, Schneider JP, MacDermaid CM, Von Bargen CD, Saven JG, Pochan DJ (2014) Engineering complementary hydrophobic interactions to control beta-hairpin peptide self-assembly, network branching, and hydrogel properties. Biomacromolecules 15(11):3891–3900. https://doi.org/10.1021/bm500874t

    Article  CAS  PubMed  Google Scholar 

  63. Ma H, Fei J, Li Q, Li J (2015) Photo-induced reversible structural transition of cationic diphenylalanine peptide self-assembly. Small 11(15):1787–1791. https://doi.org/10.1002/smll.201402140

    Article  CAS  PubMed  Google Scholar 

  64. Shah RN, Shah NA, Lim MMD, Hsieh C, Nuber G, Stupp SI (2010) Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci U S A 107(8):3293–3298. https://doi.org/10.1073/pnas.0906501107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Fund for Distinguished Young Scholars (51725302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, MD., Huang, YQ., Wang, H. (2019). In Vivo Self-Assembly of Polypeptide-Based Nanomaterials. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics